Properties

Label 2175.2.c.o.349.3
Level $2175$
Weight $2$
Character 2175.349
Analytic conductor $17.367$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(349,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 24x^{12} + 224x^{10} + 1023x^{8} + 2364x^{6} + 2612x^{4} + 1241x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.3
Root \(-2.26695i\) of defining polynomial
Character \(\chi\) \(=\) 2175.349
Dual form 2175.2.c.o.349.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.26695i q^{2} +1.00000i q^{3} -3.13907 q^{4} +2.26695 q^{6} -0.159887i q^{7} +2.58223i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-2.26695i q^{2} +1.00000i q^{3} -3.13907 q^{4} +2.26695 q^{6} -0.159887i q^{7} +2.58223i q^{8} -1.00000 q^{9} -3.24930 q^{11} -3.13907i q^{12} +7.05679i q^{13} -0.362456 q^{14} -0.424361 q^{16} -7.63808i q^{17} +2.26695i q^{18} +3.99028 q^{19} +0.159887 q^{21} +7.36601i q^{22} +2.06402i q^{23} -2.58223 q^{24} +15.9974 q^{26} -1.00000i q^{27} +0.501897i q^{28} +1.00000 q^{29} +10.2044 q^{31} +6.12646i q^{32} -3.24930i q^{33} -17.3152 q^{34} +3.13907 q^{36} +4.27815i q^{37} -9.04576i q^{38} -7.05679 q^{39} -5.12330 q^{41} -0.362456i q^{42} -3.94180i q^{43} +10.1998 q^{44} +4.67903 q^{46} -5.61626i q^{47} -0.424361i q^{48} +6.97444 q^{49} +7.63808 q^{51} -22.1518i q^{52} +12.0822i q^{53} -2.26695 q^{54} +0.412864 q^{56} +3.99028i q^{57} -2.26695i q^{58} +7.06781 q^{59} +11.4310 q^{61} -23.1329i q^{62} +0.159887i q^{63} +13.0397 q^{64} -7.36601 q^{66} +14.9512i q^{67} +23.9765i q^{68} -2.06402 q^{69} +3.43347 q^{71} -2.58223i q^{72} -12.0772i q^{73} +9.69836 q^{74} -12.5258 q^{76} +0.519521i q^{77} +15.9974i q^{78} +12.7441 q^{79} +1.00000 q^{81} +11.6143i q^{82} -2.59792i q^{83} -0.501897 q^{84} -8.93586 q^{86} +1.00000i q^{87} -8.39044i q^{88} -4.33165 q^{89} +1.12829 q^{91} -6.47910i q^{92} +10.2044i q^{93} -12.7318 q^{94} -6.12646 q^{96} +3.88355i q^{97} -15.8107i q^{98} +3.24930 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 20 q^{4} + 4 q^{6} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 14 q - 20 q^{4} + 4 q^{6} - 14 q^{9} + 8 q^{11} - 30 q^{14} + 24 q^{16} - 30 q^{19} - 2 q^{21} - 6 q^{24} + 12 q^{26} + 14 q^{29} + 10 q^{31} - 14 q^{34} + 20 q^{36} + 2 q^{39} + 44 q^{41} - 30 q^{44} - 8 q^{46} - 24 q^{49} + 16 q^{51} - 4 q^{54} + 28 q^{56} - 12 q^{59} + 46 q^{61} - 10 q^{64} + 6 q^{66} - 28 q^{69} + 52 q^{71} + 20 q^{74} + 92 q^{76} - 28 q^{79} + 14 q^{81} + 48 q^{84} + 88 q^{86} - 28 q^{89} + 26 q^{91} + 6 q^{94} + 36 q^{96} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.26695i − 1.60298i −0.598010 0.801489i \(-0.704042\pi\)
0.598010 0.801489i \(-0.295958\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −3.13907 −1.56954
\(5\) 0 0
\(6\) 2.26695 0.925480
\(7\) − 0.159887i − 0.0604316i −0.999543 0.0302158i \(-0.990381\pi\)
0.999543 0.0302158i \(-0.00961945\pi\)
\(8\) 2.58223i 0.912955i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −3.24930 −0.979701 −0.489851 0.871806i \(-0.662949\pi\)
−0.489851 + 0.871806i \(0.662949\pi\)
\(12\) − 3.13907i − 0.906173i
\(13\) 7.05679i 1.95720i 0.205770 + 0.978600i \(0.434030\pi\)
−0.205770 + 0.978600i \(0.565970\pi\)
\(14\) −0.362456 −0.0968704
\(15\) 0 0
\(16\) −0.424361 −0.106090
\(17\) − 7.63808i − 1.85251i −0.376901 0.926254i \(-0.623010\pi\)
0.376901 0.926254i \(-0.376990\pi\)
\(18\) 2.26695i 0.534326i
\(19\) 3.99028 0.915432 0.457716 0.889098i \(-0.348668\pi\)
0.457716 + 0.889098i \(0.348668\pi\)
\(20\) 0 0
\(21\) 0.159887 0.0348902
\(22\) 7.36601i 1.57044i
\(23\) 2.06402i 0.430377i 0.976572 + 0.215189i \(0.0690366\pi\)
−0.976572 + 0.215189i \(0.930963\pi\)
\(24\) −2.58223 −0.527095
\(25\) 0 0
\(26\) 15.9974 3.13735
\(27\) − 1.00000i − 0.192450i
\(28\) 0.501897i 0.0948496i
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 10.2044 1.83277 0.916383 0.400303i \(-0.131095\pi\)
0.916383 + 0.400303i \(0.131095\pi\)
\(32\) 6.12646i 1.08302i
\(33\) − 3.24930i − 0.565631i
\(34\) −17.3152 −2.96953
\(35\) 0 0
\(36\) 3.13907 0.523179
\(37\) 4.27815i 0.703323i 0.936127 + 0.351662i \(0.114383\pi\)
−0.936127 + 0.351662i \(0.885617\pi\)
\(38\) − 9.04576i − 1.46742i
\(39\) −7.05679 −1.12999
\(40\) 0 0
\(41\) −5.12330 −0.800125 −0.400063 0.916488i \(-0.631012\pi\)
−0.400063 + 0.916488i \(0.631012\pi\)
\(42\) − 0.362456i − 0.0559282i
\(43\) − 3.94180i − 0.601118i −0.953763 0.300559i \(-0.902827\pi\)
0.953763 0.300559i \(-0.0971733\pi\)
\(44\) 10.1998 1.53768
\(45\) 0 0
\(46\) 4.67903 0.689885
\(47\) − 5.61626i − 0.819215i −0.912262 0.409608i \(-0.865666\pi\)
0.912262 0.409608i \(-0.134334\pi\)
\(48\) − 0.424361i − 0.0612513i
\(49\) 6.97444 0.996348
\(50\) 0 0
\(51\) 7.63808 1.06955
\(52\) − 22.1518i − 3.07190i
\(53\) 12.0822i 1.65962i 0.558049 + 0.829808i \(0.311550\pi\)
−0.558049 + 0.829808i \(0.688450\pi\)
\(54\) −2.26695 −0.308493
\(55\) 0 0
\(56\) 0.412864 0.0551713
\(57\) 3.99028i 0.528525i
\(58\) − 2.26695i − 0.297665i
\(59\) 7.06781 0.920151 0.460075 0.887880i \(-0.347822\pi\)
