Properties

Label 2175.2.c.p.349.11
Level $2175$
Weight $2$
Character 2175.349
Analytic conductor $17.367$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(349,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 308x^{12} + 1671x^{10} + 4568x^{8} + 5616x^{6} + 2105x^{4} + 256x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.11
Root \(0.510732i\) of defining polynomial
Character \(\chi\) \(=\) 2175.349
Dual form 2175.2.c.p.349.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.510732i q^{2} -1.00000i q^{3} +1.73915 q^{4} +0.510732 q^{6} -4.82343i q^{7} +1.90970i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+0.510732i q^{2} -1.00000i q^{3} +1.73915 q^{4} +0.510732 q^{6} -4.82343i q^{7} +1.90970i q^{8} -1.00000 q^{9} +4.88439 q^{11} -1.73915i q^{12} +4.59669i q^{13} +2.46348 q^{14} +2.50296 q^{16} -6.50987i q^{17} -0.510732i q^{18} -3.09205 q^{19} -4.82343 q^{21} +2.49461i q^{22} -5.62549i q^{23} +1.90970 q^{24} -2.34767 q^{26} +1.00000i q^{27} -8.38869i q^{28} -1.00000 q^{29} +9.24375 q^{31} +5.09775i q^{32} -4.88439i q^{33} +3.32480 q^{34} -1.73915 q^{36} +11.1261i q^{37} -1.57921i q^{38} +4.59669 q^{39} -2.84537 q^{41} -2.46348i q^{42} -4.58611i q^{43} +8.49470 q^{44} +2.87311 q^{46} -3.62713i q^{47} -2.50296i q^{48} -16.2655 q^{49} -6.50987 q^{51} +7.99434i q^{52} -0.967845i q^{53} -0.510732 q^{54} +9.21132 q^{56} +3.09205i q^{57} -0.510732i q^{58} +0.298882 q^{59} -0.786908 q^{61} +4.72108i q^{62} +4.82343i q^{63} +2.40234 q^{64} +2.49461 q^{66} -4.86742i q^{67} -11.3217i q^{68} -5.62549 q^{69} +0.741689 q^{71} -1.90970i q^{72} +5.52981i q^{73} -5.68246 q^{74} -5.37755 q^{76} -23.5595i q^{77} +2.34767i q^{78} +2.96278 q^{79} +1.00000 q^{81} -1.45322i q^{82} -13.6633i q^{83} -8.38869 q^{84} +2.34227 q^{86} +1.00000i q^{87} +9.32773i q^{88} -3.67835 q^{89} +22.1718 q^{91} -9.78358i q^{92} -9.24375i q^{93} +1.85249 q^{94} +5.09775 q^{96} +2.87658i q^{97} -8.30730i q^{98} -4.88439 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 24 q^{4} + 4 q^{6} - 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 24 q^{4} + 4 q^{6} - 16 q^{9} + 12 q^{11} - 18 q^{14} + 64 q^{16} - 4 q^{21} - 6 q^{24} + 36 q^{26} - 16 q^{29} + 16 q^{31} + 26 q^{34} + 24 q^{36} + 12 q^{39} + 4 q^{41} + 30 q^{44} + 48 q^{46} - 76 q^{49} + 24 q^{51} - 4 q^{54} + 116 q^{56} - 36 q^{59} + 24 q^{61} - 42 q^{64} - 6 q^{66} - 28 q^{69} + 48 q^{71} + 44 q^{74} - 20 q^{79} + 16 q^{81} + 28 q^{84} + 16 q^{86} - 68 q^{89} + 52 q^{91} + 86 q^{94} - 4 q^{96} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.510732i 0.361142i 0.983562 + 0.180571i \(0.0577945\pi\)
−0.983562 + 0.180571i \(0.942205\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) 1.73915 0.869577
\(5\) 0 0
\(6\) 0.510732 0.208505
\(7\) − 4.82343i − 1.82309i −0.411205 0.911543i \(-0.634892\pi\)
0.411205 0.911543i \(-0.365108\pi\)
\(8\) 1.90970i 0.675182i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 4.88439 1.47270 0.736349 0.676602i \(-0.236548\pi\)
0.736349 + 0.676602i \(0.236548\pi\)
\(12\) − 1.73915i − 0.502050i
\(13\) 4.59669i 1.27489i 0.770495 + 0.637446i \(0.220009\pi\)
−0.770495 + 0.637446i \(0.779991\pi\)
\(14\) 2.46348 0.658392
\(15\) 0 0
\(16\) 2.50296 0.625740
\(17\) − 6.50987i − 1.57888i −0.613830 0.789438i \(-0.710372\pi\)
0.613830 0.789438i \(-0.289628\pi\)
\(18\) − 0.510732i − 0.120381i
\(19\) −3.09205 −0.709364 −0.354682 0.934987i \(-0.615411\pi\)
−0.354682 + 0.934987i \(0.615411\pi\)
\(20\) 0 0
\(21\) −4.82343 −1.05256
\(22\) 2.49461i 0.531853i
\(23\) − 5.62549i − 1.17299i −0.809951 0.586497i \(-0.800506\pi\)
0.809951 0.586497i \(-0.199494\pi\)
\(24\) 1.90970 0.389817
\(25\) 0 0
\(26\) −2.34767 −0.460416
\(27\) 1.00000i 0.192450i
\(28\) − 8.38869i − 1.58531i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 9.24375 1.66023 0.830113 0.557595i \(-0.188276\pi\)
0.830113 + 0.557595i \(0.188276\pi\)
\(32\) 5.09775i 0.901163i
\(33\) − 4.88439i − 0.850262i
\(34\) 3.32480 0.570198
\(35\) 0 0
\(36\) −1.73915 −0.289859
\(37\) 11.1261i 1.82912i 0.404448 + 0.914561i \(0.367464\pi\)
−0.404448 + 0.914561i \(0.632536\pi\)
\(38\) − 1.57921i − 0.256181i
\(39\) 4.59669 0.736059
\(40\) 0 0
\(41\) −2.84537 −0.444372 −0.222186 0.975004i \(-0.571319\pi\)
−0.222186 + 0.975004i \(0.571319\pi\)
\(42\) − 2.46348i − 0.380123i
\(43\) − 4.58611i − 0.699375i −0.936866 0.349688i \(-0.886288\pi\)
0.936866 0.349688i \(-0.113712\pi\)
\(44\) 8.49470 1.28062
\(45\) 0 0
\(46\) 2.87311 0.423617
\(47\) − 3.62713i − 0.529071i −0.964376 0.264536i \(-0.914781\pi\)
0.964376 0.264536i \(-0.0852187\pi\)
\(48\) − 2.50296i − 0.361271i
\(49\) −16.2655 −2.32364
\(50\) 0 0
\(51\) −6.50987 −0.911564
\(52\) 7.99434i 1.10862i
\(53\) − 0.967845i − 0.132944i −0.997788 0.0664719i \(-0.978826\pi\)
0.997788 0.0664719i \(-0.0211743\pi\)
\(54\) −0.510732 −0.0695018
\(55\) 0 0
\(56\) 9.21132 1.23091
\(57\) 3.09205i 0.409552i
\(58\) − 0.510732i − 0.0670623i
\(59\) 0.298882 0.0389112 0.0194556 0.999811i \(-0.493807\pi\)
