Properties

Label 2175.2.c.p.349.14
Level $2175$
Weight $2$
Character 2175.349
Analytic conductor $17.367$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(349,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 308x^{12} + 1671x^{10} + 4568x^{8} + 5616x^{6} + 2105x^{4} + 256x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.14
Root \(2.57789i\) of defining polynomial
Character \(\chi\) \(=\) 2175.349
Dual form 2175.2.c.p.349.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.57789i q^{2} -1.00000i q^{3} -4.64553 q^{4} +2.57789 q^{6} +4.69867i q^{7} -6.81989i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+2.57789i q^{2} -1.00000i q^{3} -4.64553 q^{4} +2.57789 q^{6} +4.69867i q^{7} -6.81989i q^{8} -1.00000 q^{9} -3.11503 q^{11} +4.64553i q^{12} +5.07945i q^{13} -12.1127 q^{14} +8.28989 q^{16} +1.40020i q^{17} -2.57789i q^{18} +3.76514 q^{19} +4.69867 q^{21} -8.03022i q^{22} -5.71483i q^{23} -6.81989 q^{24} -13.0943 q^{26} +1.00000i q^{27} -21.8278i q^{28} -1.00000 q^{29} -2.23218 q^{31} +7.73067i q^{32} +3.11503i q^{33} -3.60957 q^{34} +4.64553 q^{36} +5.79088i q^{37} +9.70614i q^{38} +5.07945 q^{39} -10.6968 q^{41} +12.1127i q^{42} +8.89527i q^{43} +14.4710 q^{44} +14.7322 q^{46} +3.62785i q^{47} -8.28989i q^{48} -15.0775 q^{49} +1.40020 q^{51} -23.5967i q^{52} +0.948260i q^{53} -2.57789 q^{54} +32.0445 q^{56} -3.76514i q^{57} -2.57789i q^{58} +8.53886 q^{59} -6.21467 q^{61} -5.75432i q^{62} -4.69867i q^{63} -3.34905 q^{64} -8.03022 q^{66} -13.9099i q^{67} -6.50468i q^{68} -5.71483 q^{69} +5.88726 q^{71} +6.81989i q^{72} -7.08398i q^{73} -14.9283 q^{74} -17.4911 q^{76} -14.6365i q^{77} +13.0943i q^{78} -7.31672 q^{79} +1.00000 q^{81} -27.5751i q^{82} -13.6579i q^{83} -21.8278 q^{84} -22.9311 q^{86} +1.00000i q^{87} +21.2442i q^{88} +7.98017 q^{89} -23.8667 q^{91} +26.5484i q^{92} +2.23218i q^{93} -9.35221 q^{94} +7.73067 q^{96} -13.8343i q^{97} -38.8683i q^{98} +3.11503 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 24 q^{4} + 4 q^{6} - 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 24 q^{4} + 4 q^{6} - 16 q^{9} + 12 q^{11} - 18 q^{14} + 64 q^{16} - 4 q^{21} - 6 q^{24} + 36 q^{26} - 16 q^{29} + 16 q^{31} + 26 q^{34} + 24 q^{36} + 12 q^{39} + 4 q^{41} + 30 q^{44} + 48 q^{46} - 76 q^{49} + 24 q^{51} - 4 q^{54} + 116 q^{56} - 36 q^{59} + 24 q^{61} - 42 q^{64} - 6 q^{66} - 28 q^{69} + 48 q^{71} + 44 q^{74} - 20 q^{79} + 16 q^{81} + 28 q^{84} + 16 q^{86} - 68 q^{89} + 52 q^{91} + 86 q^{94} - 4 q^{96} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.57789i 1.82285i 0.411471 + 0.911423i \(0.365015\pi\)
−0.411471 + 0.911423i \(0.634985\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) −4.64553 −2.32277
\(5\) 0 0
\(6\) 2.57789 1.05242
\(7\) 4.69867i 1.77593i 0.459909 + 0.887966i \(0.347882\pi\)
−0.459909 + 0.887966i \(0.652118\pi\)
\(8\) − 6.81989i − 2.41120i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −3.11503 −0.939218 −0.469609 0.882875i \(-0.655605\pi\)
−0.469609 + 0.882875i \(0.655605\pi\)
\(12\) 4.64553i 1.34105i
\(13\) 5.07945i 1.40879i 0.709810 + 0.704393i \(0.248781\pi\)
−0.709810 + 0.704393i \(0.751219\pi\)
\(14\) −12.1127 −3.23725
\(15\) 0 0
\(16\) 8.28989 2.07247
\(17\) 1.40020i 0.339599i 0.985479 + 0.169799i \(0.0543120\pi\)
−0.985479 + 0.169799i \(0.945688\pi\)
\(18\) − 2.57789i − 0.607615i
\(19\) 3.76514 0.863783 0.431892 0.901925i \(-0.357846\pi\)
0.431892 + 0.901925i \(0.357846\pi\)
\(20\) 0 0
\(21\) 4.69867 1.02533
\(22\) − 8.03022i − 1.71205i
\(23\) − 5.71483i − 1.19162i −0.803124 0.595812i \(-0.796830\pi\)
0.803124 0.595812i \(-0.203170\pi\)
\(24\) −6.81989 −1.39211
\(25\) 0 0
\(26\) −13.0943 −2.56800
\(27\) 1.00000i 0.192450i
\(28\) − 21.8278i − 4.12507i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −2.23218 −0.400911 −0.200456 0.979703i \(-0.564242\pi\)
−0.200456 + 0.979703i \(0.564242\pi\)
\(32\) 7.73067i 1.36660i
\(33\) 3.11503i 0.542258i
\(34\) −3.60957 −0.619036
\(35\) 0 0
\(36\) 4.64553 0.774255
\(37\) 5.79088i 0.952015i 0.879441 + 0.476008i \(0.157917\pi\)
−0.879441 + 0.476008i \(0.842083\pi\)
\(38\) 9.70614i 1.57454i
\(39\) 5.07945 0.813363
\(40\) 0 0
\(41\) −10.6968 −1.67055 −0.835276 0.549830i \(-0.814692\pi\)
−0.835276 + 0.549830i \(0.814692\pi\)
\(42\) 12.1127i 1.86903i
\(43\) 8.89527i 1.35652i 0.734824 + 0.678258i \(0.237265\pi\)
−0.734824 + 0.678258i \(0.762735\pi\)
\(44\) 14.4710 2.18158
\(45\) 0 0
\(46\) 14.7322 2.17215
\(47\) 3.62785i 0.529176i 0.964362 + 0.264588i \(0.0852360\pi\)
−0.964362 + 0.264588i \(0.914764\pi\)
\(48\) − 8.28989i − 1.19654i
\(49\) −15.0775 −2.15393
\(50\) 0 0
\(51\) 1.40020 0.196067
\(52\) − 23.5967i − 3.27228i
\(53\) 0.948260i 0.130254i 0.997877 + 0.0651268i \(0.0207452\pi\)
−0.997877 + 0.0651268i \(0.979255\pi\)
\(54\) −2.57789 −0.350807
\(55\) 0 0
\(56\) 32.0445 4.28212
\(57\) − 3.76514i − 0.498706i
\(58\) − 2.57789i − 0.338494i
\(59\) 8.53886 1.11166 0.555832 0.831294i \(-0.312400\pi\)
0.555832 + 0.831294i \(0.312400\pi\)