0.460075 + 0.887880i \(0.347822\pi\)
\(60\) 0 0
\(61\) 11.4310 1.46359 0.731796 0.681524i \(-0.238682\pi\)
0.731796 + 0.681524i \(0.238682\pi\)
\(62\) − 23.1329i − 2.93788i
\(63\) 0.159887i 0.0201439i
\(64\) 13.0397 1.62996
\(65\) 0 0
\(66\) −7.36601 −0.906694
\(67\) 14.9512i 1.82658i 0.407311 + 0.913289i \(0.366466\pi\)
−0.407311 + 0.913289i \(0.633534\pi\)
\(68\) 23.9765i 2.90758i
\(69\) −2.06402 −0.248478
\(70\) 0 0
\(71\) 3.43347 0.407478 0.203739 0.979025i \(-0.434691\pi\)
0.203739 + 0.979025i \(0.434691\pi\)
\(72\) − 2.58223i − 0.304318i
\(73\) − 12.0772i − 1.41353i −0.707449 0.706764i \(-0.750154\pi\)
0.707449 0.706764i \(-0.249846\pi\)
\(74\) 9.69836 1.12741
\(75\) 0 0
\(76\) −12.5258 −1.43680
\(77\) 0.519521i 0.0592049i
\(78\) 15.9974i 1.81135i
\(79\) 12.7441 1.43383 0.716913 0.697163i \(-0.245554\pi\)
0.716913 + 0.697163i \(0.245554\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 11.6143i 1.28258i
\(83\) − 2.59792i − 0.285159i −0.989783 0.142580i \(-0.954460\pi\)
0.989783 0.142580i \(-0.0455397\pi\)
\(84\) −0.501897 −0.0547614
\(85\) 0 0
\(86\) −8.93586 −0.963579
\(87\) 1.00000i 0.107211i
\(88\) − 8.39044i − 0.894423i
\(89\) −4.33165 −0.459154 −0.229577 0.973290i \(-0.573734\pi\)
−0.229577 + 0.973290i \(0.573734\pi\)
\(90\) 0 0
\(91\) 1.12829 0.118277
\(92\) − 6.47910i − 0.675493i
\(93\) 10.2044i 1.05815i
\(94\) −12.7318 −1.31318
\(95\) 0 0
\(96\) −6.12646 −0.625279
\(97\) 3.88355i 0.394315i 0.980372 + 0.197158i \(0.0631711\pi\)
−0.980372 + 0.197158i \(0.936829\pi\)
\(98\) − 15.8107i − 1.59712i
\(99\) 3.24930 0.326567
\(100\) 0 0
\(101\) 15.4045 1.53280 0.766400 0.642363i \(-0.222046\pi\)
0.766400 + 0.642363i \(0.222046\pi\)
\(102\) − 17.3152i − 1.71446i
\(103\) 7.68484i 0.757210i 0.925558 + 0.378605i \(0.123596\pi\)
−0.925558 + 0.378605i \(0.876404\pi\)
\(104\) −18.2222 −1.78684
\(105\) 0 0
\(106\) 27.3897 2.66033
\(107\) 4.60924i 0.445592i 0.974865 + 0.222796i \(0.0715183\pi\)
−0.974865 + 0.222796i \(0.928482\pi\)
\(108\) 3.13907i 0.302058i
\(109\) 14.4509 1.38415 0.692073 0.721827i \(-0.256698\pi\)
0.692073 + 0.721827i \(0.256698\pi\)
\(110\) 0 0
\(111\) −4.27815 −0.406064
\(112\) 0.0678498i 0.00641120i
\(113\) − 4.08614i − 0.384392i −0.981357 0.192196i \(-0.938439\pi\)
0.981357 0.192196i \(-0.0615610\pi\)
\(114\) 9.04576 0.847213
\(115\) 0 0
\(116\) −3.13907 −0.291456
\(117\) − 7.05679i − 0.652400i
\(118\) − 16.0224i − 1.47498i
\(119\) −1.22123 −0.111950
\(120\) 0 0
\(121\) −0.442038 −0.0401853
\(122\) − 25.9136i − 2.34610i
\(123\) − 5.12330i − 0.461952i
\(124\) −32.0324 −2.87659
\(125\) 0 0
\(126\) 0.362456 0.0322901
\(127\) 3.69650i 0.328011i 0.986459 + 0.164006i \(0.0524415\pi\)
−0.986459 + 0.164006i \(0.947559\pi\)
\(128\) − 17.3074i − 1.52977i
\(129\) 3.94180 0.347056
\(130\) 0 0
\(131\) −9.92811 −0.867423 −0.433712 0.901052i \(-0.642796\pi\)
−0.433712 + 0.901052i \(0.642796\pi\)
\(132\) 10.1998i 0.887779i
\(133\) − 0.637993i − 0.0553210i
\(134\) 33.8936 2.92797
\(135\) 0 0
\(136\) 19.7233 1.69126
\(137\) − 3.82810i − 0.327057i −0.986539 0.163528i \(-0.947712\pi\)
0.986539 0.163528i \(-0.0522875\pi\)
\(138\) 4.67903i 0.398305i
\(139\) 2.06987 0.175564 0.0877822 0.996140i \(-0.472022\pi\)
0.0877822 + 0.996140i \(0.472022\pi\)
\(140\) 0 0
\(141\) 5.61626 0.472974
\(142\) − 7.78351i − 0.653177i
\(143\) − 22.9296i − 1.91747i
\(144\) 0.424361 0.0353634
\(145\) 0 0
\(146\) −27.3784 −2.26585
\(147\) 6.97444i 0.575242i
\(148\) − 13.4294i − 1.10389i
\(149\) 1.46609 0.120107 0.0600536 0.998195i \(-0.480873\pi\)
0.0600536 + 0.998195i \(0.480873\pi\)
\(150\) 0 0
\(151\) −20.1279 −1.63799 −0.818995 0.573801i \(-0.805468\pi\)
−0.818995 + 0.573801i \(0.805468\pi\)
\(152\) 10.3038i 0.835748i
\(153\) 7.63808i 0.617502i
\(154\) 1.17773 0.0949041
\(155\) 0 0
\(156\) 22.1518 1.77356
\(157\) − 7.09106i − 0.565928i −0.959131 0.282964i \(-0.908682\pi\)
0.959131 0.282964i \(-0.0913177\pi\)
\(158\) − 28.8903i − 2.29839i
\(159\) −12.0822 −0.958180
\(160\) 0 0
\(161\) 0.330009 0.0260084
\(162\) − 2.26695i − 0.178109i
\(163\) − 6.58715i − 0.515946i −0.966152 0.257973i \(-0.916945\pi\)
0.966152 0.257973i \(-0.0830545\pi\)
\(164\) 16.0824 1.25583
\(165\) 0 0
\(166\) −5.88937 −0.457104
\(167\) 10.6638i 0.825192i 0.910914 + 0.412596i \(0.135378\pi\)
−0.910914 + 0.412596i \(0.864622\pi\)
\(168\) 0.412864i 0.0318532i
\(169\) −36.7983 −2.83063
\(170\) 0 0
\(171\) −3.99028 −0.305144
\(172\) 12.3736i 0.943477i
\(173\) − 13.8799i − 1.05527i −0.849472 0.527633i \(-0.823080\pi\)
0.849472 0.527633i \(-0.176920\pi\)
\(174\) 2.26695 0.171857
\(175\) 0 0
\(176\) 1.37888 0.103937
\(177\) 7.06781i 0.531249i
\(178\) 9.81965i 0.736014i
\(179\) 11.1105 0.830439 0.415219 0.909721i \(-0.363705\pi\)
0.415219 + 0.909721i \(0.363705\pi\)
\(180\) 0 0
\(181\) 10.9453 0.813557 0.406778 0.913527i \(-0.366652\pi\)
0.406778 + 0.913527i \(0.366652\pi\)
\(182\) − 2.55777i − 0.189595i
\(183\) 11.4310i 0.845005i
\(184\) −5.32976 −0.392915
\(185\) 0 0
\(186\) 23.1329 1.69619
\(187\) 24.8184i 1.81490i
