Properties

Label 2175.2.c.j.349.2
Level $2175$
Weight $2$
Character 2175.349
Analytic conductor $17.367$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(349,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.2
Root \(-0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 2175.349
Dual form 2175.2.c.j.349.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034i q^{2} +1.00000i q^{3} +1.61803 q^{4} +0.618034 q^{6} +3.00000i q^{7} -2.23607i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-0.618034i q^{2} +1.00000i q^{3} +1.61803 q^{4} +0.618034 q^{6} +3.00000i q^{7} -2.23607i q^{8} -1.00000 q^{9} -5.47214 q^{11} +1.61803i q^{12} -6.23607i q^{13} +1.85410 q^{14} +1.85410 q^{16} -3.47214i q^{17} +0.618034i q^{18} -7.70820 q^{19} -3.00000 q^{21} +3.38197i q^{22} +2.23607 q^{24} -3.85410 q^{26} -1.00000i q^{27} +4.85410i q^{28} -1.00000 q^{29} -8.00000 q^{31} -5.61803i q^{32} -5.47214i q^{33} -2.14590 q^{34} -1.61803 q^{36} +8.00000i q^{37} +4.76393i q^{38} +6.23607 q^{39} -4.47214 q^{41} +1.85410i q^{42} +3.23607i q^{43} -8.85410 q^{44} -6.70820i q^{47} +1.85410i q^{48} -2.00000 q^{49} +3.47214 q^{51} -10.0902i q^{52} -6.76393i q^{53} -0.618034 q^{54} +6.70820 q^{56} -7.70820i q^{57} +0.618034i q^{58} -5.23607 q^{59} -5.70820 q^{61} +4.94427i q^{62} -3.00000i q^{63} +0.236068 q^{64} -3.38197 q^{66} +11.4721i q^{67} -5.61803i q^{68} +7.23607 q^{71} +2.23607i q^{72} -8.00000i q^{73} +4.94427 q^{74} -12.4721 q^{76} -16.4164i q^{77} -3.85410i q^{78} +6.18034 q^{79} +1.00000 q^{81} +2.76393i q^{82} -3.70820i q^{83} -4.85410 q^{84} +2.00000 q^{86} -1.00000i q^{87} +12.2361i q^{88} -11.1803 q^{89} +18.7082 q^{91} -8.00000i q^{93} -4.14590 q^{94} +5.61803 q^{96} -2.76393i q^{97} +1.23607i q^{98} +5.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{6} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} - 2 q^{6} - 4 q^{9} - 4 q^{11} - 6 q^{14} - 6 q^{16} - 4 q^{19} - 12 q^{21} - 2 q^{26} - 4 q^{29} - 32 q^{31} - 22 q^{34} - 2 q^{36} + 16 q^{39} - 22 q^{44} - 8 q^{49} - 4 q^{51} + 2 q^{54} - 12 q^{59} + 4 q^{61} - 8 q^{64} - 18 q^{66} + 20 q^{71} - 16 q^{74} - 32 q^{76} - 20 q^{79} + 4 q^{81} - 6 q^{84} + 8 q^{86} + 48 q^{91} - 30 q^{94} + 18 q^{96} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.618034i − 0.437016i −0.975835 0.218508i \(-0.929881\pi\)
0.975835 0.218508i \(-0.0701190\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 1.61803 0.809017
\(5\) 0 0
\(6\) 0.618034 0.252311
\(7\) 3.00000i 1.13389i 0.823754 + 0.566947i \(0.191875\pi\)
−0.823754 + 0.566947i \(0.808125\pi\)
\(8\) − 2.23607i − 0.790569i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −5.47214 −1.64991 −0.824956 0.565198i \(-0.808800\pi\)
−0.824956 + 0.565198i \(0.808800\pi\)
\(12\) 1.61803i 0.467086i