0.0194556 + 0.999811i \(0.493807\pi\)
\(60\) 0 0
\(61\) −0.786908 −0.100753 −0.0503766 0.998730i \(-0.516042\pi\)
−0.0503766 + 0.998730i \(0.516042\pi\)
\(62\) 4.72108i 0.599577i
\(63\) 4.82343i 0.607695i
\(64\) 2.40234 0.300293
\(65\) 0 0
\(66\) 2.49461 0.307065
\(67\) − 4.86742i − 0.594650i −0.954776 0.297325i \(-0.903906\pi\)
0.954776 0.297325i \(-0.0960945\pi\)
\(68\) − 11.3217i − 1.37295i
\(69\) −5.62549 −0.677229
\(70\) 0 0
\(71\) 0.741689 0.0880223 0.0440112 0.999031i \(-0.485986\pi\)
0.0440112 + 0.999031i \(0.485986\pi\)
\(72\) − 1.90970i − 0.225061i
\(73\) 5.52981i 0.647215i 0.946191 + 0.323608i \(0.104896\pi\)
−0.946191 + 0.323608i \(0.895104\pi\)
\(74\) −5.68246 −0.660572
\(75\) 0 0
\(76\) −5.37755 −0.616847
\(77\) − 23.5595i − 2.68485i
\(78\) 2.34767i 0.265822i
\(79\) 2.96278 0.333339 0.166669 0.986013i \(-0.446699\pi\)
0.166669 + 0.986013i \(0.446699\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 1.45322i − 0.160481i
\(83\) − 13.6633i − 1.49975i −0.661581 0.749874i \(-0.730114\pi\)
0.661581 0.749874i \(-0.269886\pi\)
\(84\) −8.38869 −0.915281
\(85\) 0 0
\(86\) 2.34227 0.252574
\(87\) 1.00000i 0.107211i
\(88\) 9.32773i 0.994339i
\(89\) −3.67835 −0.389905 −0.194952 0.980813i \(-0.562455\pi\)
−0.194952 + 0.980813i \(0.562455\pi\)
\(90\) 0 0
\(91\) 22.1718 2.32424
\(92\) − 9.78358i − 1.02001i
\(93\) − 9.24375i − 0.958532i
\(94\) 1.85249 0.191070
\(95\) 0 0
\(96\) 5.09775 0.520287
\(97\) 2.87658i 0.292072i 0.989279 + 0.146036i \(0.0466515\pi\)
−0.989279 + 0.146036i \(0.953348\pi\)
\(98\) − 8.30730i − 0.839164i
\(99\) −4.88439 −0.490899
\(100\) 0 0
\(101\) −14.6780 −1.46051 −0.730255 0.683174i \(-0.760599\pi\)
−0.730255 + 0.683174i \(0.760599\pi\)
\(102\) − 3.32480i − 0.329204i
\(103\) − 2.48154i − 0.244514i −0.992498 0.122257i \(-0.960987\pi\)
0.992498 0.122257i \(-0.0390132\pi\)
\(104\) −8.77831 −0.860784
\(105\) 0 0
\(106\) 0.494309 0.0480115
\(107\) 4.48423i 0.433507i 0.976226 + 0.216753i \(0.0695467\pi\)
−0.976226 + 0.216753i \(0.930453\pi\)
\(108\) 1.73915i 0.167350i
\(109\) −3.28140 −0.314301 −0.157151 0.987575i \(-0.550231\pi\)
−0.157151 + 0.987575i \(0.550231\pi\)
\(110\) 0 0
\(111\) 11.1261 1.05604
\(112\) − 12.0729i − 1.14078i
\(113\) − 17.9820i − 1.69160i −0.533500 0.845800i \(-0.679123\pi\)
0.533500 0.845800i \(-0.320877\pi\)
\(114\) −1.57921 −0.147906
\(115\) 0 0
\(116\) −1.73915 −0.161476
\(117\) − 4.59669i − 0.424964i
\(118\) 0.152649i 0.0140524i
\(119\) −31.3999 −2.87843
\(120\) 0 0
\(121\) 12.8572 1.16884
\(122\) − 0.401899i − 0.0363862i
\(123\) 2.84537i 0.256558i
\(124\) 16.0763 1.44369
\(125\) 0 0
\(126\) −2.46348 −0.219464
\(127\) 13.5099i 1.19881i 0.800446 + 0.599405i \(0.204596\pi\)
−0.800446 + 0.599405i \(0.795404\pi\)
\(128\) 11.4224i 1.00961i
\(129\) −4.58611 −0.403784
\(130\) 0 0
\(131\) 12.1450 1.06111 0.530556 0.847650i \(-0.321983\pi\)
0.530556 + 0.847650i \(0.321983\pi\)
\(132\) − 8.49470i − 0.739368i
\(133\) 14.9143i 1.29323i
\(134\) 2.48594 0.214753
\(135\) 0 0
\(136\) 12.4319 1.06603
\(137\) 9.97466i 0.852193i 0.904678 + 0.426096i \(0.140112\pi\)
−0.904678 + 0.426096i \(0.859888\pi\)
\(138\) − 2.87311i − 0.244576i
\(139\) −2.82971 −0.240013 −0.120007 0.992773i \(-0.538292\pi\)
−0.120007 + 0.992773i \(0.538292\pi\)
\(140\) 0 0
\(141\) −3.62713 −0.305459
\(142\) 0.378804i 0.0317885i
\(143\) 22.4520i 1.87753i
\(144\) −2.50296 −0.208580
\(145\) 0 0
\(146\) −2.82425 −0.233736
\(147\) 16.2655i 1.34155i
\(148\) 19.3500i 1.59056i
\(149\) 22.5396 1.84652 0.923259 0.384178i \(-0.125515\pi\)
0.923259 + 0.384178i \(0.125515\pi\)
\(150\) 0 0
\(151\) −14.2205 −1.15725 −0.578626 0.815593i \(-0.696411\pi\)
−0.578626 + 0.815593i \(0.696411\pi\)
\(152\) − 5.90490i − 0.478950i
\(153\) 6.50987i 0.526292i
\(154\) 12.0326 0.969613
\(155\) 0 0
\(156\) 7.99434 0.640059
\(157\) − 10.7712i − 0.859632i −0.902917 0.429816i \(-0.858579\pi\)
0.902917 0.429816i \(-0.141421\pi\)
\(158\) 1.51319i 0.120383i
\(159\) −0.967845 −0.0767551
\(160\) 0 0
\(161\) −27.1341 −2.13847
\(162\) 0.510732i 0.0401269i
\(163\) − 10.6908i − 0.837365i −0.908133 0.418682i \(-0.862492\pi\)
0.908133 0.418682i \(-0.137508\pi\)
\(164\) −4.94853 −0.386415
\(165\) 0 0
\(166\) 6.97830 0.541621
\(167\) − 7.90643i − 0.611818i −0.952061 0.305909i \(-0.901040\pi\)
0.952061 0.305909i \(-0.0989603\pi\)
\(168\) − 9.21132i − 0.710669i
\(169\) −8.12952 −0.625347
\(170\) 0 0
\(171\) 3.09205 0.236455
\(172\) − 7.97595i − 0.608160i
\(173\) 3.76760i 0.286445i 0.989690 + 0.143223i \(0.0457465\pi\)
−0.989690 + 0.143223i \(0.954253\pi\)
\(174\) −0.510732 −0.0387185
\(175\) 0 0
\(176\) 12.2254 0.921526
\(177\) − 0.298882i − 0.0224654i
\(178\) − 1.87865i − 0.140811i
\(179\) −10.3282 −0.771964 −0.385982 0.922506i \(-0.626137\pi\)
−0.385982 + 0.922506i \(0.626137\pi\)
\(180\) 0 0
\(181\) 14.4533 1.07431 0.537154 0.843484i \(-0.319500\pi\)
0.537154 + 0.843484i \(0.319500\pi\)
\(182\) 11.3238i 0.839378i
\(183\) 0.786908i 0.0581699i
\(184\) 10.7430 0.791985
\(185\) 0 0
\(186\) 4.72108 0.346166