\(188\) 17.6298i 1.28579i
\(189\) −0.159887 −0.0116301
\(190\) 0 0
\(191\) 18.1472 1.31309 0.656544 0.754287i \(-0.272017\pi\)
0.656544 + 0.754287i \(0.272017\pi\)
\(192\) 13.0397i 0.941058i
\(193\) − 17.3305i − 1.24747i −0.781634 0.623737i \(-0.785614\pi\)
0.781634 0.623737i \(-0.214386\pi\)
\(194\) 8.80383 0.632078
\(195\) 0 0
\(196\) −21.8933 −1.56381
\(197\) 10.4273i 0.742915i 0.928450 + 0.371458i \(0.121142\pi\)
−0.928450 + 0.371458i \(0.878858\pi\)
\(198\) − 7.36601i − 0.523480i
\(199\) −11.5570 −0.819256 −0.409628 0.912253i \(-0.634341\pi\)
−0.409628 + 0.912253i \(0.634341\pi\)
\(200\) 0 0
\(201\) −14.9512 −1.05458
\(202\) − 34.9212i − 2.45704i
\(203\) − 0.159887i − 0.0112219i
\(204\) −23.9765 −1.67869
\(205\) 0 0
\(206\) 17.4212 1.21379
\(207\) − 2.06402i − 0.143459i
\(208\) − 2.99463i − 0.207640i
\(209\) −12.9656 −0.896850
\(210\) 0 0
\(211\) −21.1616 −1.45682 −0.728412 0.685140i \(-0.759741\pi\)
−0.728412 + 0.685140i \(0.759741\pi\)
\(212\) − 37.9269i − 2.60483i
\(213\) 3.43347i 0.235257i
\(214\) 10.4489 0.714274
\(215\) 0 0
\(216\) 2.58223 0.175698
\(217\) − 1.63155i − 0.110757i
\(218\) − 32.7595i − 2.21876i
\(219\) 12.0772 0.816101
\(220\) 0 0
\(221\) 53.9003 3.62573
\(222\) 9.69836i 0.650911i
\(223\) 9.46925i 0.634108i 0.948408 + 0.317054i \(0.102694\pi\)
−0.948408 + 0.317054i \(0.897306\pi\)
\(224\) 0.979541 0.0654483
\(225\) 0 0
\(226\) −9.26310 −0.616172
\(227\) − 22.4030i − 1.48694i −0.668768 0.743471i \(-0.733178\pi\)
0.668768 0.743471i \(-0.266822\pi\)
\(228\) − 12.5258i − 0.829539i
\(229\) −2.03117 −0.134223 −0.0671117 0.997745i \(-0.521378\pi\)
−0.0671117 + 0.997745i \(0.521378\pi\)
\(230\) 0 0
\(231\) −0.519521 −0.0341820
\(232\) 2.58223i 0.169532i
\(233\) 11.0704i 0.725249i 0.931935 + 0.362624i \(0.118119\pi\)
−0.931935 + 0.362624i \(0.881881\pi\)
\(234\) −15.9974 −1.04578
\(235\) 0 0
\(236\) −22.1864 −1.44421
\(237\) 12.7441i 0.827820i
\(238\) 2.76847i 0.179453i
\(239\) 2.24098 0.144957 0.0724786 0.997370i \(-0.476909\pi\)
0.0724786 + 0.997370i \(0.476909\pi\)
\(240\) 0 0
\(241\) 14.4838 0.932986 0.466493 0.884525i \(-0.345517\pi\)
0.466493 + 0.884525i \(0.345517\pi\)
\(242\) 1.00208i 0.0644161i
\(243\) 1.00000i 0.0641500i
\(244\) −35.8828 −2.29716
\(245\) 0 0
\(246\) −11.6143 −0.740499
\(247\) 28.1585i 1.79168i
\(248\) 26.3501i 1.67323i
\(249\) 2.59792 0.164637
\(250\) 0 0
\(251\) −16.2044 −1.02281 −0.511407 0.859339i \(-0.670875\pi\)
−0.511407 + 0.859339i \(0.670875\pi\)
\(252\) − 0.501897i − 0.0316165i
\(253\) − 6.70661i − 0.421641i
\(254\) 8.37978 0.525794
\(255\) 0 0
\(256\) −13.1557 −0.822232
\(257\) 3.36942i 0.210178i 0.994463 + 0.105089i \(0.0335128\pi\)
−0.994463 + 0.105089i \(0.966487\pi\)
\(258\) − 8.93586i − 0.556323i
\(259\) 0.684020 0.0425029
\(260\) 0 0
\(261\) −1.00000 −0.0618984
\(262\) 22.5066i 1.39046i
\(263\) 1.79671i 0.110790i 0.998465 + 0.0553950i \(0.0176418\pi\)
−0.998465 + 0.0553950i \(0.982358\pi\)
\(264\) 8.39044 0.516396
\(265\) 0 0
\(266\) −1.44630 −0.0886783
\(267\) − 4.33165i − 0.265093i
\(268\) − 46.9329i − 2.86688i
\(269\) 0.117055 0.00713699 0.00356849 0.999994i \(-0.498864\pi\)
0.00356849 + 0.999994i \(0.498864\pi\)
\(270\) 0 0
\(271\) −4.06294 −0.246806 −0.123403 0.992357i \(-0.539381\pi\)
−0.123403 + 0.992357i \(0.539381\pi\)
\(272\) 3.24131i 0.196533i
\(273\) 1.12829i 0.0682871i
\(274\) −8.67813 −0.524265
\(275\) 0 0
\(276\) 6.47910 0.389996
\(277\) 12.5436i 0.753674i 0.926279 + 0.376837i \(0.122988\pi\)
−0.926279 + 0.376837i \(0.877012\pi\)
\(278\) − 4.69231i − 0.281426i
\(279\) −10.2044 −0.610922
\(280\) 0 0
\(281\) −2.83163 −0.168921 −0.0844605 0.996427i \(-0.526917\pi\)
−0.0844605 + 0.996427i \(0.526917\pi\)
\(282\) − 12.7318i − 0.758167i
\(283\) 28.2249i 1.67780i 0.544288 + 0.838898i \(0.316800\pi\)
−0.544288 + 0.838898i \(0.683200\pi\)
\(284\) −10.7779 −0.639551
\(285\) 0 0
\(286\) −51.9804 −3.07366
\(287\) 0.819148i 0.0483528i
\(288\) − 6.12646i − 0.361005i
\(289\) −41.3403 −2.43178
\(290\) 0 0
\(291\) −3.88355 −0.227658
\(292\) 37.9112i 2.21859i
\(293\) 21.9337i 1.28138i 0.767799 + 0.640691i \(0.221352\pi\)
−0.767799 + 0.640691i \(0.778648\pi\)
\(294\) 15.8107 0.922100
\(295\) 0 0
\(296\) −11.0472 −0.642103
\(297\) 3.24930i 0.188544i
\(298\) − 3.32357i − 0.192529i
\(299\) −14.5653 −0.842335
\(300\) 0 0
\(301\) −0.630241 −0.0363265
\(302\) 45.6291i 2.62566i
\(303\) 15.4045i 0.884963i
\(304\) −1.69332 −0.0971185
\(305\) 0 0
\(306\) 17.3152 0.989843
\(307\) 0.461574i 0.0263434i 0.999913 + 0.0131717i \(0.00419281\pi\)
−0.999913 + 0.0131717i \(0.995807\pi\)
\(308\) − 1.63081i − 0.0929243i
\(309\) −7.68484 −0.437175
\(310\) 0 0
\(311\) 27.5507 1.56226 0.781128 0.624371i \(-0.214645\pi\)
0.781128 + 0.624371i \(0.214645\pi\)
\(312\) − 18.2222i − 1.03163i
\(313\) 14.9121i 0.842882i 0.906856 + 0.421441i \(0.138476\pi\)
−0.906856 + 0.421441i \(0.861524\pi\)
\(314\) −16.0751 −0.907170
\(315\) 0 0
\(316\) −40.0048 −2.25044
\(317\) 22.9266i 1.28769i 0.765157 + 0.643843i \(0.222661\pi\)