\(60\) 0 0
\(61\) −6.21467 −0.795707 −0.397853 0.917449i \(-0.630245\pi\)
−0.397853 + 0.917449i \(0.630245\pi\)
\(62\) − 5.75432i − 0.730799i
\(63\) − 4.69867i − 0.591977i
\(64\) −3.34905 −0.418631
\(65\) 0 0
\(66\) −8.03022 −0.988452
\(67\) − 13.9099i − 1.69937i −0.527291 0.849685i \(-0.676792\pi\)
0.527291 0.849685i \(-0.323208\pi\)
\(68\) − 6.50468i − 0.788808i
\(69\) −5.71483 −0.687985
\(70\) 0 0
\(71\) 5.88726 0.698690 0.349345 0.936994i \(-0.386404\pi\)
0.349345 + 0.936994i \(0.386404\pi\)
\(72\) 6.81989i 0.803732i
\(73\) − 7.08398i − 0.829117i −0.910023 0.414559i \(-0.863936\pi\)
0.910023 0.414559i \(-0.136064\pi\)
\(74\) −14.9283 −1.73538
\(75\) 0 0
\(76\) −17.4911 −2.00637
\(77\) − 14.6365i − 1.66799i
\(78\) 13.0943i 1.48263i
\(79\) −7.31672 −0.823195 −0.411598 0.911366i \(-0.635029\pi\)
−0.411598 + 0.911366i \(0.635029\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 27.5751i − 3.04516i
\(83\) − 13.6579i − 1.49915i −0.661917 0.749577i \(-0.730257\pi\)
0.661917 0.749577i \(-0.269743\pi\)
\(84\) −21.8278 −2.38161
\(85\) 0 0
\(86\) −22.9311 −2.47272
\(87\) 1.00000i 0.107211i
\(88\) 21.2442i 2.26464i
\(89\) 7.98017 0.845897 0.422948 0.906154i \(-0.360995\pi\)
0.422948 + 0.906154i \(0.360995\pi\)
\(90\) 0 0
\(91\) −23.8667 −2.50191
\(92\) 26.5484i 2.76786i
\(93\) 2.23218i 0.231466i
\(94\) −9.35221 −0.964607
\(95\) 0 0
\(96\) 7.73067 0.789008
\(97\) − 13.8343i − 1.40466i −0.711853 0.702329i \(-0.752144\pi\)
0.711853 0.702329i \(-0.247856\pi\)
\(98\) − 38.8683i − 3.92629i
\(99\) 3.11503 0.313073
\(100\) 0 0
\(101\) 12.7461 1.26829 0.634144 0.773215i \(-0.281353\pi\)
0.634144 + 0.773215i \(0.281353\pi\)
\(102\) 3.60957i 0.357401i
\(103\) − 8.20406i − 0.808370i −0.914677 0.404185i \(-0.867555\pi\)
0.914677 0.404185i \(-0.132445\pi\)
\(104\) 34.6413 3.39686
\(105\) 0 0
\(106\) −2.44451 −0.237432
\(107\) 3.28873i 0.317933i 0.987284 + 0.158967i \(0.0508162\pi\)
−0.987284 + 0.158967i \(0.949184\pi\)
\(108\) − 4.64553i − 0.447016i
\(109\) 0.246732 0.0236326 0.0118163 0.999930i \(-0.496239\pi\)
0.0118163 + 0.999930i \(0.496239\pi\)
\(110\) 0 0
\(111\) 5.79088 0.549646
\(112\) 38.9515i 3.68057i
\(113\) − 14.4273i − 1.35721i −0.734505 0.678603i \(-0.762586\pi\)
0.734505 0.678603i \(-0.237414\pi\)
\(114\) 9.70614 0.909063
\(115\) 0 0
\(116\) 4.64553 0.431327
\(117\) − 5.07945i − 0.469595i
\(118\) 22.0123i 2.02639i
\(119\) −6.57909 −0.603104
\(120\) 0 0
\(121\) −1.29657 −0.117870
\(122\) − 16.0207i − 1.45045i
\(123\) 10.6968i 0.964494i
\(124\) 10.3697 0.931223
\(125\) 0 0
\(126\) 12.1127 1.07908
\(127\) 21.1707i 1.87860i 0.343101 + 0.939299i \(0.388523\pi\)
−0.343101 + 0.939299i \(0.611477\pi\)
\(128\) 6.82785i 0.603503i
\(129\) 8.89527 0.783185
\(130\) 0 0
\(131\) −8.18994 −0.715559 −0.357779 0.933806i \(-0.616466\pi\)
−0.357779 + 0.933806i \(0.616466\pi\)
\(132\) − 14.4710i − 1.25954i
\(133\) 17.6912i 1.53402i
\(134\) 35.8583 3.09769
\(135\) 0 0
\(136\) 9.54923 0.818840
\(137\) − 17.4054i − 1.48704i −0.668714 0.743520i \(-0.733155\pi\)
0.668714 0.743520i \(-0.266845\pi\)
\(138\) − 14.7322i − 1.25409i
\(139\) 6.81900 0.578380 0.289190 0.957272i \(-0.406614\pi\)
0.289190 + 0.957272i \(0.406614\pi\)
\(140\) 0 0
\(141\) 3.62785 0.305520
\(142\) 15.1767i 1.27360i
\(143\) − 15.8226i − 1.32316i
\(144\) −8.28989 −0.690825
\(145\) 0 0
\(146\) 18.2617 1.51135
\(147\) 15.0775i 1.24357i
\(148\) − 26.9017i − 2.21131i
\(149\) −23.7335 −1.94432 −0.972162 0.234311i \(-0.924717\pi\)
−0.972162 + 0.234311i \(0.924717\pi\)
\(150\) 0 0
\(151\) −17.3095 −1.40863 −0.704315 0.709888i \(-0.748746\pi\)
−0.704315 + 0.709888i \(0.748746\pi\)
\(152\) − 25.6779i − 2.08275i
\(153\) − 1.40020i − 0.113200i
\(154\) 37.7314 3.04048
\(155\) 0 0
\(156\) −23.5967 −1.88925
\(157\) − 10.0537i − 0.802375i −0.915996 0.401188i \(-0.868598\pi\)
0.915996 0.401188i \(-0.131402\pi\)
\(158\) − 18.8617i − 1.50056i
\(159\) 0.948260 0.0752019
\(160\) 0 0
\(161\) 26.8521 2.11624
\(162\) 2.57789i 0.202538i
\(163\) 12.2602i 0.960291i 0.877189 + 0.480145i \(0.159416\pi\)
−0.877189 + 0.480145i \(0.840584\pi\)
\(164\) 49.6921 3.88030
\(165\) 0 0
\(166\) 35.2087 2.73273
\(167\) 13.5990i 1.05232i 0.850386 + 0.526160i \(0.176369\pi\)
−0.850386 + 0.526160i \(0.823631\pi\)
\(168\) − 32.0445i − 2.47228i
\(169\) −12.8008 −0.984677
\(170\) 0 0
\(171\) −3.76514 −0.287928
\(172\) − 41.3233i − 3.15087i
\(173\) 8.35226i 0.635011i 0.948256 + 0.317505i \(0.102845\pi\)
−0.948256 + 0.317505i \(0.897155\pi\)
\(174\) −2.57789 −0.195430
\(175\) 0 0
\(176\) −25.8233 −1.94650
\(177\) − 8.53886i − 0.641820i
\(178\) 20.5720i 1.54194i
\(179\) −26.5865 −1.98717 −0.993583 0.113109i \(-0.963919\pi\)
−0.993583 + 0.113109i \(0.963919\pi\)
\(180\) 0 0
\(181\) 3.72547 0.276912 0.138456 0.990369i \(-0.455786\pi\)
0.138456 + 0.990369i \(0.455786\pi\)
\(182\) − 61.5257i − 4.56059i
\(183\) 6.21467i 0.459401i
\(184\) −38.9745 −2.87324
\(185\) 0 0
\(186\) −5.75432 −0.421927
\(187\) − 4.36167i − 0.318957i