\(187\) − 31.7967i − 2.32521i
\(188\) − 6.30813i − 0.460068i
\(189\) 4.82343 0.350853
\(190\) 0 0
\(191\) 8.81550 0.637867 0.318934 0.947777i \(-0.396675\pi\)
0.318934 + 0.947777i \(0.396675\pi\)
\(192\) − 2.40234i − 0.173374i
\(193\) 17.2543i 1.24199i 0.783814 + 0.620996i \(0.213272\pi\)
−0.783814 + 0.620996i \(0.786728\pi\)
\(194\) −1.46916 −0.105479
\(195\) 0 0
\(196\) −28.2882 −2.02058
\(197\) 22.5719i 1.60818i 0.594508 + 0.804090i \(0.297347\pi\)
−0.594508 + 0.804090i \(0.702653\pi\)
\(198\) − 2.49461i − 0.177284i
\(199\) 13.7975 0.978078 0.489039 0.872262i \(-0.337348\pi\)
0.489039 + 0.872262i \(0.337348\pi\)
\(200\) 0 0
\(201\) −4.86742 −0.343321
\(202\) − 7.49649i − 0.527451i
\(203\) 4.82343i 0.338538i
\(204\) −11.3217 −0.792675
\(205\) 0 0
\(206\) 1.26740 0.0883041
\(207\) 5.62549i 0.390998i
\(208\) 11.5053i 0.797751i
\(209\) −15.1028 −1.04468
\(210\) 0 0
\(211\) 16.4705 1.13387 0.566937 0.823761i \(-0.308128\pi\)
0.566937 + 0.823761i \(0.308128\pi\)
\(212\) − 1.68323i − 0.115605i
\(213\) − 0.741689i − 0.0508197i
\(214\) −2.29024 −0.156557
\(215\) 0 0
\(216\) −1.90970 −0.129939
\(217\) − 44.5866i − 3.02674i
\(218\) − 1.67592i − 0.113507i
\(219\) 5.52981 0.373670
\(220\) 0 0
\(221\) 29.9238 2.01289
\(222\) 5.68246i 0.381382i
\(223\) − 4.58903i − 0.307304i −0.988125 0.153652i \(-0.950896\pi\)
0.988125 0.153652i \(-0.0491035\pi\)
\(224\) 24.5886 1.64290
\(225\) 0 0
\(226\) 9.18396 0.610908
\(227\) 25.5254i 1.69418i 0.531452 + 0.847089i \(0.321647\pi\)
−0.531452 + 0.847089i \(0.678353\pi\)
\(228\) 5.37755i 0.356137i
\(229\) 8.04982 0.531947 0.265974 0.963980i \(-0.414307\pi\)
0.265974 + 0.963980i \(0.414307\pi\)
\(230\) 0 0
\(231\) −23.5595 −1.55010
\(232\) − 1.90970i − 0.125378i
\(233\) 3.75903i 0.246262i 0.992390 + 0.123131i \(0.0392935\pi\)
−0.992390 + 0.123131i \(0.960706\pi\)
\(234\) 2.34767 0.153472
\(235\) 0 0
\(236\) 0.519802 0.0338362
\(237\) − 2.96278i − 0.192453i
\(238\) − 16.0369i − 1.03952i
\(239\) 3.53192 0.228461 0.114231 0.993454i \(-0.463560\pi\)
0.114231 + 0.993454i \(0.463560\pi\)
\(240\) 0 0
\(241\) 3.05553 0.196824 0.0984118 0.995146i \(-0.468624\pi\)
0.0984118 + 0.995146i \(0.468624\pi\)
\(242\) 6.56659i 0.422117i
\(243\) − 1.00000i − 0.0641500i
\(244\) −1.36855 −0.0876126
\(245\) 0 0
\(246\) −1.45322 −0.0926538
\(247\) − 14.2132i − 0.904363i
\(248\) 17.6528i 1.12096i
\(249\) −13.6633 −0.865880
\(250\) 0 0
\(251\) −23.3283 −1.47247 −0.736233 0.676728i \(-0.763397\pi\)
−0.736233 + 0.676728i \(0.763397\pi\)
\(252\) 8.38869i 0.528437i
\(253\) − 27.4770i − 1.72747i
\(254\) −6.89994 −0.432941
\(255\) 0 0
\(256\) −1.02912 −0.0643202
\(257\) − 28.2268i − 1.76074i −0.474289 0.880369i \(-0.657295\pi\)
0.474289 0.880369i \(-0.342705\pi\)
\(258\) − 2.34227i − 0.145823i
\(259\) 53.6660 3.33465
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) 6.20283i 0.383212i
\(263\) − 27.6688i − 1.70613i −0.521802 0.853067i \(-0.674740\pi\)
0.521802 0.853067i \(-0.325260\pi\)
\(264\) 9.32773 0.574082
\(265\) 0 0
\(266\) −7.61719 −0.467040
\(267\) 3.67835i 0.225112i
\(268\) − 8.46519i − 0.517094i
\(269\) −0.839052 −0.0511579 −0.0255790 0.999673i \(-0.508143\pi\)
−0.0255790 + 0.999673i \(0.508143\pi\)
\(270\) 0 0
\(271\) 1.27423 0.0774037 0.0387018 0.999251i \(-0.487678\pi\)
0.0387018 + 0.999251i \(0.487678\pi\)
\(272\) − 16.2940i − 0.987966i
\(273\) − 22.1718i − 1.34190i
\(274\) −5.09437 −0.307762
\(275\) 0 0
\(276\) −9.78358 −0.588902
\(277\) 26.7387i 1.60657i 0.595592 + 0.803287i \(0.296917\pi\)
−0.595592 + 0.803287i \(0.703083\pi\)
\(278\) − 1.44522i − 0.0866788i
\(279\) −9.24375 −0.553409
\(280\) 0 0
\(281\) −16.3446 −0.975038 −0.487519 0.873112i \(-0.662098\pi\)
−0.487519 + 0.873112i \(0.662098\pi\)
\(282\) − 1.85249i − 0.110314i
\(283\) 23.7207i 1.41005i 0.709183 + 0.705025i \(0.249064\pi\)
−0.709183 + 0.705025i \(0.750936\pi\)
\(284\) 1.28991 0.0765422
\(285\) 0 0
\(286\) −11.4669 −0.678054
\(287\) 13.7244i 0.810127i
\(288\) − 5.09775i − 0.300388i
\(289\) −25.3784 −1.49285
\(290\) 0 0
\(291\) 2.87658 0.168628
\(292\) 9.61718i 0.562803i
\(293\) − 8.28535i − 0.484035i −0.970272 0.242018i \(-0.922191\pi\)
0.970272 0.242018i \(-0.0778092\pi\)
\(294\) −8.30730 −0.484491
\(295\) 0 0
\(296\) −21.2476 −1.23499
\(297\) 4.88439i 0.283421i
\(298\) 11.5117i 0.666855i
\(299\) 25.8586 1.49544
\(300\) 0 0
\(301\) −22.1208 −1.27502
\(302\) − 7.26288i − 0.417932i
\(303\) 14.6780i 0.843226i
\(304\) −7.73927 −0.443878
\(305\) 0 0
\(306\) −3.32480 −0.190066
\(307\) 16.3024i 0.930425i 0.885199 + 0.465213i \(0.154022\pi\)
−0.885199 + 0.465213i \(0.845978\pi\)
\(308\) − 40.9736i − 2.33469i
\(309\) −2.48154 −0.141170
\(310\) 0 0
\(311\) −7.72085 −0.437809 −0.218905 0.975746i \(-0.570248\pi\)
−0.218905 + 0.975746i \(0.570248\pi\)
\(312\) 8.77831i 0.496974i
\(313\) − 6.22393i − 0.351797i −0.984408 0.175899i \(-0.943717\pi\)
0.984408 0.175899i \(-0.0562831\pi\)
\(314\) 5.50117 0.310449
\(315\) 0 0
\(316\) 5.15273 0.289864
\(317\) 31.0672i 1.74491i 0.488696 + 0.872454i \(0.337473\pi\)