−0.765157 + 0.643843i \(0.777339\pi\)
\(318\) 27.3897i 1.53594i
\(319\) −3.24930 −0.181926
\(320\) 0 0
\(321\) −4.60924 −0.257263
\(322\) − 0.748115i − 0.0416908i
\(323\) − 30.4781i − 1.69584i
\(324\) −3.13907 −0.174393
\(325\) 0 0
\(326\) −14.9328 −0.827049
\(327\) 14.4509i 0.799137i
\(328\) − 13.2295i − 0.730478i
\(329\) −0.897966 −0.0495065
\(330\) 0 0
\(331\) −3.23147 −0.177618 −0.0888088 0.996049i \(-0.528306\pi\)
−0.0888088 + 0.996049i \(0.528306\pi\)
\(332\) 8.15507i 0.447568i
\(333\) − 4.27815i − 0.234441i
\(334\) 24.1744 1.32277
\(335\) 0 0
\(336\) −0.0678498 −0.00370151
\(337\) − 28.8026i − 1.56898i −0.620143 0.784489i \(-0.712925\pi\)
0.620143 0.784489i \(-0.287075\pi\)
\(338\) 83.4199i 4.53744i
\(339\) 4.08614 0.221929
\(340\) 0 0
\(341\) −33.1572 −1.79556
\(342\) 9.04576i 0.489139i
\(343\) − 2.23433i − 0.120642i
\(344\) 10.1786 0.548794
\(345\) 0 0
\(346\) −31.4650 −1.69157
\(347\) 16.4175i 0.881337i 0.897670 + 0.440669i \(0.145259\pi\)
−0.897670 + 0.440669i \(0.854741\pi\)
\(348\) − 3.13907i − 0.168272i
\(349\) 18.2107 0.974796 0.487398 0.873180i \(-0.337946\pi\)
0.487398 + 0.873180i \(0.337946\pi\)
\(350\) 0 0
\(351\) 7.05679 0.376663
\(352\) − 19.9067i − 1.06103i
\(353\) − 18.8790i − 1.00483i −0.864627 0.502414i \(-0.832445\pi\)
0.864627 0.502414i \(-0.167555\pi\)
\(354\) 16.0224 0.851581
\(355\) 0 0
\(356\) 13.5974 0.720660
\(357\) − 1.22123i − 0.0646343i
\(358\) − 25.1870i − 1.33117i
\(359\) −14.4500 −0.762640 −0.381320 0.924443i \(-0.624530\pi\)
−0.381320 + 0.924443i \(0.624530\pi\)
\(360\) 0 0
\(361\) −3.07770 −0.161984
\(362\) − 24.8125i − 1.30411i
\(363\) − 0.442038i − 0.0232010i
\(364\) −3.54178 −0.185640
\(365\) 0 0
\(366\) 25.9136 1.35452
\(367\) 21.1171i 1.10231i 0.834404 + 0.551153i \(0.185812\pi\)
−0.834404 + 0.551153i \(0.814188\pi\)
\(368\) − 0.875889i − 0.0456589i
\(369\) 5.12330 0.266708
\(370\) 0 0
\(371\) 1.93178 0.100293
\(372\) − 32.0324i − 1.66080i
\(373\) − 17.1185i − 0.886361i −0.896432 0.443181i \(-0.853850\pi\)
0.896432 0.443181i \(-0.146150\pi\)
\(374\) 56.2622 2.90925
\(375\) 0 0
\(376\) 14.5025 0.747907
\(377\) 7.05679i 0.363443i
\(378\) 0.362456i 0.0186427i
\(379\) 0.206688 0.0106169 0.00530844 0.999986i \(-0.498310\pi\)
0.00530844 + 0.999986i \(0.498310\pi\)
\(380\) 0 0
\(381\) −3.69650 −0.189377
\(382\) − 41.1389i − 2.10485i
\(383\) 16.3701i 0.836474i 0.908338 + 0.418237i \(0.137352\pi\)
−0.908338 + 0.418237i \(0.862648\pi\)
\(384\) 17.3074 0.883215
\(385\) 0 0
\(386\) −39.2873 −1.99967
\(387\) 3.94180i 0.200373i
\(388\) − 12.1908i − 0.618892i
\(389\) −11.7627 −0.596393 −0.298197 0.954504i \(-0.596385\pi\)
−0.298197 + 0.954504i \(0.596385\pi\)
\(390\) 0 0
\(391\) 15.7651 0.797277
\(392\) 18.0096i 0.909621i
\(393\) − 9.92811i − 0.500807i
\(394\) 23.6382 1.19088
\(395\) 0 0
\(396\) −10.1998 −0.512559
\(397\) 4.96134i 0.249002i 0.992219 + 0.124501i \(0.0397331\pi\)
−0.992219 + 0.124501i \(0.960267\pi\)
\(398\) 26.1992i 1.31325i
\(399\) 0.637993 0.0319396
\(400\) 0 0
\(401\) 36.1967 1.80758 0.903789 0.427979i \(-0.140774\pi\)
0.903789 + 0.427979i \(0.140774\pi\)
\(402\) 33.8936i 1.69046i
\(403\) 72.0103i 3.58709i
\(404\) −48.3557 −2.40579
\(405\) 0 0
\(406\) −0.362456 −0.0179884
\(407\) − 13.9010i − 0.689047i
\(408\) 19.7233i 0.976447i
\(409\) 16.1607 0.799094 0.399547 0.916713i \(-0.369168\pi\)
0.399547 + 0.916713i \(0.369168\pi\)
\(410\) 0 0
\(411\) 3.82810 0.188826
\(412\) − 24.1233i − 1.18847i
\(413\) − 1.13005i − 0.0556061i
\(414\) −4.67903 −0.229962
\(415\) 0 0
\(416\) −43.2331 −2.11968
\(417\) 2.06987i 0.101362i
\(418\) 29.3924i 1.43763i
\(419\) 33.5544 1.63924 0.819621 0.572906i \(-0.194184\pi\)
0.819621 + 0.572906i \(0.194184\pi\)
\(420\) 0 0
\(421\) 26.9847 1.31515 0.657577 0.753388i \(-0.271582\pi\)
0.657577 + 0.753388i \(0.271582\pi\)
\(422\) 47.9723i 2.33526i
\(423\) 5.61626i 0.273072i
\(424\) −31.1990 −1.51515
\(425\) 0 0
\(426\) 7.78351 0.377112
\(427\) − 1.82767i − 0.0884471i
\(428\) − 14.4687i − 0.699373i
\(429\) 22.9296 1.10705
\(430\) 0 0
\(431\) 0.832366 0.0400937 0.0200468 0.999799i \(-0.493618\pi\)
0.0200468 + 0.999799i \(0.493618\pi\)
\(432\) 0.424361i 0.0204171i
\(433\) − 22.5647i − 1.08439i −0.840253 0.542195i \(-0.817593\pi\)
0.840253 0.542195i \(-0.182407\pi\)
\(434\) −3.69865 −0.177541
\(435\) 0 0
\(436\) −45.3625 −2.17247
\(437\) 8.23600i 0.393981i
\(438\) − 27.3784i − 1.30819i
\(439\) −23.9583 −1.14347 −0.571734 0.820439i \(-0.693729\pi\)
−0.571734 + 0.820439i \(0.693729\pi\)
\(440\) 0 0
\(441\) −6.97444 −0.332116
\(442\) − 122.190i − 5.81196i
\(443\) 17.4925i 0.831092i 0.909572 + 0.415546i \(0.136409\pi\)
−0.909572 + 0.415546i \(0.863591\pi\)
\(444\) 13.4294 0.637332
\(445\) 0 0
\(446\) 21.4663 1.01646
\(447\) 1.46609i 0.0693439i
\(448\) − 2.08487i − 0.0985010i
\(449\) −4.22200 −0.199249 −0.0996243 0.995025i \(-0.531764\pi\)
−0.0996243 + 0.995025i \(0.531764\pi\)
\(450\) 0 0
\(451\) 16.6471 0.783884
\(452\) 12.8267i 0.603318i
\(453\) − 20.1279i − 0.945694i
\(454\) −50.7866 −2.38353
\(455\) 0 0