\(188\) − 16.8533i − 1.22915i
\(189\) −4.69867 −0.341778
\(190\) 0 0
\(191\) 6.76433 0.489450 0.244725 0.969593i \(-0.421302\pi\)
0.244725 + 0.969593i \(0.421302\pi\)
\(192\) 3.34905i 0.241697i
\(193\) 0.140715i 0.0101289i 0.999987 + 0.00506444i \(0.00161207\pi\)
−0.999987 + 0.00506444i \(0.998388\pi\)
\(194\) 35.6633 2.56047
\(195\) 0 0
\(196\) 70.0431 5.00308
\(197\) 1.48273i 0.105640i 0.998604 + 0.0528200i \(0.0168210\pi\)
−0.998604 + 0.0528200i \(0.983179\pi\)
\(198\) 8.03022i 0.570683i
\(199\) −25.8626 −1.83335 −0.916677 0.399628i \(-0.869139\pi\)
−0.916677 + 0.399628i \(0.869139\pi\)
\(200\) 0 0
\(201\) −13.9099 −0.981132
\(202\) 32.8582i 2.31189i
\(203\) − 4.69867i − 0.329782i
\(204\) −6.50468 −0.455419
\(205\) 0 0
\(206\) 21.1492 1.47353
\(207\) 5.71483i 0.397208i
\(208\) 42.1081i 2.91967i
\(209\) −11.7285 −0.811281
\(210\) 0 0
\(211\) 23.3428 1.60698 0.803491 0.595317i \(-0.202974\pi\)
0.803491 + 0.595317i \(0.202974\pi\)
\(212\) − 4.40517i − 0.302548i
\(213\) − 5.88726i − 0.403389i
\(214\) −8.47799 −0.579543
\(215\) 0 0
\(216\) 6.81989 0.464035
\(217\) − 10.4883i − 0.711991i
\(218\) 0.636049i 0.0430787i
\(219\) −7.08398 −0.478691
\(220\) 0 0
\(221\) −7.11225 −0.478422
\(222\) 14.9283i 1.00192i
\(223\) 22.4256i 1.50173i 0.660455 + 0.750865i \(0.270363\pi\)
−0.660455 + 0.750865i \(0.729637\pi\)
\(224\) −36.3239 −2.42699
\(225\) 0 0
\(226\) 37.1920 2.47398
\(227\) 4.07327i 0.270353i 0.990822 + 0.135176i \(0.0431601\pi\)
−0.990822 + 0.135176i \(0.956840\pi\)
\(228\) 17.4911i 1.15838i
\(229\) 15.7170 1.03861 0.519303 0.854590i \(-0.326192\pi\)
0.519303 + 0.854590i \(0.326192\pi\)
\(230\) 0 0
\(231\) −14.6365 −0.963012
\(232\) 6.81989i 0.447748i
\(233\) 16.4568i 1.07812i 0.842268 + 0.539059i \(0.181220\pi\)
−0.842268 + 0.539059i \(0.818780\pi\)
\(234\) 13.0943 0.856000
\(235\) 0 0
\(236\) −39.6675 −2.58214
\(237\) 7.31672i 0.475272i
\(238\) − 16.9602i − 1.09937i
\(239\) −3.18702 −0.206151 −0.103075 0.994674i \(-0.532868\pi\)
−0.103075 + 0.994674i \(0.532868\pi\)
\(240\) 0 0
\(241\) 11.1482 0.718118 0.359059 0.933315i \(-0.383098\pi\)
0.359059 + 0.933315i \(0.383098\pi\)
\(242\) − 3.34243i − 0.214859i
\(243\) − 1.00000i − 0.0641500i
\(244\) 28.8704 1.84824
\(245\) 0 0
\(246\) −27.5751 −1.75812
\(247\) 19.1249i 1.21689i
\(248\) 15.2232i 0.966676i
\(249\) −13.6579 −0.865537
\(250\) 0 0
\(251\) −3.23388 −0.204121 −0.102060 0.994778i \(-0.532543\pi\)
−0.102060 + 0.994778i \(0.532543\pi\)
\(252\) 21.8278i 1.37502i
\(253\) 17.8019i 1.11919i
\(254\) −54.5758 −3.42439
\(255\) 0 0
\(256\) −24.2996 −1.51872
\(257\) − 3.96761i − 0.247493i −0.992314 0.123746i \(-0.960509\pi\)
0.992314 0.123746i \(-0.0394909\pi\)
\(258\) 22.9311i 1.42763i
\(259\) −27.2095 −1.69071
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) − 21.1128i − 1.30435i
\(263\) 16.6865i 1.02893i 0.857510 + 0.514467i \(0.172010\pi\)
−0.857510 + 0.514467i \(0.827990\pi\)
\(264\) 21.2442 1.30749
\(265\) 0 0
\(266\) −45.6060 −2.79628
\(267\) − 7.98017i − 0.488379i
\(268\) 64.6191i 3.94724i
\(269\) −7.94329 −0.484311 −0.242155 0.970237i \(-0.577854\pi\)
−0.242155 + 0.970237i \(0.577854\pi\)
\(270\) 0 0
\(271\) −17.3087 −1.05143 −0.525714 0.850662i \(-0.676202\pi\)
−0.525714 + 0.850662i \(0.676202\pi\)
\(272\) 11.6075i 0.703810i
\(273\) 23.8667i 1.44448i
\(274\) 44.8691 2.71064
\(275\) 0 0
\(276\) 26.5484 1.59803
\(277\) − 10.2791i − 0.617612i −0.951125 0.308806i \(-0.900071\pi\)
0.951125 0.308806i \(-0.0999294\pi\)
\(278\) 17.5786i 1.05430i
\(279\) 2.23218 0.133637
\(280\) 0 0
\(281\) 4.57869 0.273142 0.136571 0.990630i \(-0.456392\pi\)
0.136571 + 0.990630i \(0.456392\pi\)
\(282\) 9.35221i 0.556916i
\(283\) 19.2431i 1.14388i 0.820294 + 0.571941i \(0.193810\pi\)
−0.820294 + 0.571941i \(0.806190\pi\)
\(284\) −27.3495 −1.62289
\(285\) 0 0
\(286\) 40.7891 2.41191
\(287\) − 50.2606i − 2.96679i
\(288\) − 7.73067i − 0.455534i
\(289\) 15.0394 0.884673
\(290\) 0 0
\(291\) −13.8343 −0.810979
\(292\) 32.9089i 1.92584i
\(293\) 14.6045i 0.853203i 0.904440 + 0.426602i \(0.140289\pi\)
−0.904440 + 0.426602i \(0.859711\pi\)
\(294\) −38.8683 −2.26684
\(295\) 0 0
\(296\) 39.4932 2.29550
\(297\) − 3.11503i − 0.180753i
\(298\) − 61.1824i − 3.54420i
\(299\) 29.0282 1.67874
\(300\) 0 0
\(301\) −41.7960 −2.40908
\(302\) − 44.6221i − 2.56771i
\(303\) − 12.7461i − 0.732246i
\(304\) 31.2127 1.79017
\(305\) 0 0
\(306\) 3.60957 0.206345
\(307\) − 12.3324i − 0.703850i −0.936028 0.351925i \(-0.885527\pi\)
0.936028 0.351925i \(-0.114473\pi\)
\(308\) 67.9944i 3.87434i
\(309\) −8.20406 −0.466713
\(310\) 0 0
\(311\) 12.3084 0.697943 0.348971 0.937133i \(-0.386531\pi\)
0.348971 + 0.937133i \(0.386531\pi\)
\(312\) − 34.6413i − 1.96118i
\(313\) 16.7306i 0.945672i 0.881150 + 0.472836i \(0.156770\pi\)
−0.881150 + 0.472836i \(0.843230\pi\)
\(314\) 25.9174 1.46261
\(315\) 0 0
\(316\) 33.9901 1.91209
\(317\) 10.9429i 0.614617i 0.951610 + 0.307308i \(0.0994283\pi\)
−0.951610 + 0.307308i \(0.900572\pi\)