−0.488696 + 0.872454i \(0.662527\pi\)
\(318\) − 0.494309i − 0.0277195i
\(319\) −4.88439 −0.273473
\(320\) 0 0
\(321\) 4.48423 0.250285
\(322\) − 13.8583i − 0.772291i
\(323\) 20.1288i 1.12000i
\(324\) 1.73915 0.0966196
\(325\) 0 0
\(326\) 5.46011 0.302407
\(327\) 3.28140i 0.181462i
\(328\) − 5.43381i − 0.300032i
\(329\) −17.4952 −0.964542
\(330\) 0 0
\(331\) 34.8731 1.91680 0.958399 0.285431i \(-0.0921366\pi\)
0.958399 + 0.285431i \(0.0921366\pi\)
\(332\) − 23.7627i − 1.30415i
\(333\) − 11.1261i − 0.609707i
\(334\) 4.03806 0.220953
\(335\) 0 0
\(336\) −12.0729 −0.658628
\(337\) 16.5875i 0.903579i 0.892124 + 0.451790i \(0.149214\pi\)
−0.892124 + 0.451790i \(0.850786\pi\)
\(338\) − 4.15200i − 0.225839i
\(339\) −17.9820 −0.976646
\(340\) 0 0
\(341\) 45.1500 2.44501
\(342\) 1.57921i 0.0853937i
\(343\) 44.6914i 2.41311i
\(344\) 8.75811 0.472206
\(345\) 0 0
\(346\) −1.92423 −0.103447
\(347\) − 0.413605i − 0.0222035i −0.999938 0.0111017i \(-0.996466\pi\)
0.999938 0.0111017i \(-0.00353387\pi\)
\(348\) 1.73915i 0.0932284i
\(349\) −35.5590 −1.90343 −0.951715 0.306982i \(-0.900681\pi\)
−0.951715 + 0.306982i \(0.900681\pi\)
\(350\) 0 0
\(351\) −4.59669 −0.245353
\(352\) 24.8994i 1.32714i
\(353\) 3.08030i 0.163948i 0.996634 + 0.0819740i \(0.0261225\pi\)
−0.996634 + 0.0819740i \(0.973878\pi\)
\(354\) 0.152649 0.00811318
\(355\) 0 0
\(356\) −6.39722 −0.339052
\(357\) 31.3999i 1.66186i
\(358\) − 5.27492i − 0.278788i
\(359\) 14.3219 0.755879 0.377940 0.925830i \(-0.376633\pi\)
0.377940 + 0.925830i \(0.376633\pi\)
\(360\) 0 0
\(361\) −9.43924 −0.496802
\(362\) 7.38177i 0.387977i
\(363\) − 12.8572i − 0.674829i
\(364\) 38.5601 2.02110
\(365\) 0 0
\(366\) −0.401899 −0.0210076
\(367\) − 17.3009i − 0.903102i −0.892245 0.451551i \(-0.850871\pi\)
0.892245 0.451551i \(-0.149129\pi\)
\(368\) − 14.0804i − 0.733990i
\(369\) 2.84537 0.148124
\(370\) 0 0
\(371\) −4.66833 −0.242368
\(372\) − 16.0763i − 0.833517i
\(373\) 31.8314i 1.64817i 0.566469 + 0.824083i \(0.308309\pi\)
−0.566469 + 0.824083i \(0.691691\pi\)
\(374\) 16.2396 0.839729
\(375\) 0 0
\(376\) 6.92674 0.357219
\(377\) − 4.59669i − 0.236741i
\(378\) 2.46348i 0.126708i
\(379\) 18.1855 0.934127 0.467064 0.884224i \(-0.345312\pi\)
0.467064 + 0.884224i \(0.345312\pi\)
\(380\) 0 0
\(381\) 13.5099 0.692134
\(382\) 4.50236i 0.230361i
\(383\) 32.3026i 1.65059i 0.564704 + 0.825293i \(0.308990\pi\)
−0.564704 + 0.825293i \(0.691010\pi\)
\(384\) 11.4224 0.582899
\(385\) 0 0
\(386\) −8.81232 −0.448535
\(387\) 4.58611i 0.233125i
\(388\) 5.00281i 0.253979i
\(389\) 26.5696 1.34713 0.673567 0.739126i \(-0.264761\pi\)
0.673567 + 0.739126i \(0.264761\pi\)
\(390\) 0 0
\(391\) −36.6212 −1.85201
\(392\) − 31.0622i − 1.56888i
\(393\) − 12.1450i − 0.612634i
\(394\) −11.5282 −0.580781
\(395\) 0 0
\(396\) −8.49470 −0.426875
\(397\) − 8.87832i − 0.445590i −0.974865 0.222795i \(-0.928482\pi\)
0.974865 0.222795i \(-0.0715181\pi\)
\(398\) 7.04681i 0.353225i
\(399\) 14.9143 0.746648
\(400\) 0 0
\(401\) 25.6502 1.28091 0.640455 0.767995i \(-0.278746\pi\)
0.640455 + 0.767995i \(0.278746\pi\)
\(402\) − 2.48594i − 0.123988i
\(403\) 42.4906i 2.11661i
\(404\) −25.5272 −1.27003
\(405\) 0 0
\(406\) −2.46348 −0.122260
\(407\) 54.3442i 2.69374i
\(408\) − 12.4319i − 0.615472i
\(409\) −9.92575 −0.490797 −0.245398 0.969422i \(-0.578919\pi\)
−0.245398 + 0.969422i \(0.578919\pi\)
\(410\) 0 0
\(411\) 9.97466 0.492014
\(412\) − 4.31579i − 0.212624i
\(413\) − 1.44164i − 0.0709384i
\(414\) −2.87311 −0.141206
\(415\) 0 0
\(416\) −23.4327 −1.14888
\(417\) 2.82971i 0.138572i
\(418\) − 7.71345i − 0.377277i
\(419\) −8.12620 −0.396991 −0.198495 0.980102i \(-0.563606\pi\)
−0.198495 + 0.980102i \(0.563606\pi\)
\(420\) 0 0
\(421\) −8.37826 −0.408332 −0.204166 0.978936i \(-0.565448\pi\)
−0.204166 + 0.978936i \(0.565448\pi\)
\(422\) 8.41198i 0.409489i
\(423\) 3.62713i 0.176357i
\(424\) 1.84830 0.0897612
\(425\) 0 0
\(426\) 0.378804 0.0183531
\(427\) 3.79559i 0.183682i
\(428\) 7.79876i 0.376967i
\(429\) 22.4520 1.08399
\(430\) 0 0
\(431\) −32.3877 −1.56006 −0.780030 0.625742i \(-0.784796\pi\)
−0.780030 + 0.625742i \(0.784796\pi\)
\(432\) 2.50296i 0.120424i
\(433\) 9.89328i 0.475441i 0.971334 + 0.237720i \(0.0764002\pi\)
−0.971334 + 0.237720i \(0.923600\pi\)
\(434\) 22.7718 1.09308
\(435\) 0 0
\(436\) −5.70686 −0.273309
\(437\) 17.3943i 0.832081i
\(438\) 2.82425i 0.134948i
\(439\) −5.84726 −0.279075 −0.139537 0.990217i \(-0.544562\pi\)
−0.139537 + 0.990217i \(0.544562\pi\)
\(440\) 0 0
\(441\) 16.2655 0.774547
\(442\) 15.2830i 0.726940i
\(443\) 3.14176i 0.149270i 0.997211 + 0.0746348i \(0.0237791\pi\)
−0.997211 + 0.0746348i \(0.976221\pi\)
\(444\) 19.3500 0.918311
\(445\) 0 0
\(446\) 2.34376 0.110980
\(447\) − 22.5396i − 1.06609i
\(448\) − 11.5875i − 0.547459i
\(449\) −27.8643 −1.31500 −0.657500 0.753455i \(-0.728386\pi\)
−0.657500 + 0.753455i \(0.728386\pi\)
\(450\) 0 0
\(451\) −13.8979 −0.654425
\(452\) − 31.2734i − 1.47098i
\(453\) 14.2205i 0.668139i
\(454\) −13.0366 −0.611838
\(455\) 0 0