\(456\) −10.3038 −0.482520
\(457\) 1.28562i 0.0601389i 0.999548 + 0.0300694i \(0.00957284\pi\)
−0.999548 + 0.0300694i \(0.990427\pi\)
\(458\) 4.60456i 0.215157i
\(459\) −7.63808 −0.356515
\(460\) 0 0
\(461\) −23.8534 −1.11097 −0.555483 0.831528i \(-0.687466\pi\)
−0.555483 + 0.831528i \(0.687466\pi\)
\(462\) 1.17773i 0.0547929i
\(463\) 14.1402i 0.657152i 0.944478 + 0.328576i \(0.106569\pi\)
−0.944478 + 0.328576i \(0.893431\pi\)
\(464\) −0.424361 −0.0197005
\(465\) 0 0
\(466\) 25.0962 1.16256
\(467\) − 7.06487i − 0.326923i −0.986550 0.163462i \(-0.947734\pi\)
0.986550 0.163462i \(-0.0522660\pi\)
\(468\) 22.1518i 1.02397i
\(469\) 2.39050 0.110383
\(470\) 0 0
\(471\) 7.09106 0.326739
\(472\) 18.2507i 0.840056i
\(473\) 12.8081i 0.588916i
\(474\) 28.8903 1.32698
\(475\) 0 0
\(476\) 3.83353 0.175710
\(477\) − 12.0822i − 0.553205i
\(478\) − 5.08020i − 0.232363i
\(479\) −22.9561 −1.04889 −0.524444 0.851445i \(-0.675727\pi\)
−0.524444 + 0.851445i \(0.675727\pi\)
\(480\) 0 0
\(481\) −30.1900 −1.37654
\(482\) − 32.8342i − 1.49556i
\(483\) 0.330009i 0.0150159i
\(484\) 1.38759 0.0630723
\(485\) 0 0
\(486\) 2.26695 0.102831
\(487\) 27.0319i 1.22493i 0.790496 + 0.612467i \(0.209823\pi\)
−0.790496 + 0.612467i \(0.790177\pi\)
\(488\) 29.5175i 1.33619i
\(489\) 6.58715 0.297881
\(490\) 0 0
\(491\) −11.5498 −0.521235 −0.260617 0.965442i \(-0.583926\pi\)
−0.260617 + 0.965442i \(0.583926\pi\)
\(492\) 16.0824i 0.725051i
\(493\) − 7.63808i − 0.344002i
\(494\) 63.8340 2.87203
\(495\) 0 0
\(496\) −4.33036 −0.194439
\(497\) − 0.548966i − 0.0246245i
\(498\) − 5.88937i − 0.263909i
\(499\) −3.77942 −0.169190 −0.0845950 0.996415i \(-0.526960\pi\)
−0.0845950 + 0.996415i \(0.526960\pi\)
\(500\) 0 0
\(501\) −10.6638 −0.476425
\(502\) 36.7346i 1.63955i
\(503\) − 14.7684i − 0.658489i −0.944245 0.329244i \(-0.893206\pi\)
0.944245 0.329244i \(-0.106794\pi\)
\(504\) −0.412864 −0.0183904
\(505\) 0 0
\(506\) −15.2036 −0.675881
\(507\) − 36.7983i − 1.63427i
\(508\) − 11.6036i − 0.514826i
\(509\) 42.4182 1.88015 0.940077 0.340962i \(-0.110753\pi\)
0.940077 + 0.340962i \(0.110753\pi\)
\(510\) 0 0
\(511\) −1.93098 −0.0854217
\(512\) − 4.79143i − 0.211753i
\(513\) − 3.99028i − 0.176175i
\(514\) 7.63831 0.336911
\(515\) 0 0
\(516\) −12.3736 −0.544717
\(517\) 18.2489i 0.802586i
\(518\) − 1.55064i − 0.0681312i
\(519\) 13.8799 0.609258
\(520\) 0 0
\(521\) 20.3409 0.891152 0.445576 0.895244i \(-0.352999\pi\)
0.445576 + 0.895244i \(0.352999\pi\)
\(522\) 2.26695i 0.0992218i
\(523\) 1.52190i 0.0665481i 0.999446 + 0.0332740i \(0.0105934\pi\)
−0.999446 + 0.0332740i \(0.989407\pi\)
\(524\) 31.1651 1.36145
\(525\) 0 0
\(526\) 4.07306 0.177594
\(527\) − 77.9421i − 3.39521i
\(528\) 1.37888i 0.0600080i
\(529\) 18.7398 0.814775
\(530\) 0 0
\(531\) −7.06781 −0.306717
\(532\) 2.00271i 0.0868283i
\(533\) − 36.1540i − 1.56601i
\(534\) −9.81965 −0.424938
\(535\) 0 0
\(536\) −38.6074 −1.66758
\(537\) 11.1105i 0.479454i
\(538\) − 0.265359i − 0.0114404i
\(539\) −22.6620 −0.976123
\(540\) 0 0
\(541\) −9.40679 −0.404430 −0.202215 0.979341i \(-0.564814\pi\)
−0.202215 + 0.979341i \(0.564814\pi\)
\(542\) 9.21049i 0.395624i
\(543\) 10.9453i 0.469707i
\(544\) 46.7944 2.00629
\(545\) 0 0
\(546\) 2.55777 0.109463
\(547\) − 19.7232i − 0.843304i −0.906758 0.421652i \(-0.861450\pi\)
0.906758 0.421652i \(-0.138550\pi\)
\(548\) 12.0167i 0.513328i
\(549\) −11.4310 −0.487864
\(550\) 0 0
\(551\) 3.99028 0.169991
\(552\) − 5.32976i − 0.226850i
\(553\) − 2.03762i − 0.0866483i
\(554\) 28.4358 1.20812
\(555\) 0 0
\(556\) −6.49749 −0.275555
\(557\) − 9.01986i − 0.382184i −0.981572 0.191092i \(-0.938797\pi\)
0.981572 0.191092i \(-0.0612029\pi\)
\(558\) 23.1329i 0.979294i
\(559\) 27.8164 1.17651
\(560\) 0 0
\(561\) −24.8184 −1.04784
\(562\) 6.41918i 0.270777i
\(563\) 17.5283i 0.738728i 0.929285 + 0.369364i \(0.120424\pi\)
−0.929285 + 0.369364i \(0.879576\pi\)
\(564\) −17.6298 −0.742350
\(565\) 0 0
\(566\) 63.9845 2.68947
\(567\) − 0.159887i − 0.00671462i
\(568\) 8.86599i 0.372009i
\(569\) −32.3981 −1.35820 −0.679099 0.734046i \(-0.737629\pi\)
−0.679099 + 0.734046i \(0.737629\pi\)
\(570\) 0 0
\(571\) −11.8393 −0.495458 −0.247729 0.968829i \(-0.579684\pi\)
−0.247729 + 0.968829i \(0.579684\pi\)
\(572\) 71.9778i 3.00954i
\(573\) 18.1472i 0.758112i
\(574\) 1.85697 0.0775085
\(575\) 0 0
\(576\) −13.0397 −0.543320
\(577\) 0.192778i 0.00802545i 0.999992 + 0.00401273i \(0.00127729\pi\)
−0.999992 + 0.00401273i \(0.998723\pi\)
\(578\) 93.7165i 3.89809i
\(579\) 17.3305 0.720229
\(580\) 0 0
\(581\) −0.415374 −0.0172326
\(582\) 8.80383i 0.364931i
\(583\) − 39.2587i − 1.62593i
\(584\) 31.1861 1.29049
\(585\) 0 0
\(586\) 49.7227 2.05403
\(587\) − 34.5089i − 1.42433i −0.702010 0.712167i \(-0.747714\pi\)
0.702010 0.712167i \(-0.252286\pi\)
\(588\) − 21.8933i − 0.902863i
\(589\) 40.7184 1.67777
\(590\) 0 0
\(591\) −10.4273 −0.428922
\(592\) − 1.81548i − 0.0746158i
\(593\) 2.42748i 0.0996846i 0.998757 + 0.0498423i \(0.0158719\pi\)
−0.998757 + 0.0498423i \(0.984128\pi\)