\(318\) 2.44451i 0.137081i
\(319\) 3.11503 0.174408
\(320\) 0 0
\(321\) 3.28873 0.183559
\(322\) 69.2219i 3.85759i
\(323\) 5.27196i 0.293340i
\(324\) −4.64553 −0.258085
\(325\) 0 0
\(326\) −31.6054 −1.75046
\(327\) − 0.246732i − 0.0136443i
\(328\) 72.9508i 4.02803i
\(329\) −17.0461 −0.939781
\(330\) 0 0
\(331\) −19.1431 −1.05220 −0.526099 0.850423i \(-0.676346\pi\)
−0.526099 + 0.850423i \(0.676346\pi\)
\(332\) 63.4484i 3.48218i
\(333\) − 5.79088i − 0.317338i
\(334\) −35.0567 −1.91822
\(335\) 0 0
\(336\) 38.9515 2.12498
\(337\) 17.0294i 0.927650i 0.885927 + 0.463825i \(0.153523\pi\)
−0.885927 + 0.463825i \(0.846477\pi\)
\(338\) − 32.9991i − 1.79491i
\(339\) −14.4273 −0.783583
\(340\) 0 0
\(341\) 6.95331 0.376543
\(342\) − 9.70614i − 0.524848i
\(343\) − 37.9537i − 2.04931i
\(344\) 60.6648 3.27083
\(345\) 0 0
\(346\) −21.5312 −1.15753
\(347\) 17.2564i 0.926373i 0.886261 + 0.463186i \(0.153294\pi\)
−0.886261 + 0.463186i \(0.846706\pi\)
\(348\) − 4.64553i − 0.249027i
\(349\) −13.3969 −0.717118 −0.358559 0.933507i \(-0.616732\pi\)
−0.358559 + 0.933507i \(0.616732\pi\)
\(350\) 0 0
\(351\) −5.07945 −0.271121
\(352\) − 24.0813i − 1.28354i
\(353\) 2.04594i 0.108894i 0.998517 + 0.0544472i \(0.0173397\pi\)
−0.998517 + 0.0544472i \(0.982660\pi\)
\(354\) 22.0123 1.16994
\(355\) 0 0
\(356\) −37.0721 −1.96482
\(357\) 6.57909i 0.348202i
\(358\) − 68.5370i − 3.62229i
\(359\) 25.2336 1.33178 0.665889 0.746051i \(-0.268053\pi\)
0.665889 + 0.746051i \(0.268053\pi\)
\(360\) 0 0
\(361\) −4.82368 −0.253878
\(362\) 9.60387i 0.504768i
\(363\) 1.29657i 0.0680525i
\(364\) 110.873 5.81134
\(365\) 0 0
\(366\) −16.0207 −0.837418
\(367\) 9.13285i 0.476731i 0.971176 + 0.238366i \(0.0766116\pi\)
−0.971176 + 0.238366i \(0.923388\pi\)
\(368\) − 47.3753i − 2.46961i
\(369\) 10.6968 0.556851
\(370\) 0 0
\(371\) −4.45557 −0.231321
\(372\) − 10.3697i − 0.537642i
\(373\) 5.41148i 0.280196i 0.990138 + 0.140098i \(0.0447418\pi\)
−0.990138 + 0.140098i \(0.955258\pi\)
\(374\) 11.2439 0.581410
\(375\) 0 0
\(376\) 24.7416 1.27595
\(377\) − 5.07945i − 0.261605i
\(378\) − 12.1127i − 0.623009i
\(379\) −19.8284 −1.01852 −0.509258 0.860614i \(-0.670080\pi\)
−0.509258 + 0.860614i \(0.670080\pi\)
\(380\) 0 0
\(381\) 21.1707 1.08461
\(382\) 17.4377i 0.892191i
\(383\) 14.8919i 0.760941i 0.924793 + 0.380470i \(0.124238\pi\)
−0.924793 + 0.380470i \(0.875762\pi\)
\(384\) 6.82785 0.348432
\(385\) 0 0
\(386\) −0.362748 −0.0184634
\(387\) − 8.89527i − 0.452172i
\(388\) 64.2675i 3.26269i
\(389\) 15.7680 0.799470 0.399735 0.916631i \(-0.369102\pi\)
0.399735 + 0.916631i \(0.369102\pi\)
\(390\) 0 0
\(391\) 8.00192 0.404674
\(392\) 102.827i 5.19356i
\(393\) 8.18994i 0.413128i
\(394\) −3.82232 −0.192566
\(395\) 0 0
\(396\) −14.4710 −0.727194
\(397\) 26.5318i 1.33159i 0.746134 + 0.665796i \(0.231908\pi\)
−0.746134 + 0.665796i \(0.768092\pi\)
\(398\) − 66.6711i − 3.34192i
\(399\) 17.6912 0.885667
\(400\) 0 0
\(401\) 9.71205 0.484997 0.242498 0.970152i \(-0.422033\pi\)
0.242498 + 0.970152i \(0.422033\pi\)
\(402\) − 35.8583i − 1.78845i
\(403\) − 11.3382i − 0.564798i
\(404\) −59.2126 −2.94593
\(405\) 0 0
\(406\) 12.1127 0.601142
\(407\) − 18.0388i − 0.894150i
\(408\) − 9.54923i − 0.472757i
\(409\) 17.4468 0.862691 0.431346 0.902187i \(-0.358039\pi\)
0.431346 + 0.902187i \(0.358039\pi\)
\(410\) 0 0
\(411\) −17.4054 −0.858543
\(412\) 38.1122i 1.87765i
\(413\) 40.1213i 1.97424i
\(414\) −14.7322 −0.724049
\(415\) 0 0
\(416\) −39.2675 −1.92525
\(417\) − 6.81900i − 0.333928i
\(418\) − 30.2349i − 1.47884i
\(419\) −26.0588 −1.27306 −0.636529 0.771253i \(-0.719630\pi\)
−0.636529 + 0.771253i \(0.719630\pi\)
\(420\) 0 0
\(421\) 2.66465 0.129867 0.0649337 0.997890i \(-0.479316\pi\)
0.0649337 + 0.997890i \(0.479316\pi\)
\(422\) 60.1751i 2.92928i
\(423\) − 3.62785i − 0.176392i
\(424\) 6.46704 0.314067
\(425\) 0 0
\(426\) 15.1767 0.735315
\(427\) − 29.2007i − 1.41312i
\(428\) − 15.2779i − 0.738485i
\(429\) −15.8226 −0.763925
\(430\) 0 0
\(431\) −0.150532 −0.00725086 −0.00362543 0.999993i \(-0.501154\pi\)
−0.00362543 + 0.999993i \(0.501154\pi\)
\(432\) 8.28989i 0.398848i
\(433\) − 33.2461i − 1.59770i −0.601527 0.798852i \(-0.705441\pi\)
0.601527 0.798852i \(-0.294559\pi\)
\(434\) 27.0377 1.29785
\(435\) 0 0
\(436\) −1.14620 −0.0548931
\(437\) − 21.5172i − 1.02931i
\(438\) − 18.2617i − 0.872580i
\(439\) −18.1320 −0.865391 −0.432695 0.901540i \(-0.642437\pi\)
−0.432695 + 0.901540i \(0.642437\pi\)
\(440\) 0 0
\(441\) 15.0775 0.717978
\(442\) − 18.3346i − 0.872089i
\(443\) 34.8312i 1.65488i 0.561554 + 0.827440i \(0.310204\pi\)
−0.561554 + 0.827440i \(0.689796\pi\)
\(444\) −26.9017 −1.27670
\(445\) 0 0
\(446\) −57.8108 −2.73742
\(447\) 23.7335i 1.12256i
\(448\) − 15.7361i − 0.743460i
\(449\) −36.1516 −1.70610 −0.853049 0.521830i \(-0.825249\pi\)
−0.853049 + 0.521830i \(0.825249\pi\)
\(450\) 0 0
\(451\) 33.3207 1.56901
\(452\) 67.0225i 3.15247i
\(453\) 17.3095i 0.813273i
\(454\) −10.5005 −0.492811