\(456\) −5.90490 −0.276522
\(457\) 31.8928i 1.49188i 0.666013 + 0.745940i \(0.268000\pi\)
−0.666013 + 0.745940i \(0.732000\pi\)
\(458\) 4.11130i 0.192108i
\(459\) 6.50987 0.303855
\(460\) 0 0
\(461\) 5.64660 0.262989 0.131494 0.991317i \(-0.458022\pi\)
0.131494 + 0.991317i \(0.458022\pi\)
\(462\) − 12.0326i − 0.559806i
\(463\) 32.7602i 1.52250i 0.648460 + 0.761248i \(0.275413\pi\)
−0.648460 + 0.761248i \(0.724587\pi\)
\(464\) −2.50296 −0.116197
\(465\) 0 0
\(466\) −1.91985 −0.0889355
\(467\) 37.4129i 1.73126i 0.500680 + 0.865632i \(0.333083\pi\)
−0.500680 + 0.865632i \(0.666917\pi\)
\(468\) − 7.99434i − 0.369539i
\(469\) −23.4777 −1.08410
\(470\) 0 0
\(471\) −10.7712 −0.496308
\(472\) 0.570777i 0.0262721i
\(473\) − 22.4003i − 1.02997i
\(474\) 1.51319 0.0695029
\(475\) 0 0
\(476\) −54.6093 −2.50301
\(477\) 0.967845i 0.0443146i
\(478\) 1.80387i 0.0825069i
\(479\) 13.0770 0.597503 0.298751 0.954331i \(-0.403430\pi\)
0.298751 + 0.954331i \(0.403430\pi\)
\(480\) 0 0
\(481\) −51.1432 −2.33193
\(482\) 1.56055i 0.0710813i
\(483\) 27.1341i 1.23465i
\(484\) 22.3607 1.01639
\(485\) 0 0
\(486\) 0.510732 0.0231673
\(487\) − 19.4492i − 0.881328i −0.897672 0.440664i \(-0.854743\pi\)
0.897672 0.440664i \(-0.145257\pi\)
\(488\) − 1.50276i − 0.0680268i
\(489\) −10.6908 −0.483453
\(490\) 0 0
\(491\) 15.8221 0.714041 0.357020 0.934097i \(-0.383793\pi\)
0.357020 + 0.934097i \(0.383793\pi\)
\(492\) 4.94853i 0.223097i
\(493\) 6.50987i 0.293190i
\(494\) 7.25912 0.326603
\(495\) 0 0
\(496\) 23.1367 1.03887
\(497\) − 3.57749i − 0.160472i
\(498\) − 6.97830i − 0.312705i
\(499\) −4.88592 −0.218724 −0.109362 0.994002i \(-0.534881\pi\)
−0.109362 + 0.994002i \(0.534881\pi\)
\(500\) 0 0
\(501\) −7.90643 −0.353233
\(502\) − 11.9145i − 0.531769i
\(503\) − 16.9719i − 0.756742i −0.925654 0.378371i \(-0.876484\pi\)
0.925654 0.378371i \(-0.123516\pi\)
\(504\) −9.21132 −0.410305
\(505\) 0 0
\(506\) 14.0334 0.623860
\(507\) 8.12952i 0.361045i
\(508\) 23.4958i 1.04246i
\(509\) 7.53223 0.333860 0.166930 0.985969i \(-0.446615\pi\)
0.166930 + 0.985969i \(0.446615\pi\)
\(510\) 0 0
\(511\) 26.6726 1.17993
\(512\) 22.3193i 0.986383i
\(513\) − 3.09205i − 0.136517i
\(514\) 14.4163 0.635876
\(515\) 0 0
\(516\) −7.97595 −0.351122
\(517\) − 17.7163i − 0.779162i
\(518\) 27.4089i 1.20428i
\(519\) 3.76760 0.165379
\(520\) 0 0
\(521\) −0.748655 −0.0327992 −0.0163996 0.999866i \(-0.505220\pi\)
−0.0163996 + 0.999866i \(0.505220\pi\)
\(522\) 0.510732i 0.0223541i
\(523\) 18.3909i 0.804178i 0.915601 + 0.402089i \(0.131716\pi\)
−0.915601 + 0.402089i \(0.868284\pi\)
\(524\) 21.1220 0.922719
\(525\) 0 0
\(526\) 14.1313 0.616156
\(527\) − 60.1756i − 2.62129i
\(528\) − 12.2254i − 0.532043i
\(529\) −8.64609 −0.375917
\(530\) 0 0
\(531\) −0.298882 −0.0129704
\(532\) 25.9382i 1.12456i
\(533\) − 13.0793i − 0.566525i
\(534\) −1.87865 −0.0812972
\(535\) 0 0
\(536\) 9.29533 0.401497
\(537\) 10.3282i 0.445693i
\(538\) − 0.428531i − 0.0184753i
\(539\) −79.4469 −3.42202
\(540\) 0 0
\(541\) 33.4160 1.43667 0.718334 0.695698i \(-0.244905\pi\)
0.718334 + 0.695698i \(0.244905\pi\)
\(542\) 0.650787i 0.0279537i
\(543\) − 14.4533i − 0.620251i
\(544\) 33.1857 1.42282
\(545\) 0 0
\(546\) 11.3238 0.484615
\(547\) − 3.00020i − 0.128279i −0.997941 0.0641396i \(-0.979570\pi\)
0.997941 0.0641396i \(-0.0204303\pi\)
\(548\) 17.3475i 0.741047i
\(549\) 0.786908 0.0335844
\(550\) 0 0
\(551\) 3.09205 0.131726
\(552\) − 10.7430i − 0.457253i
\(553\) − 14.2908i − 0.607705i
\(554\) −13.6563 −0.580201
\(555\) 0 0
\(556\) −4.92131 −0.208710
\(557\) − 4.11112i − 0.174194i −0.996200 0.0870969i \(-0.972241\pi\)
0.996200 0.0870969i \(-0.0277590\pi\)
\(558\) − 4.72108i − 0.199859i
\(559\) 21.0809 0.891627
\(560\) 0 0
\(561\) −31.7967 −1.34246
\(562\) − 8.34771i − 0.352127i
\(563\) − 11.5127i − 0.485204i −0.970126 0.242602i \(-0.921999\pi\)
0.970126 0.242602i \(-0.0780009\pi\)
\(564\) −6.30813 −0.265620
\(565\) 0 0
\(566\) −12.1149 −0.509228
\(567\) − 4.82343i − 0.202565i
\(568\) 1.41641i 0.0594311i
\(569\) −32.9470 −1.38121 −0.690605 0.723232i \(-0.742656\pi\)
−0.690605 + 0.723232i \(0.742656\pi\)
\(570\) 0 0
\(571\) −22.3213 −0.934117 −0.467059 0.884226i \(-0.654686\pi\)
−0.467059 + 0.884226i \(0.654686\pi\)
\(572\) 39.0474i 1.63266i
\(573\) − 8.81550i − 0.368273i
\(574\) −7.00950 −0.292571
\(575\) 0 0
\(576\) −2.40234 −0.100098
\(577\) 39.8197i 1.65772i 0.559458 + 0.828859i \(0.311009\pi\)
−0.559458 + 0.828859i \(0.688991\pi\)
\(578\) − 12.9616i − 0.539130i
\(579\) 17.2543 0.717064
\(580\) 0 0
\(581\) −65.9042 −2.73417
\(582\) 1.46916i 0.0608986i
\(583\) − 4.72733i − 0.195786i
\(584\) −10.5603 −0.436988
\(585\) 0 0
\(586\) 4.23159 0.174805
\(587\) 28.7487i 1.18659i 0.804987 + 0.593293i \(0.202172\pi\)
−0.804987 + 0.593293i \(0.797828\pi\)
\(588\) 28.2882i 1.16658i
\(589\) −28.5821 −1.17771
\(590\) 0 0
\(591\) 22.5719 0.928483
\(592\) 27.8482i 1.14455i
\(593\) 27.5400i 1.13093i 0.824771 + 0.565467i \(0.191304\pi\)
−0.824771 + 0.565467i \(0.808696\pi\)