\(594\) 7.36601 0.302231
\(595\) 0 0
\(596\) −4.60218 −0.188513
\(597\) − 11.5570i − 0.472997i
\(598\) 33.0189i 1.35024i
\(599\) −29.3312 −1.19844 −0.599220 0.800585i \(-0.704522\pi\)
−0.599220 + 0.800585i \(0.704522\pi\)
\(600\) 0 0
\(601\) 29.5631 1.20590 0.602952 0.797778i \(-0.293991\pi\)
0.602952 + 0.797778i \(0.293991\pi\)
\(602\) 1.42873i 0.0582306i
\(603\) − 14.9512i − 0.608860i
\(604\) 63.1831 2.57089
\(605\) 0 0
\(606\) 34.9212 1.41858
\(607\) − 33.1756i − 1.34656i −0.739390 0.673278i \(-0.764886\pi\)
0.739390 0.673278i \(-0.235114\pi\)
\(608\) 24.4463i 0.991427i
\(609\) 0.159887 0.00647894
\(610\) 0 0
\(611\) 39.6327 1.60337
\(612\) − 23.9765i − 0.969193i
\(613\) − 13.9979i − 0.565371i −0.959213 0.282686i \(-0.908775\pi\)
0.959213 0.282686i \(-0.0912253\pi\)
\(614\) 1.04637 0.0422279
\(615\) 0 0
\(616\) −1.34152 −0.0540514
\(617\) 29.9344i 1.20511i 0.798077 + 0.602556i \(0.205851\pi\)
−0.798077 + 0.602556i \(0.794149\pi\)
\(618\) 17.4212i 0.700782i
\(619\) 14.9032 0.599009 0.299505 0.954095i \(-0.403179\pi\)
0.299505 + 0.954095i \(0.403179\pi\)
\(620\) 0 0
\(621\) 2.06402 0.0828261
\(622\) − 62.4561i − 2.50426i
\(623\) 0.692574i 0.0277474i
\(624\) 2.99463 0.119881
\(625\) 0 0
\(626\) 33.8050 1.35112
\(627\) − 12.9656i − 0.517796i
\(628\) 22.2594i 0.888245i
\(629\) 32.6769 1.30291
\(630\) 0 0
\(631\) −28.8643 −1.14907 −0.574534 0.818480i \(-0.694817\pi\)
−0.574534 + 0.818480i \(0.694817\pi\)
\(632\) 32.9082i 1.30902i
\(633\) − 21.1616i − 0.841097i
\(634\) 51.9735 2.06413
\(635\) 0 0
\(636\) 37.9269 1.50390
\(637\) 49.2171i 1.95005i
\(638\) 7.36601i 0.291623i
\(639\) −3.43347 −0.135826
\(640\) 0 0
\(641\) 44.0167 1.73856 0.869278 0.494324i \(-0.164585\pi\)
0.869278 + 0.494324i \(0.164585\pi\)
\(642\) 10.4489i 0.412386i
\(643\) − 29.6239i − 1.16825i −0.811663 0.584125i \(-0.801438\pi\)
0.811663 0.584125i \(-0.198562\pi\)
\(644\) −1.03592 −0.0408211
\(645\) 0 0
\(646\) −69.0923 −2.71840
\(647\) 39.3943i 1.54875i 0.632727 + 0.774375i \(0.281936\pi\)
−0.632727 + 0.774375i \(0.718064\pi\)
\(648\) 2.58223i 0.101439i
\(649\) −22.9654 −0.901473
\(650\) 0 0
\(651\) 1.63155 0.0639455
\(652\) 20.6776i 0.809796i
\(653\) 22.3518i 0.874692i 0.899293 + 0.437346i \(0.144082\pi\)
−0.899293 + 0.437346i \(0.855918\pi\)
\(654\) 32.7595 1.28100
\(655\) 0 0
\(656\) 2.17413 0.0848855
\(657\) 12.0772i 0.471176i
\(658\) 2.03565i 0.0793577i
\(659\) −42.1979 −1.64380 −0.821898 0.569634i \(-0.807085\pi\)
−0.821898 + 0.569634i \(0.807085\pi\)
\(660\) 0 0
\(661\) 8.38035 0.325958 0.162979 0.986630i \(-0.447890\pi\)
0.162979 + 0.986630i \(0.447890\pi\)
\(662\) 7.32559i 0.284717i
\(663\) 53.9003i 2.09332i
\(664\) 6.70843 0.260337
\(665\) 0 0
\(666\) −9.69836 −0.375804
\(667\) 2.06402i 0.0799191i
\(668\) − 33.4746i − 1.29517i
\(669\) −9.46925 −0.366102
\(670\) 0 0
\(671\) −37.1428 −1.43388
\(672\) 0.979541i 0.0377866i
\(673\) − 3.13725i − 0.120932i −0.998170 0.0604660i \(-0.980741\pi\)
0.998170 0.0604660i \(-0.0192587\pi\)
\(674\) −65.2941 −2.51504
\(675\) 0 0
\(676\) 115.512 4.44279
\(677\) − 16.2776i − 0.625600i −0.949819 0.312800i \(-0.898733\pi\)
0.949819 0.312800i \(-0.101267\pi\)
\(678\) − 9.26310i − 0.355747i
\(679\) 0.620929 0.0238291
\(680\) 0 0
\(681\) 22.4030 0.858486
\(682\) 75.1658i 2.87825i
\(683\) − 1.78249i − 0.0682050i −0.999418 0.0341025i \(-0.989143\pi\)
0.999418 0.0341025i \(-0.0108573\pi\)
\(684\) 12.5258 0.478935
\(685\) 0 0
\(686\) −5.06512 −0.193387
\(687\) − 2.03117i − 0.0774939i
\(688\) 1.67275i 0.0637728i
\(689\) −85.2614 −3.24820
\(690\) 0 0
\(691\) −20.8504 −0.793187 −0.396594 0.917994i \(-0.629808\pi\)
−0.396594 + 0.917994i \(0.629808\pi\)
\(692\) 43.5699i 1.65628i
\(693\) − 0.519521i − 0.0197350i
\(694\) 37.2177 1.41276
\(695\) 0 0
\(696\) −2.58223 −0.0978791
\(697\) 39.1322i 1.48224i
\(698\) − 41.2828i − 1.56258i
\(699\) −11.0704 −0.418722
\(700\) 0 0
\(701\) 32.5504 1.22941 0.614707 0.788756i \(-0.289274\pi\)
0.614707 + 0.788756i \(0.289274\pi\)
\(702\) − 15.9974i − 0.603783i
\(703\) 17.0710i 0.643845i
\(704\) −42.3698 −1.59687
\(705\) 0 0
\(706\) −42.7978 −1.61072
\(707\) − 2.46297i − 0.0926295i
\(708\) − 22.1864i − 0.833815i
\(709\) −5.93195 −0.222779 −0.111390 0.993777i \(-0.535530\pi\)
−0.111390 + 0.993777i \(0.535530\pi\)
\(710\) 0 0
\(711\) −12.7441 −0.477942
\(712\) − 11.1853i − 0.419187i
\(713\) 21.0621i 0.788781i
\(714\) −2.76847 −0.103607
\(715\) 0 0
\(716\) −34.8767 −1.30340
\(717\) 2.24098i 0.0836911i
\(718\) 32.7574i 1.22250i
\(719\) 13.5279 0.504505 0.252252 0.967661i \(-0.418829\pi\)
0.252252 + 0.967661i \(0.418829\pi\)
\(720\) 0 0
\(721\) 1.22871 0.0457594
\(722\) 6.97701i 0.259657i
\(723\) 14.4838i 0.538660i
\(724\) −34.3581 −1.27691
\(725\) 0 0
\(726\) −1.00208 −0.0371907
\(727\) 12.7407i 0.472525i 0.971689 + 0.236263i \(0.0759226\pi\)
−0.971689 + 0.236263i \(0.924077\pi\)
\(728\) 2.91350i 0.107981i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −30.1078 −1.11358
\(732\) − 35.8828i − 1.32627i
\(733\) 30.9422i 1.14288i 0.820645 + 0.571438i \(0.193614\pi\)