\(455\) 0 0
\(456\) −25.6779 −1.20248
\(457\) 8.93775i 0.418090i 0.977906 + 0.209045i \(0.0670356\pi\)
−0.977906 + 0.209045i \(0.932964\pi\)
\(458\) 40.5166i 1.89322i
\(459\) −1.40020 −0.0653558
\(460\) 0 0
\(461\) 34.6733 1.61490 0.807449 0.589937i \(-0.200848\pi\)
0.807449 + 0.589937i \(0.200848\pi\)
\(462\) − 37.7314i − 1.75542i
\(463\) 30.9412i 1.43796i 0.695030 + 0.718981i \(0.255391\pi\)
−0.695030 + 0.718981i \(0.744609\pi\)
\(464\) −8.28989 −0.384849
\(465\) 0 0
\(466\) −42.4237 −1.96524
\(467\) − 5.40920i − 0.250308i −0.992137 0.125154i \(-0.960057\pi\)
0.992137 0.125154i \(-0.0399425\pi\)
\(468\) 23.5967i 1.09076i
\(469\) 65.3583 3.01797
\(470\) 0 0
\(471\) −10.0537 −0.463251
\(472\) − 58.2341i − 2.68044i
\(473\) − 27.7091i − 1.27406i
\(474\) −18.8617 −0.866348
\(475\) 0 0
\(476\) 30.5634 1.40087
\(477\) − 0.948260i − 0.0434179i
\(478\) − 8.21578i − 0.375781i
\(479\) −13.4270 −0.613494 −0.306747 0.951791i \(-0.599241\pi\)
−0.306747 + 0.951791i \(0.599241\pi\)
\(480\) 0 0
\(481\) −29.4145 −1.34119
\(482\) 28.7389i 1.30902i
\(483\) − 26.8521i − 1.22181i
\(484\) 6.02327 0.273785
\(485\) 0 0
\(486\) 2.57789 0.116936
\(487\) 24.8746i 1.12718i 0.826055 + 0.563589i \(0.190580\pi\)
−0.826055 + 0.563589i \(0.809420\pi\)
\(488\) 42.3834i 1.91861i
\(489\) 12.2602 0.554424
\(490\) 0 0
\(491\) 20.6717 0.932902 0.466451 0.884547i \(-0.345532\pi\)
0.466451 + 0.884547i \(0.345532\pi\)
\(492\) − 49.6921i − 2.24029i
\(493\) − 1.40020i − 0.0630619i
\(494\) −49.3018 −2.21819
\(495\) 0 0
\(496\) −18.5045 −0.830878
\(497\) 27.6623i 1.24083i
\(498\) − 35.2087i − 1.57774i
\(499\) −21.2182 −0.949856 −0.474928 0.880025i \(-0.657526\pi\)
−0.474928 + 0.880025i \(0.657526\pi\)
\(500\) 0 0
\(501\) 13.5990 0.607557
\(502\) − 8.33660i − 0.372081i
\(503\) − 35.9602i − 1.60339i −0.597736 0.801693i \(-0.703933\pi\)
0.597736 0.801693i \(-0.296067\pi\)
\(504\) −32.0445 −1.42737
\(505\) 0 0
\(506\) −45.8913 −2.04012
\(507\) 12.8008i 0.568504i
\(508\) − 98.3492i − 4.36354i
\(509\) −21.3861 −0.947924 −0.473962 0.880545i \(-0.657177\pi\)
−0.473962 + 0.880545i \(0.657177\pi\)
\(510\) 0 0
\(511\) 33.2853 1.47246
\(512\) − 48.9860i − 2.16489i
\(513\) 3.76514i 0.166235i
\(514\) 10.2281 0.451141
\(515\) 0 0
\(516\) −41.3233 −1.81915
\(517\) − 11.3009i − 0.497012i
\(518\) − 70.1431i − 3.08191i
\(519\) 8.35226 0.366624
\(520\) 0 0
\(521\) −6.56775 −0.287738 −0.143869 0.989597i \(-0.545954\pi\)
−0.143869 + 0.989597i \(0.545954\pi\)
\(522\) 2.57789i 0.112831i
\(523\) − 21.1811i − 0.926184i −0.886310 0.463092i \(-0.846740\pi\)
0.886310 0.463092i \(-0.153260\pi\)
\(524\) 38.0466 1.66207
\(525\) 0 0
\(526\) −43.0160 −1.87559
\(527\) − 3.12550i − 0.136149i
\(528\) 25.8233i 1.12381i
\(529\) −9.65929 −0.419969
\(530\) 0 0
\(531\) −8.53886 −0.370555
\(532\) − 82.1850i − 3.56317i
\(533\) − 54.3336i − 2.35345i
\(534\) 20.5720 0.890239
\(535\) 0 0
\(536\) −94.8643 −4.09752
\(537\) 26.5865i 1.14729i
\(538\) − 20.4769i − 0.882824i
\(539\) 46.9670 2.02301
\(540\) 0 0
\(541\) −9.98542 −0.429307 −0.214653 0.976690i \(-0.568862\pi\)
−0.214653 + 0.976690i \(0.568862\pi\)
\(542\) − 44.6199i − 1.91659i
\(543\) − 3.72547i − 0.159875i
\(544\) −10.8245 −0.464097
\(545\) 0 0
\(546\) −61.5257 −2.63306
\(547\) 1.01143i 0.0432457i 0.999766 + 0.0216228i \(0.00688330\pi\)
−0.999766 + 0.0216228i \(0.993117\pi\)
\(548\) 80.8571i 3.45404i
\(549\) 6.21467 0.265236
\(550\) 0 0
\(551\) −3.76514 −0.160401
\(552\) 38.9745i 1.65887i
\(553\) − 34.3789i − 1.46194i
\(554\) 26.4985 1.12581
\(555\) 0 0
\(556\) −31.6779 −1.34344
\(557\) − 30.4618i − 1.29071i −0.763885 0.645353i \(-0.776710\pi\)
0.763885 0.645353i \(-0.223290\pi\)
\(558\) 5.75432i 0.243600i
\(559\) −45.1831 −1.91104
\(560\) 0 0
\(561\) −4.36167 −0.184150
\(562\) 11.8034i 0.497895i
\(563\) 2.49954i 0.105343i 0.998612 + 0.0526716i \(0.0167736\pi\)
−0.998612 + 0.0526716i \(0.983226\pi\)
\(564\) −16.8533 −0.709651
\(565\) 0 0
\(566\) −49.6066 −2.08512
\(567\) 4.69867i 0.197326i
\(568\) − 40.1505i − 1.68468i
\(569\) 0.611166 0.0256214 0.0128107 0.999918i \(-0.495922\pi\)
0.0128107 + 0.999918i \(0.495922\pi\)
\(570\) 0 0
\(571\) −0.527376 −0.0220700 −0.0110350 0.999939i \(-0.503513\pi\)
−0.0110350 + 0.999939i \(0.503513\pi\)
\(572\) 73.5046i 3.07338i
\(573\) − 6.76433i − 0.282584i
\(574\) 129.566 5.40800
\(575\) 0 0
\(576\) 3.34905 0.139544
\(577\) − 24.3938i − 1.01553i −0.861496 0.507764i \(-0.830472\pi\)
0.861496 0.507764i \(-0.169528\pi\)
\(578\) 38.7700i 1.61262i
\(579\) 0.140715 0.00584791
\(580\) 0 0
\(581\) 64.1742 2.66239
\(582\) − 35.6633i − 1.47829i
\(583\) − 2.95386i − 0.122336i
\(584\) −48.3120 −1.99917
\(585\) 0 0
\(586\) −37.6488 −1.55526
\(587\) − 28.4529i − 1.17438i −0.809450 0.587188i \(-0.800235\pi\)
0.809450 0.587188i \(-0.199765\pi\)
\(588\) − 70.0431i − 2.88853i
\(589\) −8.40448 −0.346301
\(590\) 0 0
\(591\) 1.48273 0.0609913
\(592\) 48.0058i 1.97303i
\(593\) − 2.96753i − 0.121862i −0.998142 0.0609310i \(-0.980593\pi\)