\(594\) −2.49461 −0.102355
\(595\) 0 0
\(596\) 39.1999 1.60569
\(597\) − 13.7975i − 0.564693i
\(598\) 13.2068i 0.540066i
\(599\) 4.11339 0.168069 0.0840343 0.996463i \(-0.473219\pi\)
0.0840343 + 0.996463i \(0.473219\pi\)
\(600\) 0 0
\(601\) −0.656799 −0.0267914 −0.0133957 0.999910i \(-0.504264\pi\)
−0.0133957 + 0.999910i \(0.504264\pi\)
\(602\) − 11.2978i − 0.460463i
\(603\) 4.86742i 0.198217i
\(604\) −24.7317 −1.00632
\(605\) 0 0
\(606\) −7.49649 −0.304524
\(607\) 18.4210i 0.747684i 0.927492 + 0.373842i \(0.121960\pi\)
−0.927492 + 0.373842i \(0.878040\pi\)
\(608\) − 15.7625i − 0.639253i
\(609\) 4.82343 0.195455
\(610\) 0 0
\(611\) 16.6728 0.674508
\(612\) 11.3217i 0.457651i
\(613\) 21.3356i 0.861737i 0.902415 + 0.430869i \(0.141793\pi\)
−0.902415 + 0.430869i \(0.858207\pi\)
\(614\) −8.32613 −0.336015
\(615\) 0 0
\(616\) 44.9917 1.81277
\(617\) 23.2463i 0.935861i 0.883765 + 0.467931i \(0.155000\pi\)
−0.883765 + 0.467931i \(0.845000\pi\)
\(618\) − 1.26740i − 0.0509824i
\(619\) 4.11413 0.165361 0.0826804 0.996576i \(-0.473652\pi\)
0.0826804 + 0.996576i \(0.473652\pi\)
\(620\) 0 0
\(621\) 5.62549 0.225743
\(622\) − 3.94328i − 0.158111i
\(623\) 17.7423i 0.710830i
\(624\) 11.5053 0.460582
\(625\) 0 0
\(626\) 3.17876 0.127049
\(627\) 15.1028i 0.603146i
\(628\) − 18.7327i − 0.747515i
\(629\) 72.4296 2.88796
\(630\) 0 0
\(631\) −45.7221 −1.82017 −0.910083 0.414426i \(-0.863982\pi\)
−0.910083 + 0.414426i \(0.863982\pi\)
\(632\) 5.65803i 0.225065i
\(633\) − 16.4705i − 0.654642i
\(634\) −15.8670 −0.630159
\(635\) 0 0
\(636\) −1.68323 −0.0667444
\(637\) − 74.7673i − 2.96239i
\(638\) − 2.49461i − 0.0987626i
\(639\) −0.741689 −0.0293408
\(640\) 0 0
\(641\) 28.3443 1.11953 0.559767 0.828650i \(-0.310891\pi\)
0.559767 + 0.828650i \(0.310891\pi\)
\(642\) 2.29024i 0.0903884i
\(643\) − 17.4545i − 0.688337i −0.938908 0.344168i \(-0.888161\pi\)
0.938908 0.344168i \(-0.111839\pi\)
\(644\) −47.1904 −1.85956
\(645\) 0 0
\(646\) −10.2804 −0.404478
\(647\) − 17.3874i − 0.683569i −0.939778 0.341784i \(-0.888969\pi\)
0.939778 0.341784i \(-0.111031\pi\)
\(648\) 1.90970i 0.0750202i
\(649\) 1.45986 0.0573044
\(650\) 0 0
\(651\) −44.5866 −1.74749
\(652\) − 18.5929i − 0.728153i
\(653\) − 30.2052i − 1.18202i −0.806664 0.591010i \(-0.798729\pi\)
0.806664 0.591010i \(-0.201271\pi\)
\(654\) −1.67592 −0.0655335
\(655\) 0 0
\(656\) −7.12184 −0.278061
\(657\) − 5.52981i − 0.215738i
\(658\) − 8.93535i − 0.348336i
\(659\) −26.3659 −1.02707 −0.513535 0.858069i \(-0.671664\pi\)
−0.513535 + 0.858069i \(0.671664\pi\)
\(660\) 0 0
\(661\) 15.8187 0.615274 0.307637 0.951504i \(-0.400462\pi\)
0.307637 + 0.951504i \(0.400462\pi\)
\(662\) 17.8108i 0.692236i
\(663\) − 29.9238i − 1.16215i
\(664\) 26.0929 1.01260
\(665\) 0 0
\(666\) 5.68246 0.220191
\(667\) 5.62549i 0.217820i
\(668\) − 13.7505i − 0.532023i
\(669\) −4.58903 −0.177422
\(670\) 0 0
\(671\) −3.84356 −0.148379
\(672\) − 24.5886i − 0.948527i
\(673\) 43.1070i 1.66165i 0.556530 + 0.830827i \(0.312132\pi\)
−0.556530 + 0.830827i \(0.687868\pi\)
\(674\) −8.47177 −0.326320
\(675\) 0 0
\(676\) −14.1385 −0.543788
\(677\) − 40.6978i − 1.56415i −0.623187 0.782073i \(-0.714163\pi\)
0.623187 0.782073i \(-0.285837\pi\)
\(678\) − 9.18396i − 0.352708i
\(679\) 13.8750 0.532472
\(680\) 0 0
\(681\) 25.5254 0.978134
\(682\) 23.0596i 0.882996i
\(683\) − 21.0217i − 0.804372i −0.915558 0.402186i \(-0.868250\pi\)
0.915558 0.402186i \(-0.131750\pi\)
\(684\) 5.37755 0.205616
\(685\) 0 0
\(686\) −22.8253 −0.871475
\(687\) − 8.04982i − 0.307120i
\(688\) − 11.4789i − 0.437627i
\(689\) 4.44888 0.169489
\(690\) 0 0
\(691\) 6.98613 0.265765 0.132882 0.991132i \(-0.457577\pi\)
0.132882 + 0.991132i \(0.457577\pi\)
\(692\) 6.55244i 0.249086i
\(693\) 23.5595i 0.894951i
\(694\) 0.211241 0.00801860
\(695\) 0 0
\(696\) −1.90970 −0.0723871
\(697\) 18.5230i 0.701608i
\(698\) − 18.1611i − 0.687408i
\(699\) 3.75903 0.142179
\(700\) 0 0
\(701\) 1.40572 0.0530934 0.0265467 0.999648i \(-0.491549\pi\)
0.0265467 + 0.999648i \(0.491549\pi\)
\(702\) − 2.34767i − 0.0886072i
\(703\) − 34.4025i − 1.29751i
\(704\) 11.7340 0.442240
\(705\) 0 0
\(706\) −1.57321 −0.0592085
\(707\) 70.7981i 2.66264i
\(708\) − 0.519802i − 0.0195354i
\(709\) −1.27110 −0.0477372 −0.0238686 0.999715i \(-0.507598\pi\)
−0.0238686 + 0.999715i \(0.507598\pi\)
\(710\) 0 0
\(711\) −2.96278 −0.111113
\(712\) − 7.02457i − 0.263257i
\(713\) − 52.0006i − 1.94744i
\(714\) −16.0369 −0.600167
\(715\) 0 0
\(716\) −17.9623 −0.671282
\(717\) − 3.53192i − 0.131902i
\(718\) 7.31463i 0.272979i
\(719\) −27.8439 −1.03840 −0.519201 0.854652i \(-0.673770\pi\)
−0.519201 + 0.854652i \(0.673770\pi\)
\(720\) 0 0
\(721\) −11.9696 −0.445770
\(722\) − 4.82092i − 0.179416i
\(723\) − 3.05553i − 0.113636i
\(724\) 25.1365 0.934192
\(725\) 0 0
\(726\) 6.56659 0.243709
\(727\) 8.97787i 0.332971i 0.986044 + 0.166485i \(0.0532419\pi\)
−0.986044 + 0.166485i \(0.946758\pi\)
\(728\) 42.3416i 1.56928i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −29.8550 −1.10423