−0.820645 + 0.571438i \(0.806386\pi\)
\(734\) 47.8716 1.76697
\(735\) 0 0
\(736\) −12.6451 −0.466105
\(737\) − 48.5809i − 1.78950i
\(738\) − 11.6143i − 0.427528i
\(739\) −35.0047 −1.28767 −0.643834 0.765166i \(-0.722657\pi\)
−0.643834 + 0.765166i \(0.722657\pi\)
\(740\) 0 0
\(741\) −28.1585 −1.03443
\(742\) − 4.37926i − 0.160768i
\(743\) − 12.5515i − 0.460468i −0.973135 0.230234i \(-0.926051\pi\)
0.973135 0.230234i \(-0.0739492\pi\)
\(744\) −26.3501 −0.966041
\(745\) 0 0
\(746\) −38.8068 −1.42082
\(747\) 2.59792i 0.0950530i
\(748\) − 77.9069i − 2.84856i
\(749\) 0.736956 0.0269278
\(750\) 0 0
\(751\) −33.8278 −1.23439 −0.617197 0.786809i \(-0.711732\pi\)
−0.617197 + 0.786809i \(0.711732\pi\)
\(752\) 2.38332i 0.0869108i
\(753\) − 16.2044i − 0.590522i
\(754\) 15.9974 0.582591
\(755\) 0 0
\(756\) 0.501897 0.0182538
\(757\) 6.60568i 0.240088i 0.992769 + 0.120044i \(0.0383035\pi\)
−0.992769 + 0.120044i \(0.961697\pi\)
\(758\) − 0.468553i − 0.0170186i
\(759\) 6.70661 0.243435
\(760\) 0 0
\(761\) −22.8638 −0.828814 −0.414407 0.910092i \(-0.636011\pi\)
−0.414407 + 0.910092i \(0.636011\pi\)
\(762\) 8.37978i 0.303568i
\(763\) − 2.31051i − 0.0836461i
\(764\) −56.9656 −2.06094
\(765\) 0 0
\(766\) 37.1103 1.34085
\(767\) 49.8760i 1.80092i
\(768\) − 13.1557i − 0.474716i
\(769\) 35.0078 1.26241 0.631206 0.775615i \(-0.282560\pi\)
0.631206 + 0.775615i \(0.282560\pi\)
\(770\) 0 0
\(771\) −3.36942 −0.121347
\(772\) 54.4016i 1.95796i
\(773\) 17.7019i 0.636691i 0.947975 + 0.318346i \(0.103127\pi\)
−0.947975 + 0.318346i \(0.896873\pi\)
\(774\) 8.93586 0.321193
\(775\) 0 0
\(776\) −10.0282 −0.359992
\(777\) 0.684020i 0.0245391i
\(778\) 26.6655i 0.956005i
\(779\) −20.4434 −0.732460
\(780\) 0 0
\(781\) −11.1564 −0.399206
\(782\) − 35.7388i − 1.27802i
\(783\) − 1.00000i − 0.0357371i
\(784\) −2.95968 −0.105703
\(785\) 0 0
\(786\) −22.5066 −0.802782
\(787\) − 5.13176i − 0.182928i −0.995808 0.0914638i \(-0.970845\pi\)
0.995808 0.0914638i \(-0.0291546\pi\)
\(788\) − 32.7321i − 1.16603i
\(789\) −1.79671 −0.0639647
\(790\) 0 0
\(791\) −0.653321 −0.0232294
\(792\) 8.39044i 0.298141i
\(793\) 80.6662i 2.86454i
\(794\) 11.2471 0.399145
\(795\) 0 0
\(796\) 36.2783 1.28585
\(797\) − 27.5492i − 0.975842i −0.872888 0.487921i \(-0.837755\pi\)
0.872888 0.487921i \(-0.162245\pi\)
\(798\) − 1.44630i − 0.0511984i
\(799\) −42.8974 −1.51760
\(800\) 0 0
\(801\) 4.33165 0.153051
\(802\) − 82.0562i − 2.89751i
\(803\) 39.2424i 1.38484i
\(804\) 46.9329 1.65520
\(805\) 0 0
\(806\) 163.244 5.75002
\(807\) 0.117055i 0.00412054i
\(808\) 39.7778i 1.39938i
\(809\) 5.51555 0.193917 0.0969583 0.995288i \(-0.469089\pi\)
0.0969583 + 0.995288i \(0.469089\pi\)
\(810\) 0 0
\(811\) −17.1711 −0.602959 −0.301479 0.953473i \(-0.597480\pi\)
−0.301479 + 0.953473i \(0.597480\pi\)
\(812\) 0.501897i 0.0176131i
\(813\) − 4.06294i − 0.142493i
\(814\) −31.5129 −1.10453
\(815\) 0 0
\(816\) −3.24131 −0.113468
\(817\) − 15.7288i − 0.550283i
\(818\) − 36.6355i − 1.28093i
\(819\) −1.12829 −0.0394256
\(820\) 0 0
\(821\) 6.53740 0.228157 0.114078 0.993472i \(-0.463609\pi\)
0.114078 + 0.993472i \(0.463609\pi\)
\(822\) − 8.67813i − 0.302684i
\(823\) − 35.8588i − 1.24996i −0.780641 0.624979i \(-0.785107\pi\)
0.780641 0.624979i \(-0.214893\pi\)
\(824\) −19.8440 −0.691299
\(825\) 0 0
\(826\) −2.56177 −0.0891354
\(827\) 2.36177i 0.0821269i 0.999157 + 0.0410635i \(0.0130746\pi\)
−0.999157 + 0.0410635i \(0.986925\pi\)
\(828\) 6.47910i 0.225164i
\(829\) −54.0332 −1.87665 −0.938325 0.345754i \(-0.887623\pi\)
−0.938325 + 0.345754i \(0.887623\pi\)
\(830\) 0 0
\(831\) −12.5436 −0.435134
\(832\) 92.0182i 3.19016i
\(833\) − 53.2713i − 1.84574i
\(834\) 4.69231 0.162481
\(835\) 0 0
\(836\) 40.7000 1.40764
\(837\) − 10.2044i − 0.352716i
\(838\) − 76.0663i − 2.62767i
\(839\) −27.6639 −0.955063 −0.477532 0.878615i \(-0.658468\pi\)
−0.477532 + 0.878615i \(0.658468\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) − 61.1730i − 2.10816i
\(843\) − 2.83163i − 0.0975266i
\(844\) 66.4278 2.28654
\(845\) 0 0
\(846\) 12.7318 0.437728
\(847\) 0.0706761i 0.00242846i
\(848\) − 5.12721i − 0.176069i
\(849\) −28.2249 −0.968676
\(850\) 0 0
\(851\) −8.83017 −0.302694
\(852\) − 10.7779i − 0.369245i
\(853\) 16.7180i 0.572413i 0.958168 + 0.286207i \(0.0923944\pi\)
−0.958168 + 0.286207i \(0.907606\pi\)
\(854\) −4.14324 −0.141779
\(855\) 0 0
\(856\) −11.9021 −0.406805
\(857\) 50.6304i 1.72950i 0.502202 + 0.864750i \(0.332523\pi\)
−0.502202 + 0.864750i \(0.667477\pi\)
\(858\) − 51.9804i − 1.77458i
\(859\) 23.0473 0.786363 0.393182 0.919461i \(-0.371374\pi\)
0.393182 + 0.919461i \(0.371374\pi\)
\(860\) 0 0
\(861\) −0.819148 −0.0279165
\(862\) − 1.88693i − 0.0642692i
\(863\) 45.4971i 1.54874i 0.632733 + 0.774370i \(0.281933\pi\)
−0.632733 + 0.774370i \(0.718067\pi\)
\(864\) 6.12646 0.208426
\(865\) 0 0
\(866\) −51.1531 −1.73825
\(867\) − 41.3403i − 1.40399i
\(868\) 5.12156i 0.173837i
\(869\) −41.4095 −1.40472
\(870\) 0 0
\(871\) −105.507 −3.57498