\(13\) − 6.23607i − 1.72957i −0.502139 0.864787i \(-0.667453\pi\)
0.502139 0.864787i \(-0.332547\pi\)
\(14\) 1.85410 0.495530
\(15\) 0 0
\(16\) 1.85410 0.463525
\(17\) − 3.47214i − 0.842117i −0.907034 0.421058i \(-0.861659\pi\)
0.907034 0.421058i \(-0.138341\pi\)
\(18\) 0.618034i 0.145672i
\(19\) −7.70820 −1.76838 −0.884192 0.467124i \(-0.845290\pi\)
−0.884192 + 0.467124i \(0.845290\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 3.38197i 0.721038i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 2.23607 0.456435
\(25\) 0 0
\(26\) −3.85410 −0.755852
\(27\) − 1.00000i − 0.192450i
\(28\) 4.85410i 0.917339i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) − 5.61803i − 0.993137i
\(33\) − 5.47214i − 0.952577i
\(34\) −2.14590 −0.368018
\(35\) 0 0
\(36\) −1.61803 −0.269672
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) 4.76393i 0.772812i
\(39\) 6.23607 0.998570
\(40\) 0 0
\(41\) −4.47214 −0.698430 −0.349215 0.937043i \(-0.613552\pi\)
−0.349215 + 0.937043i \(0.613552\pi\)
\(42\) 1.85410i 0.286094i
\(43\) 3.23607i 0.493496i 0.969080 + 0.246748i \(0.0793619\pi\)
−0.969080 + 0.246748i \(0.920638\pi\)
\(44\) −8.85410 −1.33481
\(45\) 0 0
\(46\) 0 0
\(47\) − 6.70820i − 0.978492i −0.872146 0.489246i \(-0.837272\pi\)
0.872146 0.489246i \(-0.162728\pi\)
\(48\) 1.85410i 0.267617i
\(49\) −2.00000 −0.285714
\(50\) 0 0
\(51\) 3.47214 0.486196
\(52\) − 10.0902i − 1.39925i
\(53\) − 6.76393i − 0.929098i −0.885548 0.464549i \(-0.846217\pi\)
0.885548 0.464549i \(-0.153783\pi\)
\(54\) −0.618034 −0.0841038
\(55\) 0 0
\(56\) 6.70820 0.896421
\(57\) − 7.70820i − 1.02098i
\(58\) 0.618034i 0.0811518i
\(59\) −5.23607 −0.681678 −0.340839 0.940122i \(-0.610711\pi\)
−0.340839 + 0.940122i \(0.610711\pi\)
\(60\) 0 0
\(61\) −5.70820 −0.730861 −0.365430 0.930839i \(-0.619078\pi\)
−0.365430 + 0.930839i \(0.619078\pi\)
\(62\) 4.94427i 0.627923i
\(63\) − 3.00000i − 0.377964i
\(64\) 0.236068 0.0295085
\(65\) 0 0
\(66\) −3.38197 −0.416291
\(67\) 11.4721i 1.40154i 0.713385 + 0.700772i \(0.247161\pi\)
−0.713385 + 0.700772i \(0.752839\pi\)
\(68\) − 5.61803i − 0.681287i
\(69\) 0 0
\(70\) 0 0
\(71\) 7.23607 0.858763 0.429382 0.903123i \(-0.358732\pi\)
0.429382 + 0.903123i \(0.358732\pi\)
\(72\) 2.23607i 0.263523i
\(73\) − 8.00000i − 0.936329i −0.883641 0.468165i \(-0.844915\pi\)
0.883641 0.468165i \(-0.155085\pi\)
\(74\) 4.94427 0.574760
\(75\) 0 0
\(76\) −12.4721 −1.43065
\(77\) − 16.4164i − 1.87082i
\(78\) − 3.85410i − 0.436391i
\(79\) 6.18034 0.695343 0.347671 0.937616i \(-0.386973\pi\)
0.347671 + 0.937616i \(0.386973\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 2.76393i 0.305225i
\(83\) − 3.70820i − 0.407028i −0.979072 0.203514i \(-0.934764\pi\)
0.979072 0.203514i \(-0.0652363\pi\)
\(84\) −4.85410 −0.529626
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) − 1.00000i − 0.107211i