\(732\) 1.36855i 0.0505832i
\(733\) − 34.7466i − 1.28339i −0.766958 0.641697i \(-0.778231\pi\)
0.766958 0.641697i \(-0.221769\pi\)
\(734\) 8.83614 0.326148
\(735\) 0 0
\(736\) 28.6773 1.05706
\(737\) − 23.7744i − 0.875740i
\(738\) 1.45322i 0.0534937i
\(739\) 3.32518 0.122319 0.0611594 0.998128i \(-0.480520\pi\)
0.0611594 + 0.998128i \(0.480520\pi\)
\(740\) 0 0
\(741\) −14.2132 −0.522134
\(742\) − 2.38426i − 0.0875291i
\(743\) − 1.06314i − 0.0390029i −0.999810 0.0195015i \(-0.993792\pi\)
0.999810 0.0195015i \(-0.00620790\pi\)
\(744\) 17.6528 0.647184
\(745\) 0 0
\(746\) −16.2573 −0.595222
\(747\) 13.6633i 0.499916i
\(748\) − 55.2994i − 2.02195i
\(749\) 21.6294 0.790320
\(750\) 0 0
\(751\) −38.7756 −1.41494 −0.707472 0.706742i \(-0.750164\pi\)
−0.707472 + 0.706742i \(0.750164\pi\)
\(752\) − 9.07856i − 0.331061i
\(753\) 23.3283i 0.850129i
\(754\) 2.34767 0.0854972
\(755\) 0 0
\(756\) 8.38869 0.305094
\(757\) − 40.9695i − 1.48906i −0.667588 0.744531i \(-0.732673\pi\)
0.667588 0.744531i \(-0.267327\pi\)
\(758\) 9.28792i 0.337352i
\(759\) −27.4770 −0.997354
\(760\) 0 0
\(761\) 13.8561 0.502283 0.251142 0.967950i \(-0.419194\pi\)
0.251142 + 0.967950i \(0.419194\pi\)
\(762\) 6.89994i 0.249958i
\(763\) 15.8276i 0.572998i
\(764\) 15.3315 0.554675
\(765\) 0 0
\(766\) −16.4980 −0.596096
\(767\) 1.37387i 0.0496075i
\(768\) 1.02912i 0.0371353i
\(769\) 6.73919 0.243021 0.121511 0.992590i \(-0.461226\pi\)
0.121511 + 0.992590i \(0.461226\pi\)
\(770\) 0 0
\(771\) −28.2268 −1.01656
\(772\) 30.0079i 1.08001i
\(773\) 7.45730i 0.268220i 0.990966 + 0.134110i \(0.0428176\pi\)
−0.990966 + 0.134110i \(0.957182\pi\)
\(774\) −2.34227 −0.0841912
\(775\) 0 0
\(776\) −5.49341 −0.197202
\(777\) − 53.6660i − 1.92526i
\(778\) 13.5700i 0.486506i
\(779\) 8.79801 0.315221
\(780\) 0 0
\(781\) 3.62270 0.129630
\(782\) − 18.7036i − 0.668839i
\(783\) − 1.00000i − 0.0357371i
\(784\) −40.7119 −1.45400
\(785\) 0 0
\(786\) 6.20283 0.221248
\(787\) 7.81608i 0.278613i 0.990249 + 0.139307i \(0.0444873\pi\)
−0.990249 + 0.139307i \(0.955513\pi\)
\(788\) 39.2559i 1.39844i
\(789\) −27.6688 −0.985037
\(790\) 0 0
\(791\) −86.7347 −3.08393
\(792\) − 9.32773i − 0.331446i
\(793\) − 3.61717i − 0.128449i
\(794\) 4.53444 0.160921
\(795\) 0 0
\(796\) 23.9959 0.850514
\(797\) − 21.8313i − 0.773305i −0.922225 0.386653i \(-0.873631\pi\)
0.922225 0.386653i \(-0.126369\pi\)
\(798\) 7.61719i 0.269646i
\(799\) −23.6121 −0.835338
\(800\) 0 0
\(801\) 3.67835 0.129968
\(802\) 13.1004i 0.462590i
\(803\) 27.0097i 0.953152i
\(804\) −8.46519 −0.298544
\(805\) 0 0
\(806\) −21.7013 −0.764396
\(807\) 0.839052i 0.0295360i
\(808\) − 28.0305i − 0.986111i
\(809\) −5.71715 −0.201004 −0.100502 0.994937i \(-0.532045\pi\)
−0.100502 + 0.994937i \(0.532045\pi\)
\(810\) 0 0
\(811\) −44.8661 −1.57546 −0.787732 0.616019i \(-0.788745\pi\)
−0.787732 + 0.616019i \(0.788745\pi\)
\(812\) 8.38869i 0.294385i
\(813\) − 1.27423i − 0.0446890i
\(814\) −27.7553 −0.972823
\(815\) 0 0
\(816\) −16.2940 −0.570402
\(817\) 14.1805i 0.496112i
\(818\) − 5.06939i − 0.177247i
\(819\) −22.1718 −0.774745
\(820\) 0 0
\(821\) 37.3699 1.30422 0.652110 0.758125i \(-0.273884\pi\)
0.652110 + 0.758125i \(0.273884\pi\)
\(822\) 5.09437i 0.177687i
\(823\) − 31.6982i − 1.10493i −0.833537 0.552464i \(-0.813688\pi\)
0.833537 0.552464i \(-0.186312\pi\)
\(824\) 4.73901 0.165091
\(825\) 0 0
\(826\) 0.736290 0.0256188
\(827\) 14.4089i 0.501046i 0.968111 + 0.250523i \(0.0806025\pi\)
−0.968111 + 0.250523i \(0.919397\pi\)
\(828\) 9.78358i 0.340003i
\(829\) 20.6622 0.717630 0.358815 0.933409i \(-0.383181\pi\)
0.358815 + 0.933409i \(0.383181\pi\)
\(830\) 0 0
\(831\) 26.7387 0.927556
\(832\) 11.0428i 0.382840i
\(833\) 105.886i 3.66874i
\(834\) −1.44522 −0.0500440
\(835\) 0 0
\(836\) −26.2660 −0.908429
\(837\) 9.24375i 0.319511i
\(838\) − 4.15031i − 0.143370i
\(839\) −1.64970 −0.0569541 −0.0284771 0.999594i \(-0.509066\pi\)
−0.0284771 + 0.999594i \(0.509066\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) − 4.27904i − 0.147466i
\(843\) 16.3446i 0.562938i
\(844\) 28.6447 0.985990
\(845\) 0 0
\(846\) −1.85249 −0.0636899
\(847\) − 62.0159i − 2.13089i
\(848\) − 2.42248i − 0.0831882i
\(849\) 23.7207 0.814092
\(850\) 0 0
\(851\) 62.5898 2.14555
\(852\) − 1.28991i − 0.0441916i
\(853\) − 23.4066i − 0.801428i −0.916203 0.400714i \(-0.868762\pi\)
0.916203 0.400714i \(-0.131238\pi\)
\(854\) −1.93853 −0.0663351
\(855\) 0 0
\(856\) −8.56355 −0.292696
\(857\) − 18.7479i − 0.640415i −0.947347 0.320207i \(-0.896247\pi\)
0.947347 0.320207i \(-0.103753\pi\)
\(858\) 11.4669i 0.391475i
\(859\) 29.1326 0.993990 0.496995 0.867753i \(-0.334437\pi\)
0.496995 + 0.867753i \(0.334437\pi\)
\(860\) 0 0
\(861\) 13.7244 0.467727
\(862\) − 16.5414i − 0.563403i
\(863\) 25.5033i 0.868142i 0.900879 + 0.434071i \(0.142923\pi\)
−0.900879 + 0.434071i \(0.857077\pi\)
\(864\) −5.09775 −0.173429
\(865\) 0 0
\(866\) −5.05281 −0.171701
\(867\) 25.3784i 0.861897i
\(868\) − 77.5429i − 2.63198i
\(869\) 14.4714 0.490908
\(870\) 0 0