0.998142 0.0609310i \(-0.0194070\pi\)
\(594\) 8.03022 0.329484
\(595\) 0 0
\(596\) 110.255 4.51621
\(597\) 25.8626i 1.05849i
\(598\) 74.8316i 3.06009i
\(599\) −21.9546 −0.897040 −0.448520 0.893773i \(-0.648049\pi\)
−0.448520 + 0.893773i \(0.648049\pi\)
\(600\) 0 0
\(601\) −21.4446 −0.874745 −0.437372 0.899280i \(-0.644091\pi\)
−0.437372 + 0.899280i \(0.644091\pi\)
\(602\) − 107.746i − 4.39138i
\(603\) 13.9099i 0.566457i
\(604\) 80.4120 3.27192
\(605\) 0 0
\(606\) 32.8582 1.33477
\(607\) 48.0114i 1.94872i 0.224988 + 0.974361i \(0.427766\pi\)
−0.224988 + 0.974361i \(0.572234\pi\)
\(608\) 29.1071i 1.18045i
\(609\) −4.69867 −0.190400
\(610\) 0 0
\(611\) −18.4275 −0.745496
\(612\) 6.50468i 0.262936i
\(613\) − 37.9093i − 1.53114i −0.643351 0.765571i \(-0.722456\pi\)
0.643351 0.765571i \(-0.277544\pi\)
\(614\) 31.7917 1.28301
\(615\) 0 0
\(616\) −99.8195 −4.02184
\(617\) 8.29772i 0.334054i 0.985952 + 0.167027i \(0.0534166\pi\)
−0.985952 + 0.167027i \(0.946583\pi\)
\(618\) − 21.1492i − 0.850745i
\(619\) 15.6135 0.627559 0.313779 0.949496i \(-0.398405\pi\)
0.313779 + 0.949496i \(0.398405\pi\)
\(620\) 0 0
\(621\) 5.71483 0.229328
\(622\) 31.7296i 1.27224i
\(623\) 37.4962i 1.50225i
\(624\) 42.1081 1.68567
\(625\) 0 0
\(626\) −43.1298 −1.72381
\(627\) 11.7285i 0.468393i
\(628\) 46.7049i 1.86373i
\(629\) −8.10841 −0.323303
\(630\) 0 0
\(631\) 10.7848 0.429336 0.214668 0.976687i \(-0.431133\pi\)
0.214668 + 0.976687i \(0.431133\pi\)
\(632\) 49.8993i 1.98489i
\(633\) − 23.3428i − 0.927791i
\(634\) −28.2097 −1.12035
\(635\) 0 0
\(636\) −4.40517 −0.174676
\(637\) − 76.5856i − 3.03443i
\(638\) 8.03022i 0.317919i
\(639\) −5.88726 −0.232897
\(640\) 0 0
\(641\) 16.1226 0.636805 0.318403 0.947956i \(-0.396854\pi\)
0.318403 + 0.947956i \(0.396854\pi\)
\(642\) 8.47799i 0.334599i
\(643\) 25.0313i 0.987137i 0.869707 + 0.493569i \(0.164308\pi\)
−0.869707 + 0.493569i \(0.835692\pi\)
\(644\) −124.742 −4.91554
\(645\) 0 0
\(646\) −13.5906 −0.534713
\(647\) 34.9798i 1.37520i 0.726091 + 0.687599i \(0.241335\pi\)
−0.726091 + 0.687599i \(0.758665\pi\)
\(648\) − 6.81989i − 0.267911i
\(649\) −26.5988 −1.04409
\(650\) 0 0
\(651\) −10.4883 −0.411068
\(652\) − 56.9550i − 2.23053i
\(653\) − 22.0250i − 0.861904i −0.902375 0.430952i \(-0.858178\pi\)
0.902375 0.430952i \(-0.141822\pi\)
\(654\) 0.636049 0.0248715
\(655\) 0 0
\(656\) −88.6750 −3.46218
\(657\) 7.08398i 0.276372i
\(658\) − 43.9430i − 1.71308i
\(659\) 32.9279 1.28269 0.641345 0.767253i \(-0.278377\pi\)
0.641345 + 0.767253i \(0.278377\pi\)
\(660\) 0 0
\(661\) 9.78801 0.380710 0.190355 0.981715i \(-0.439036\pi\)
0.190355 + 0.981715i \(0.439036\pi\)
\(662\) − 49.3488i − 1.91799i
\(663\) 7.11225i 0.276217i
\(664\) −93.1457 −3.61475
\(665\) 0 0
\(666\) 14.9283 0.578459
\(667\) 5.71483i 0.221279i
\(668\) − 63.1745i − 2.44429i
\(669\) 22.4256 0.867025
\(670\) 0 0
\(671\) 19.3589 0.747342
\(672\) 36.3239i 1.40122i
\(673\) 25.3634i 0.977689i 0.872371 + 0.488844i \(0.162581\pi\)
−0.872371 + 0.488844i \(0.837419\pi\)
\(674\) −43.8999 −1.69096
\(675\) 0 0
\(676\) 59.4665 2.28717
\(677\) − 19.7896i − 0.760578i −0.924868 0.380289i \(-0.875825\pi\)
0.924868 0.380289i \(-0.124175\pi\)
\(678\) − 37.1920i − 1.42835i
\(679\) 65.0027 2.49458
\(680\) 0 0
\(681\) 4.07327 0.156088
\(682\) 17.9249i 0.686380i
\(683\) − 44.9656i − 1.72056i −0.509820 0.860281i \(-0.670288\pi\)
0.509820 0.860281i \(-0.329712\pi\)
\(684\) 17.4911 0.668789
\(685\) 0 0
\(686\) 97.8406 3.73557
\(687\) − 15.7170i − 0.599640i
\(688\) 73.7409i 2.81134i
\(689\) −4.81664 −0.183499
\(690\) 0 0
\(691\) −30.7758 −1.17077 −0.585384 0.810756i \(-0.699056\pi\)
−0.585384 + 0.810756i \(0.699056\pi\)
\(692\) − 38.8007i − 1.47498i
\(693\) 14.6365i 0.555995i
\(694\) −44.4852 −1.68863
\(695\) 0 0
\(696\) 6.81989 0.258507
\(697\) − 14.9776i − 0.567318i
\(698\) − 34.5357i − 1.30720i
\(699\) 16.4568 0.622452
\(700\) 0 0
\(701\) −23.2459 −0.877984 −0.438992 0.898491i \(-0.644664\pi\)
−0.438992 + 0.898491i \(0.644664\pi\)
\(702\) − 13.0943i − 0.494212i
\(703\) 21.8035i 0.822335i
\(704\) 10.4324 0.393186
\(705\) 0 0
\(706\) −5.27422 −0.198498
\(707\) 59.8899i 2.25239i
\(708\) 39.6675i 1.49080i
\(709\) −7.86251 −0.295283 −0.147641 0.989041i \(-0.547168\pi\)
−0.147641 + 0.989041i \(0.547168\pi\)
\(710\) 0 0
\(711\) 7.31672 0.274398
\(712\) − 54.4239i − 2.03962i
\(713\) 12.7565i 0.477736i
\(714\) −16.9602 −0.634719
\(715\) 0 0
\(716\) 123.508 4.61572
\(717\) 3.18702i 0.119021i
\(718\) 65.0495i 2.42762i
\(719\) −35.0267 −1.30628 −0.653138 0.757239i \(-0.726548\pi\)
−0.653138 + 0.757239i \(0.726548\pi\)
\(720\) 0 0
\(721\) 38.5482 1.43561
\(722\) − 12.4349i − 0.462781i
\(723\) − 11.1482i − 0.414606i
\(724\) −17.3068 −0.643202
\(725\) 0 0
\(726\) −3.34243 −0.124049
\(727\) 22.4518i 0.832691i 0.909206 + 0.416346i \(0.136689\pi\)
−0.909206 + 0.416346i \(0.863311\pi\)
\(728\) 162.768i 6.03259i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −12.4552 −0.460671
\(732\) − 28.8704i − 1.06708i