\(88\) 12.2361i 1.30437i
\(89\) −11.1803 −1.18511 −0.592557 0.805529i \(-0.701881\pi\)
−0.592557 + 0.805529i \(0.701881\pi\)
\(90\) 0 0
\(91\) 18.7082 1.96115
\(92\) 0 0
\(93\) − 8.00000i − 0.829561i
\(94\) −4.14590 −0.427617
\(95\) 0 0
\(96\) 5.61803 0.573388
\(97\) − 2.76393i − 0.280635i −0.990107 0.140317i \(-0.955188\pi\)
0.990107 0.140317i \(-0.0448123\pi\)
\(98\) 1.23607i 0.124862i
\(99\) 5.47214 0.549970
\(100\) 0 0
\(101\) 4.23607 0.421505 0.210752 0.977540i \(-0.432409\pi\)
0.210752 + 0.977540i \(0.432409\pi\)
\(102\) − 2.14590i − 0.212476i
\(103\) 7.41641i 0.730760i 0.930858 + 0.365380i \(0.119061\pi\)
−0.930858 + 0.365380i \(0.880939\pi\)
\(104\) −13.9443 −1.36735
\(105\) 0 0
\(106\) −4.18034 −0.406031
\(107\) − 7.52786i − 0.727746i −0.931449 0.363873i \(-0.881454\pi\)
0.931449 0.363873i \(-0.118546\pi\)
\(108\) − 1.61803i − 0.155695i
\(109\) 16.4164 1.57241 0.786203 0.617968i \(-0.212044\pi\)
0.786203 + 0.617968i \(0.212044\pi\)
\(110\) 0 0
\(111\) −8.00000 −0.759326
\(112\) 5.56231i 0.525589i
\(113\) − 7.94427i − 0.747334i −0.927563 0.373667i \(-0.878100\pi\)
0.927563 0.373667i \(-0.121900\pi\)
\(114\) −4.76393 −0.446183
\(115\) 0 0
\(116\) −1.61803 −0.150231
\(117\) 6.23607i 0.576525i
\(118\) 3.23607i 0.297904i
\(119\) 10.4164 0.954871
\(120\) 0 0
\(121\) 18.9443 1.72221
\(122\) 3.52786i 0.319398i
\(123\) − 4.47214i − 0.403239i
\(124\) −12.9443 −1.16243
\(125\) 0 0
\(126\) −1.85410 −0.165177
\(127\) 6.00000i 0.532414i 0.963916 + 0.266207i \(0.0857705\pi\)
−0.963916 + 0.266207i \(0.914230\pi\)
\(128\) − 11.3820i − 1.00603i
\(129\) −3.23607 −0.284920
\(130\) 0 0
\(131\) 3.47214 0.303362 0.151681 0.988430i \(-0.451531\pi\)
0.151681 + 0.988430i \(0.451531\pi\)
\(132\) − 8.85410i − 0.770651i
\(133\) − 23.1246i − 2.00516i
\(134\) 7.09017 0.612497
\(135\) 0 0
\(136\) −7.76393 −0.665752
\(137\) 10.9443i 0.935032i 0.883985 + 0.467516i \(0.154851\pi\)
−0.883985 + 0.467516i \(0.845149\pi\)
\(138\) 0 0
\(139\) 0.708204 0.0600691 0.0300345 0.999549i \(-0.490438\pi\)
0.0300345 + 0.999549i \(0.490438\pi\)
\(140\) 0 0
\(141\) 6.70820 0.564933
\(142\) − 4.47214i − 0.375293i
\(143\) 34.1246i 2.85364i
\(144\) −1.85410 −0.154508
\(145\) 0 0
\(146\) −4.94427 −0.409191
\(147\) − 2.00000i − 0.164957i
\(148\) 12.9443i 1.06401i
\(149\) −20.1803 −1.65324 −0.826619 0.562762i \(-0.809739\pi\)
−0.826619 + 0.562762i \(0.809739\pi\)
\(150\) 0 0
\(151\) 2.47214 0.201180 0.100590 0.994928i \(-0.467927\pi\)
0.100590 + 0.994928i \(0.467927\pi\)
\(152\) 17.2361i 1.39803i
\(153\) 3.47214i 0.280706i
\(154\) −10.1459 −0.817580
\(155\) 0 0
\(156\) 10.0902 0.807860
\(157\) 11.7082i 0.934416i 0.884147 + 0.467208i \(0.154740\pi\)
−0.884147 + 0.467208i \(0.845260\pi\)
\(158\) − 3.81966i − 0.303876i