\(871\) 22.3740 0.758114
\(872\) − 6.26651i − 0.212211i
\(873\) − 2.87658i − 0.0973573i
\(874\) −8.88380 −0.300499
\(875\) 0 0
\(876\) 9.61718 0.324935
\(877\) − 24.3134i − 0.821005i −0.911860 0.410502i \(-0.865353\pi\)
0.911860 0.410502i \(-0.134647\pi\)
\(878\) − 2.98638i − 0.100786i
\(879\) −8.28535 −0.279458
\(880\) 0 0
\(881\) 51.3387 1.72965 0.864823 0.502077i \(-0.167431\pi\)
0.864823 + 0.502077i \(0.167431\pi\)
\(882\) 8.30730i 0.279721i
\(883\) 17.1764i 0.578033i 0.957324 + 0.289016i \(0.0933282\pi\)
−0.957324 + 0.289016i \(0.906672\pi\)
\(884\) 52.0421 1.75037
\(885\) 0 0
\(886\) −1.60460 −0.0539075
\(887\) − 38.2392i − 1.28395i −0.766727 0.641974i \(-0.778116\pi\)
0.766727 0.641974i \(-0.221884\pi\)
\(888\) 21.2476i 0.713022i
\(889\) 65.1641 2.18553
\(890\) 0 0
\(891\) 4.88439 0.163633
\(892\) − 7.98103i − 0.267225i
\(893\) 11.2153i 0.375304i
\(894\) 11.5117 0.385009
\(895\) 0 0
\(896\) 55.0954 1.84061
\(897\) − 25.8586i − 0.863393i
\(898\) − 14.2312i − 0.474901i
\(899\) −9.24375 −0.308296
\(900\) 0 0
\(901\) −6.30055 −0.209902
\(902\) − 7.09808i − 0.236340i
\(903\) 22.1208i 0.736134i
\(904\) 34.3402 1.14214
\(905\) 0 0
\(906\) −7.26288 −0.241293
\(907\) − 9.37007i − 0.311128i −0.987826 0.155564i \(-0.950281\pi\)
0.987826 0.155564i \(-0.0497195\pi\)
\(908\) 44.3925i 1.47322i
\(909\) 14.6780 0.486837
\(910\) 0 0
\(911\) −10.5220 −0.348611 −0.174305 0.984692i \(-0.555768\pi\)
−0.174305 + 0.984692i \(0.555768\pi\)
\(912\) 7.73927i 0.256273i
\(913\) − 66.7371i − 2.20867i
\(914\) −16.2886 −0.538780
\(915\) 0 0
\(916\) 13.9999 0.462569
\(917\) − 58.5805i − 1.93450i
\(918\) 3.32480i 0.109735i
\(919\) 47.9043 1.58022 0.790109 0.612967i \(-0.210024\pi\)
0.790109 + 0.612967i \(0.210024\pi\)
\(920\) 0 0
\(921\) 16.3024 0.537181
\(922\) 2.88390i 0.0949762i
\(923\) 3.40931i 0.112219i
\(924\) −40.9736 −1.34793
\(925\) 0 0
\(926\) −16.7317 −0.549837
\(927\) 2.48154i 0.0815046i
\(928\) − 5.09775i − 0.167342i
\(929\) −32.0568 −1.05175 −0.525875 0.850562i \(-0.676262\pi\)
−0.525875 + 0.850562i \(0.676262\pi\)
\(930\) 0 0
\(931\) 50.2937 1.64831
\(932\) 6.53752i 0.214144i
\(933\) 7.72085i 0.252769i
\(934\) −19.1080 −0.625232
\(935\) 0 0
\(936\) 8.77831 0.286928
\(937\) − 23.8183i − 0.778109i −0.921215 0.389054i \(-0.872802\pi\)
0.921215 0.389054i \(-0.127198\pi\)
\(938\) − 11.9908i − 0.391513i
\(939\) −6.22393 −0.203110
\(940\) 0 0
\(941\) 45.7836 1.49250 0.746251 0.665664i \(-0.231852\pi\)
0.746251 + 0.665664i \(0.231852\pi\)
\(942\) − 5.50117i − 0.179238i
\(943\) 16.0066i 0.521246i
\(944\) 0.748091 0.0243483
\(945\) 0 0
\(946\) 11.4406 0.371965
\(947\) 4.69130i 0.152447i 0.997091 + 0.0762233i \(0.0242862\pi\)
−0.997091 + 0.0762233i \(0.975714\pi\)
\(948\) − 5.15273i − 0.167353i
\(949\) −25.4188 −0.825129
\(950\) 0 0
\(951\) 31.0672 1.00742
\(952\) − 59.9645i − 1.94346i
\(953\) 56.4381i 1.82821i 0.405479 + 0.914104i \(0.367105\pi\)
−0.405479 + 0.914104i \(0.632895\pi\)
\(954\) −0.494309 −0.0160038
\(955\) 0 0
\(956\) 6.14256 0.198665
\(957\) 4.88439i 0.157890i
\(958\) 6.67883i 0.215783i
\(959\) 48.1121 1.55362
\(960\) 0 0
\(961\) 54.4469 1.75635
\(962\) − 26.1205i − 0.842158i
\(963\) − 4.48423i − 0.144502i
\(964\) 5.31403 0.171153
\(965\) 0 0
\(966\) −13.8583 −0.445882
\(967\) 42.2611i 1.35902i 0.733664 + 0.679512i \(0.237808\pi\)
−0.733664 + 0.679512i \(0.762192\pi\)
\(968\) 24.5535i 0.789179i
\(969\) 20.1288 0.646631
\(970\) 0 0
\(971\) 25.6613 0.823510 0.411755 0.911295i \(-0.364916\pi\)
0.411755 + 0.911295i \(0.364916\pi\)
\(972\) − 1.73915i − 0.0557834i
\(973\) 13.6489i 0.437565i
\(974\) 9.93333 0.318284
\(975\) 0 0
\(976\) −1.96960 −0.0630453
\(977\) − 7.35242i − 0.235225i −0.993060 0.117612i \(-0.962476\pi\)
0.993060 0.117612i \(-0.0375240\pi\)
\(978\) − 5.46011i − 0.174595i
\(979\) −17.9665 −0.574212
\(980\) 0 0
\(981\) 3.28140 0.104767
\(982\) 8.08084i 0.257870i
\(983\) 3.23911i 0.103312i 0.998665 + 0.0516558i \(0.0164499\pi\)
−0.998665 + 0.0516558i \(0.983550\pi\)
\(984\) −5.43381 −0.173223
\(985\) 0 0
\(986\) −3.32480 −0.105883
\(987\) 17.4952i 0.556879i
\(988\) − 24.7189i − 0.786413i
\(989\) −25.7991 −0.820364
\(990\) 0 0
\(991\) 3.19230 0.101407 0.0507034 0.998714i \(-0.483854\pi\)
0.0507034 + 0.998714i \(0.483854\pi\)
\(992\) 47.1223i 1.49614i
\(993\) − 34.8731i − 1.10666i
\(994\) 1.82714 0.0579532
\(995\) 0 0
\(996\) −23.7627 −0.752949
\(997\) 49.0253i 1.55265i 0.630335 + 0.776323i \(0.282917\pi\)
−0.630335 + 0.776323i \(0.717083\pi\)
\(998\) − 2.49539i − 0.0789903i
\(999\) −11.1261 −0.352015
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.c.p.349.11 16
5.2 odd 4 2175.2.a.bc.1.4 8
5.3 odd 4 2175.2.a.bd.1.5 yes 8
5.4 even 2 inner 2175.2.c.p.349.6 16
15.2 even 4 6525.2.a.bz.1.5 8
15.8 even 4 6525.2.a.by.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.bc.1.4 8 5.2 odd 4
2175.2.a.bd.1.5 yes 8 5.3 odd 4
2175.2.c.p.349.6 16 5.4 even 2 inner
2175.2.c.p.349.11 16 1.1 even 1 trivial
6525.2.a.by.1.4 8 15.8 even 4
6525.2.a.bz.1.5 8 15.2 even 4