\(733\) 15.0028i 0.554140i 0.960850 + 0.277070i \(0.0893635\pi\)
−0.960850 + 0.277070i \(0.910637\pi\)
\(734\) −23.5435 −0.869007
\(735\) 0 0
\(736\) 44.1795 1.62848
\(737\) 43.3299i 1.59608i
\(738\) 27.5751i 1.01505i
\(739\) 33.4801 1.23159 0.615793 0.787908i \(-0.288836\pi\)
0.615793 + 0.787908i \(0.288836\pi\)
\(740\) 0 0
\(741\) 19.1249 0.702569
\(742\) − 11.4860i − 0.421663i
\(743\) − 6.75081i − 0.247663i −0.992303 0.123832i \(-0.960482\pi\)
0.992303 0.123832i \(-0.0395183\pi\)
\(744\) 15.2232 0.558111
\(745\) 0 0
\(746\) −13.9502 −0.510754
\(747\) 13.6579i 0.499718i
\(748\) 20.2623i 0.740863i
\(749\) −15.4527 −0.564628
\(750\) 0 0
\(751\) 28.0482 1.02349 0.511747 0.859136i \(-0.328999\pi\)
0.511747 + 0.859136i \(0.328999\pi\)
\(752\) 30.0745i 1.09670i
\(753\) 3.23388i 0.117849i
\(754\) 13.0943 0.476865
\(755\) 0 0
\(756\) 21.8278 0.793871
\(757\) 33.1698i 1.20558i 0.797901 + 0.602789i \(0.205944\pi\)
−0.797901 + 0.602789i \(0.794056\pi\)
\(758\) − 51.1155i − 1.85660i
\(759\) 17.8019 0.646167
\(760\) 0 0
\(761\) −12.0982 −0.438560 −0.219280 0.975662i \(-0.570371\pi\)
−0.219280 + 0.975662i \(0.570371\pi\)
\(762\) 54.5758i 1.97707i
\(763\) 1.15931i 0.0419700i
\(764\) −31.4239 −1.13688
\(765\) 0 0
\(766\) −38.3897 −1.38708
\(767\) 43.3727i 1.56610i
\(768\) 24.2996i 0.876835i
\(769\) 42.5811 1.53551 0.767756 0.640742i \(-0.221373\pi\)
0.767756 + 0.640742i \(0.221373\pi\)
\(770\) 0 0
\(771\) −3.96761 −0.142890
\(772\) − 0.653695i − 0.0235270i
\(773\) − 6.87342i − 0.247220i −0.992331 0.123610i \(-0.960553\pi\)
0.992331 0.123610i \(-0.0394471\pi\)
\(774\) 22.9311 0.824240
\(775\) 0 0
\(776\) −94.3483 −3.38691
\(777\) 27.2095i 0.976134i
\(778\) 40.6482i 1.45731i
\(779\) −40.2748 −1.44300
\(780\) 0 0
\(781\) −18.3390 −0.656222
\(782\) 20.6281i 0.737659i
\(783\) − 1.00000i − 0.0357371i
\(784\) −124.991 −4.46397
\(785\) 0 0
\(786\) −21.1128 −0.753068
\(787\) − 4.51935i − 0.161097i −0.996751 0.0805487i \(-0.974333\pi\)
0.996751 0.0805487i \(-0.0256673\pi\)
\(788\) − 6.88806i − 0.245377i
\(789\) 16.6865 0.594056
\(790\) 0 0
\(791\) 67.7892 2.41031
\(792\) − 21.2442i − 0.754879i
\(793\) − 31.5671i − 1.12098i
\(794\) −68.3961 −2.42729
\(795\) 0 0
\(796\) 120.146 4.25845
\(797\) 13.9670i 0.494736i 0.968922 + 0.247368i \(0.0795656\pi\)
−0.968922 + 0.247368i \(0.920434\pi\)
\(798\) 45.6060i 1.61443i
\(799\) −5.07972 −0.179708
\(800\) 0 0
\(801\) −7.98017 −0.281966
\(802\) 25.0366i 0.884074i
\(803\) 22.0668i 0.778722i
\(804\) 64.6191 2.27894
\(805\) 0 0
\(806\) 29.2288 1.02954
\(807\) 7.94329i 0.279617i
\(808\) − 86.9273i − 3.05809i
\(809\) −8.18148 −0.287646 −0.143823 0.989603i \(-0.545940\pi\)
−0.143823 + 0.989603i \(0.545940\pi\)
\(810\) 0 0
\(811\) −44.4011 −1.55913 −0.779566 0.626320i \(-0.784560\pi\)
−0.779566 + 0.626320i \(0.784560\pi\)
\(812\) 21.8278i 0.766007i
\(813\) 17.3087i 0.607042i
\(814\) 46.5021 1.62990
\(815\) 0 0
\(816\) 11.6075 0.406345
\(817\) 33.4920i 1.17174i
\(818\) 44.9761i 1.57255i
\(819\) 23.8667 0.833969
\(820\) 0 0
\(821\) 8.73119 0.304721 0.152360 0.988325i \(-0.451313\pi\)
0.152360 + 0.988325i \(0.451313\pi\)
\(822\) − 44.8691i − 1.56499i
\(823\) 39.1844i 1.36588i 0.730473 + 0.682942i \(0.239300\pi\)
−0.730473 + 0.682942i \(0.760700\pi\)
\(824\) −55.9508 −1.94914
\(825\) 0 0
\(826\) −103.428 −3.59873
\(827\) 6.33428i 0.220264i 0.993917 + 0.110132i \(0.0351274\pi\)
−0.993917 + 0.110132i \(0.964873\pi\)
\(828\) − 26.5484i − 0.922621i
\(829\) −1.36706 −0.0474798 −0.0237399 0.999718i \(-0.507557\pi\)
−0.0237399 + 0.999718i \(0.507557\pi\)
\(830\) 0 0
\(831\) −10.2791 −0.356579
\(832\) − 17.0113i − 0.589762i
\(833\) − 21.1116i − 0.731473i
\(834\) 17.5786 0.608699
\(835\) 0 0
\(836\) 54.4853 1.88441
\(837\) − 2.23218i − 0.0771554i
\(838\) − 67.1769i − 2.32059i
\(839\) 55.7902 1.92609 0.963046 0.269339i \(-0.0868051\pi\)
0.963046 + 0.269339i \(0.0868051\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 6.86919i 0.236728i
\(843\) − 4.57869i − 0.157698i
\(844\) −108.439 −3.73264
\(845\) 0 0
\(846\) 9.35221 0.321536
\(847\) − 6.09218i − 0.209330i
\(848\) 7.86098i 0.269947i
\(849\) 19.2431 0.660421
\(850\) 0 0
\(851\) 33.0939 1.13444
\(852\) 27.3495i 0.936977i
\(853\) − 6.42812i − 0.220095i −0.993926 0.110047i \(-0.964900\pi\)
0.993926 0.110047i \(-0.0351003\pi\)
\(854\) 75.2762 2.57590
\(855\) 0 0
\(856\) 22.4288 0.766600
\(857\) 35.0274i 1.19651i 0.801304 + 0.598257i \(0.204140\pi\)
−0.801304 + 0.598257i \(0.795860\pi\)
\(858\) − 40.7891i − 1.39252i
\(859\) −18.4412 −0.629207 −0.314603 0.949223i \(-0.601872\pi\)
−0.314603 + 0.949223i \(0.601872\pi\)
\(860\) 0 0
\(861\) −50.2606 −1.71288
\(862\) − 0.388055i − 0.0132172i
\(863\) − 7.23911i − 0.246422i −0.992380 0.123211i \(-0.960681\pi\)
0.992380 0.123211i \(-0.0393192\pi\)
\(864\) −7.73067 −0.263003
\(865\) 0 0
\(866\) 85.7048 2.91237
\(867\) − 15.0394i − 0.510766i
\(868\) 48.7237i 1.65379i
\(869\) 22.7918 0.773160
\(870\) 0 0
\(871\) 70.6549 2.39405