\(159\) 6.76393 0.536415
\(160\) 0 0
\(161\) 0 0
\(162\) − 0.618034i − 0.0485573i
\(163\) − 15.1246i − 1.18465i −0.805699 0.592326i \(-0.798210\pi\)
0.805699 0.592326i \(-0.201790\pi\)
\(164\) −7.23607 −0.565042
\(165\) 0 0
\(166\) −2.29180 −0.177878
\(167\) 17.8885i 1.38426i 0.721774 + 0.692129i \(0.243327\pi\)
−0.721774 + 0.692129i \(0.756673\pi\)
\(168\) 6.70820i 0.517549i
\(169\) −25.8885 −1.99143
\(170\) 0 0
\(171\) 7.70820 0.589461
\(172\) 5.23607i 0.399246i
\(173\) − 19.4164i − 1.47620i −0.674690 0.738101i \(-0.735723\pi\)
0.674690 0.738101i \(-0.264277\pi\)
\(174\) −0.618034 −0.0468530
\(175\) 0 0
\(176\) −10.1459 −0.764776
\(177\) − 5.23607i − 0.393567i
\(178\) 6.90983i 0.517914i
\(179\) −4.18034 −0.312453 −0.156227 0.987721i \(-0.549933\pi\)
−0.156227 + 0.987721i \(0.549933\pi\)
\(180\) 0 0
\(181\) 8.41641 0.625587 0.312793 0.949821i \(-0.398735\pi\)
0.312793 + 0.949821i \(0.398735\pi\)
\(182\) − 11.5623i − 0.857055i
\(183\) − 5.70820i − 0.421963i
\(184\) 0 0
\(185\) 0 0
\(186\) −4.94427 −0.362532
\(187\) 19.0000i 1.38942i
\(188\) − 10.8541i − 0.791617i
\(189\) 3.00000 0.218218
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0.236068i 0.0170367i
\(193\) − 6.00000i − 0.431889i −0.976406 0.215945i \(-0.930717\pi\)
0.976406 0.215945i \(-0.0692831\pi\)
\(194\) −1.70820 −0.122642
\(195\) 0 0
\(196\) −3.23607 −0.231148
\(197\) − 14.9443i − 1.06474i −0.846513 0.532368i \(-0.821302\pi\)
0.846513 0.532368i \(-0.178698\pi\)
\(198\) − 3.38197i − 0.240346i
\(199\) −20.7082 −1.46797 −0.733983 0.679168i \(-0.762341\pi\)
−0.733983 + 0.679168i \(0.762341\pi\)
\(200\) 0 0
\(201\) −11.4721 −0.809182
\(202\) − 2.61803i − 0.184204i
\(203\) − 3.00000i − 0.210559i
\(204\) 5.61803 0.393341
\(205\) 0 0
\(206\) 4.58359 0.319354
\(207\) 0 0
\(208\) − 11.5623i − 0.801702i
\(209\) 42.1803 2.91768
\(210\) 0 0
\(211\) −27.8885 −1.91993 −0.959963 0.280126i \(-0.909624\pi\)
−0.959963 + 0.280126i \(0.909624\pi\)
\(212\) − 10.9443i − 0.751656i
\(213\) 7.23607i 0.495807i
\(214\) −4.65248 −0.318037
\(215\) 0 0
\(216\) −2.23607 −0.152145
\(217\) − 24.0000i − 1.62923i
\(218\) − 10.1459i − 0.687167i
\(219\) 8.00000 0.540590
\(220\) 0 0
\(221\) −21.6525 −1.45650
\(222\) 4.94427i 0.331838i
\(223\) − 13.0000i − 0.870544i −0.900299 0.435272i \(-0.856652\pi\)
0.900299 0.435272i \(-0.143348\pi\)
\(224\) 16.8541 1.12611
\(225\) 0 0
\(226\) −4.90983 −0.326597
\(227\) 5.81966i 0.386264i 0.981173 + 0.193132i \(0.0618646\pi\)
−0.981173 + 0.193132i \(0.938135\pi\)
\(228\) − 12.4721i − 0.825987i
\(229\) −9.41641 −0.622254 −0.311127 0.950368i \(-0.600706\pi\)
−0.311127 + 0.950368i \(0.600706\pi\)
\(230\) 0 0
\(231\) 16.4164 1.08012
\(232\) 2.23607i 0.146805i
\(233\) 1.41641i 0.0927920i 0.998923 + 0.0463960i \(0.0147736\pi\)
−0.998923 + 0.0463960i \(0.985226\pi\)