\(872\) 37.3155i 1.26366i
\(873\) − 3.88355i − 0.131438i
\(874\) 18.6706 0.631543
\(875\) 0 0
\(876\) −37.9112 −1.28090
\(877\) − 6.44199i − 0.217531i −0.994067 0.108765i \(-0.965310\pi\)
0.994067 0.108765i \(-0.0346897\pi\)
\(878\) 54.3124i 1.83295i
\(879\) −21.9337 −0.739806
\(880\) 0 0
\(881\) −43.3346 −1.45998 −0.729990 0.683458i \(-0.760475\pi\)
−0.729990 + 0.683458i \(0.760475\pi\)
\(882\) 15.8107i 0.532375i
\(883\) − 24.6736i − 0.830333i −0.909745 0.415166i \(-0.863723\pi\)
0.909745 0.415166i \(-0.136277\pi\)
\(884\) −169.197 −5.69072
\(885\) 0 0
\(886\) 39.6546 1.33222
\(887\) − 37.1527i − 1.24747i −0.781637 0.623733i \(-0.785615\pi\)
0.781637 0.623733i \(-0.214385\pi\)
\(888\) − 11.0472i − 0.370718i
\(889\) 0.591021 0.0198222
\(890\) 0 0
\(891\) −3.24930 −0.108856
\(892\) − 29.7247i − 0.995255i
\(893\) − 22.4104i − 0.749936i
\(894\) 3.32357 0.111157
\(895\) 0 0
\(896\) −2.76723 −0.0924466
\(897\) − 14.5653i − 0.486322i
\(898\) 9.57108i 0.319391i
\(899\) 10.2044 0.340336
\(900\) 0 0
\(901\) 92.2847 3.07445
\(902\) − 37.7383i − 1.25655i
\(903\) − 0.630241i − 0.0209731i
\(904\) 10.5514 0.350933
\(905\) 0 0
\(906\) −45.6291 −1.51593
\(907\) − 7.49457i − 0.248853i −0.992229 0.124427i \(-0.960291\pi\)
0.992229 0.124427i \(-0.0397091\pi\)
\(908\) 70.3248i 2.33381i
\(909\) −15.4045 −0.510934
\(910\) 0 0
\(911\) 48.6818 1.61290 0.806449 0.591303i \(-0.201386\pi\)
0.806449 + 0.591303i \(0.201386\pi\)
\(912\) − 1.69332i − 0.0560714i
\(913\) 8.44143i 0.279371i
\(914\) 2.91444 0.0964012
\(915\) 0 0
\(916\) 6.37598 0.210668
\(917\) 1.58737i 0.0524197i
\(918\) 17.3152i 0.571486i
\(919\) 26.1563 0.862816 0.431408 0.902157i \(-0.358017\pi\)
0.431408 + 0.902157i \(0.358017\pi\)
\(920\) 0 0
\(921\) −0.461574 −0.0152094
\(922\) 54.0746i 1.78085i
\(923\) 24.2293i 0.797515i
\(924\) 1.63081 0.0536498
\(925\) 0 0
\(926\) 32.0552 1.05340
\(927\) − 7.68484i − 0.252403i
\(928\) 6.12646i 0.201111i
\(929\) 8.15366 0.267513 0.133756 0.991014i \(-0.457296\pi\)
0.133756 + 0.991014i \(0.457296\pi\)
\(930\) 0 0
\(931\) 27.8299 0.912089
\(932\) − 34.7509i − 1.13830i
\(933\) 27.5507i 0.901968i
\(934\) −16.0157 −0.524051
\(935\) 0 0
\(936\) 18.2222 0.595612
\(937\) − 41.9169i − 1.36936i −0.728842 0.684682i \(-0.759941\pi\)
0.728842 0.684682i \(-0.240059\pi\)
\(938\) − 5.41915i − 0.176941i
\(939\) −14.9121 −0.486638
\(940\) 0 0
\(941\) 14.4789 0.471998 0.235999 0.971753i \(-0.424164\pi\)
0.235999 + 0.971753i \(0.424164\pi\)
\(942\) − 16.0751i − 0.523755i
\(943\) − 10.5746i − 0.344356i
\(944\) −2.99931 −0.0976191
\(945\) 0 0
\(946\) 29.0353 0.944020
\(947\) − 1.83838i − 0.0597392i −0.999554 0.0298696i \(-0.990491\pi\)
0.999554 0.0298696i \(-0.00950921\pi\)
\(948\) − 40.0048i − 1.29929i
\(949\) 85.2262 2.76656
\(950\) 0 0
\(951\) −22.9266 −0.743446
\(952\) − 3.15349i − 0.102205i
\(953\) − 49.5140i − 1.60391i −0.597382 0.801957i \(-0.703792\pi\)
0.597382 0.801957i \(-0.296208\pi\)
\(954\) −27.3897 −0.886776
\(955\) 0 0
\(956\) −7.03461 −0.227516
\(957\) − 3.24930i − 0.105035i
\(958\) 52.0403i 1.68135i
\(959\) −0.612063 −0.0197646
\(960\) 0 0
\(961\) 73.1299 2.35903
\(962\) 68.4393i 2.20657i
\(963\) − 4.60924i − 0.148531i
\(964\) −45.4658 −1.46436
\(965\) 0 0
\(966\) 0.748115 0.0240702
\(967\) − 5.90299i − 0.189827i −0.995486 0.0949137i \(-0.969742\pi\)
0.995486 0.0949137i \(-0.0302575\pi\)
\(968\) − 1.14144i − 0.0366874i
\(969\) 30.4781 0.979096
\(970\) 0 0
\(971\) −35.7964 −1.14876 −0.574380 0.818588i \(-0.694757\pi\)
−0.574380 + 0.818588i \(0.694757\pi\)
\(972\) − 3.13907i − 0.100686i
\(973\) − 0.330946i − 0.0106096i
\(974\) 61.2801 1.96354
\(975\) 0 0
\(976\) −4.85088 −0.155273
\(977\) 1.79673i 0.0574825i 0.999587 + 0.0287412i \(0.00914988\pi\)
−0.999587 + 0.0287412i \(0.990850\pi\)
\(978\) − 14.9328i − 0.477497i
\(979\) 14.0748 0.449834
\(980\) 0 0
\(981\) −14.4509 −0.461382
\(982\) 26.1828i 0.835528i
\(983\) 6.24151i 0.199073i 0.995034 + 0.0995365i \(0.0317360\pi\)
−0.995034 + 0.0995365i \(0.968264\pi\)
\(984\) 13.2295 0.421742
\(985\) 0 0
\(986\) −17.3152 −0.551427
\(987\) − 0.897966i − 0.0285826i
\(988\) − 88.3917i − 2.81211i
\(989\) 8.13593 0.258708
\(990\) 0 0
\(991\) 41.0410 1.30371 0.651855 0.758344i \(-0.273991\pi\)
0.651855 + 0.758344i \(0.273991\pi\)
\(992\) 62.5169i 1.98491i
\(993\) − 3.23147i − 0.102548i
\(994\) −1.24448 −0.0394725
\(995\) 0 0
\(996\) −8.15507 −0.258403
\(997\) − 29.8910i − 0.946657i −0.880886 0.473329i \(-0.843052\pi\)
0.880886 0.473329i \(-0.156948\pi\)
\(998\) 8.56776i 0.271208i
\(999\) 4.27815 0.135355
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.c.o.349.3 14
5.2 odd 4 2175.2.a.bb.1.6 yes 7
5.3 odd 4 2175.2.a.ba.1.2 7
5.4 even 2 inner 2175.2.c.o.349.12 14
15.2 even 4 6525.2.a.bu.1.2 7
15.8 even 4 6525.2.a.bx.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.ba.1.2 7 5.3 odd 4
2175.2.a.bb.1.6 yes 7 5.2 odd 4
2175.2.c.o.349.3 14 1.1 even 1 trivial
2175.2.c.o.349.12 14 5.4 even 2 inner
6525.2.a.bu.1.2 7 15.2 even 4
6525.2.a.bx.1.6 7 15.8 even 4