\(872\) − 1.68269i − 0.0569830i
\(873\) 13.8343i 0.468219i
\(874\) 55.4689 1.87626
\(875\) 0 0
\(876\) 32.9089 1.11189
\(877\) 24.6324i 0.831777i 0.909416 + 0.415889i \(0.136529\pi\)
−0.909416 + 0.415889i \(0.863471\pi\)
\(878\) − 46.7422i − 1.57747i
\(879\) 14.6045 0.492597
\(880\) 0 0
\(881\) 26.2145 0.883190 0.441595 0.897214i \(-0.354413\pi\)
0.441595 + 0.897214i \(0.354413\pi\)
\(882\) 38.8683i 1.30876i
\(883\) − 10.7656i − 0.362290i −0.983456 0.181145i \(-0.942020\pi\)
0.983456 0.181145i \(-0.0579803\pi\)
\(884\) 33.0402 1.11126
\(885\) 0 0
\(886\) −89.7911 −3.01659
\(887\) − 6.27796i − 0.210793i −0.994430 0.105397i \(-0.966389\pi\)
0.994430 0.105397i \(-0.0336112\pi\)
\(888\) − 39.4932i − 1.32531i
\(889\) −99.4743 −3.33626
\(890\) 0 0
\(891\) −3.11503 −0.104358
\(892\) − 104.179i − 3.48817i
\(893\) 13.6594i 0.457094i
\(894\) −61.1824 −2.04625
\(895\) 0 0
\(896\) −32.0818 −1.07178
\(897\) − 29.0282i − 0.969223i
\(898\) − 93.1949i − 3.10995i
\(899\) 2.23218 0.0744474
\(900\) 0 0
\(901\) −1.32776 −0.0442340
\(902\) 85.8973i 2.86007i
\(903\) 41.7960i 1.39088i
\(904\) −98.3927 −3.27249
\(905\) 0 0
\(906\) −44.6221 −1.48247
\(907\) − 21.7954i − 0.723704i −0.932235 0.361852i \(-0.882145\pi\)
0.932235 0.361852i \(-0.117855\pi\)
\(908\) − 18.9225i − 0.627966i
\(909\) −12.7461 −0.422763
\(910\) 0 0
\(911\) −5.56422 −0.184351 −0.0921753 0.995743i \(-0.529382\pi\)
−0.0921753 + 0.995743i \(0.529382\pi\)
\(912\) − 31.2127i − 1.03355i
\(913\) 42.5449i 1.40803i
\(914\) −23.0406 −0.762114
\(915\) 0 0
\(916\) −73.0136 −2.41244
\(917\) − 38.4819i − 1.27078i
\(918\) − 3.60957i − 0.119134i
\(919\) 7.76705 0.256211 0.128106 0.991761i \(-0.459110\pi\)
0.128106 + 0.991761i \(0.459110\pi\)
\(920\) 0 0
\(921\) −12.3324 −0.406368
\(922\) 89.3841i 2.94371i
\(923\) 29.9041i 0.984304i
\(924\) 67.9944 2.23685
\(925\) 0 0
\(926\) −79.7632 −2.62118
\(927\) 8.20406i 0.269457i
\(928\) − 7.73067i − 0.253772i
\(929\) 11.3588 0.372672 0.186336 0.982486i \(-0.440339\pi\)
0.186336 + 0.982486i \(0.440339\pi\)
\(930\) 0 0
\(931\) −56.7691 −1.86053
\(932\) − 76.4503i − 2.50421i
\(933\) − 12.3084i − 0.402957i
\(934\) 13.9443 0.456273
\(935\) 0 0
\(936\) −34.6413 −1.13229
\(937\) − 32.7813i − 1.07092i −0.844561 0.535460i \(-0.820138\pi\)
0.844561 0.535460i \(-0.179862\pi\)
\(938\) 168.487i 5.50128i
\(939\) 16.7306 0.545984
\(940\) 0 0
\(941\) −13.3074 −0.433808 −0.216904 0.976193i \(-0.569596\pi\)
−0.216904 + 0.976193i \(0.569596\pi\)
\(942\) − 25.9174i − 0.844436i
\(943\) 61.1302i 1.99067i
\(944\) 70.7862 2.30390
\(945\) 0 0
\(946\) 71.4310 2.32242
\(947\) − 31.9463i − 1.03811i −0.854740 0.519057i \(-0.826283\pi\)
0.854740 0.519057i \(-0.173717\pi\)
\(948\) − 33.9901i − 1.10395i
\(949\) 35.9827 1.16805
\(950\) 0 0
\(951\) 10.9429 0.354849
\(952\) 44.8687i 1.45420i
\(953\) − 53.5304i − 1.73402i −0.498292 0.867009i \(-0.666039\pi\)
0.498292 0.867009i \(-0.333961\pi\)
\(954\) 2.44451 0.0791440
\(955\) 0 0
\(956\) 14.8054 0.478840
\(957\) − 3.11503i − 0.100695i
\(958\) − 34.6133i − 1.11831i
\(959\) 81.7821 2.64088
\(960\) 0 0
\(961\) −26.0174 −0.839270
\(962\) − 75.8274i − 2.44477i
\(963\) − 3.28873i − 0.105978i
\(964\) −51.7893 −1.66802
\(965\) 0 0
\(966\) 69.2219 2.22718
\(967\) − 16.9490i − 0.545044i −0.962150 0.272522i \(-0.912142\pi\)
0.962150 0.272522i \(-0.0878578\pi\)
\(968\) 8.84250i 0.284209i
\(969\) 5.27196 0.169360
\(970\) 0 0
\(971\) −28.5476 −0.916135 −0.458067 0.888917i \(-0.651458\pi\)
−0.458067 + 0.888917i \(0.651458\pi\)
\(972\) 4.64553i 0.149005i
\(973\) 32.0402i 1.02716i
\(974\) −64.1242 −2.05467
\(975\) 0 0
\(976\) −51.5189 −1.64908
\(977\) 30.8519i 0.987040i 0.869734 + 0.493520i \(0.164290\pi\)
−0.869734 + 0.493520i \(0.835710\pi\)
\(978\) 31.6054i 1.01063i
\(979\) −24.8585 −0.794481
\(980\) 0 0
\(981\) −0.246732 −0.00787755
\(982\) 53.2895i 1.70054i
\(983\) 25.9915i 0.829000i 0.910049 + 0.414500i \(0.136044\pi\)
−0.910049 + 0.414500i \(0.863956\pi\)
\(984\) 72.9508 2.32559
\(985\) 0 0
\(986\) 3.60957 0.114952
\(987\) 17.0461i 0.542583i
\(988\) − 88.8451i − 2.82654i
\(989\) 50.8350 1.61646
\(990\) 0 0
\(991\) −3.17860 −0.100972 −0.0504858 0.998725i \(-0.516077\pi\)
−0.0504858 + 0.998725i \(0.516077\pi\)
\(992\) − 17.2562i − 0.547886i
\(993\) 19.1431i 0.607487i
\(994\) −71.3105 −2.26183
\(995\) 0 0
\(996\) 63.4484 2.01044
\(997\) − 31.6331i − 1.00183i −0.865496 0.500916i \(-0.832997\pi\)
0.865496 0.500916i \(-0.167003\pi\)
\(998\) − 54.6982i − 1.73144i
\(999\) −5.79088 −0.183215
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.c.p.349.14 16
5.2 odd 4 2175.2.a.bc.1.2 8
5.3 odd 4 2175.2.a.bd.1.7 yes 8
5.4 even 2 inner 2175.2.c.p.349.3 16
15.2 even 4 6525.2.a.bz.1.7 8
15.8 even 4 6525.2.a.by.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.bc.1.2 8 5.2 odd 4
2175.2.a.bd.1.7 yes 8 5.3 odd 4
2175.2.c.p.349.3 16 5.4 even 2 inner
2175.2.c.p.349.14 16 1.1 even 1 trivial
6525.2.a.by.1.2 8 15.8 even 4
6525.2.a.bz.1.7 8 15.2 even 4