\(234\) 3.85410 0.251951
\(235\) 0 0
\(236\) −8.47214 −0.551489
\(237\) 6.18034i 0.401456i
\(238\) − 6.43769i − 0.417294i
\(239\) −11.8885 −0.769006 −0.384503 0.923124i \(-0.625627\pi\)
−0.384503 + 0.923124i \(0.625627\pi\)
\(240\) 0 0
\(241\) 7.00000 0.450910 0.225455 0.974254i \(-0.427613\pi\)
0.225455 + 0.974254i \(0.427613\pi\)
\(242\) − 11.7082i − 0.752632i
\(243\) 1.00000i 0.0641500i
\(244\) −9.23607 −0.591279
\(245\) 0 0
\(246\) −2.76393 −0.176222
\(247\) 48.0689i 3.05855i
\(248\) 17.8885i 1.13592i
\(249\) 3.70820 0.234998
\(250\) 0 0
\(251\) −24.8885 −1.57095 −0.785475 0.618893i \(-0.787582\pi\)
−0.785475 + 0.618893i \(0.787582\pi\)
\(252\) − 4.85410i − 0.305780i
\(253\) 0 0
\(254\) 3.70820 0.232673
\(255\) 0 0
\(256\) −6.56231 −0.410144
\(257\) 9.70820i 0.605581i 0.953057 + 0.302791i \(0.0979183\pi\)
−0.953057 + 0.302791i \(0.902082\pi\)
\(258\) 2.00000i 0.124515i
\(259\) −24.0000 −1.49129
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) − 2.14590i − 0.132574i
\(263\) 24.0000i 1.47990i 0.672660 + 0.739952i \(0.265152\pi\)
−0.672660 + 0.739952i \(0.734848\pi\)
\(264\) −12.2361 −0.753078
\(265\) 0 0
\(266\) −14.2918 −0.876286
\(267\) − 11.1803i − 0.684226i
\(268\) 18.5623i 1.13387i
\(269\) 30.2361 1.84353 0.921763 0.387754i \(-0.126749\pi\)
0.921763 + 0.387754i \(0.126749\pi\)
\(270\) 0 0
\(271\) 14.3607 0.872349 0.436175 0.899862i \(-0.356333\pi\)
0.436175 + 0.899862i \(0.356333\pi\)
\(272\) − 6.43769i − 0.390343i
\(273\) 18.7082i 1.13227i
\(274\) 6.76393 0.408624
\(275\) 0 0
\(276\) 0 0
\(277\) − 8.70820i − 0.523225i −0.965173 0.261613i \(-0.915746\pi\)
0.965173 0.261613i \(-0.0842543\pi\)
\(278\) − 0.437694i − 0.0262511i
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) −23.1246 −1.37950 −0.689749 0.724048i \(-0.742279\pi\)
−0.689749 + 0.724048i \(0.742279\pi\)
\(282\) − 4.14590i − 0.246885i
\(283\) 18.4721i 1.09805i 0.835804 + 0.549027i \(0.185002\pi\)
−0.835804 + 0.549027i \(0.814998\pi\)
\(284\) 11.7082 0.694754
\(285\) 0 0
\(286\) 21.0902 1.24709
\(287\) − 13.4164i − 0.791946i
\(288\) 5.61803i 0.331046i
\(289\) 4.94427 0.290840
\(290\) 0 0
\(291\) 2.76393 0.162025
\(292\) − 12.9443i − 0.757506i
\(293\) − 17.9443i − 1.04832i −0.851621 0.524158i \(-0.824380\pi\)
0.851621 0.524158i \(-0.175620\pi\)
\(294\) −1.23607 −0.0720889
\(295\) 0 0
\(296\) 17.8885 1.03975
\(297\) 5.47214i 0.317526i
\(298\) 12.4721i 0.722491i
\(299\) 0 0
\(300\) 0 0
\(301\) −9.70820 −0.559572
\(302\) − 1.52786i − 0.0879187i
\(303\) 4.23607i 0.243356i
\(304\) −14.2918 −0.819691
\(305\) 0 0
\(306\) 2.14590 0.122673
\(307\) − 24.9443i − 1.42364i −0.702360 0.711822i \(-0.747870\pi\)
0.702360 0.711822i \(-0.252130\pi\)
\(308\) − 26.5623i − 1.51353i
\(309\) −7.41641 −0.421905
\(310\) 0 0
\(311\) 23.4721 1.33098 0.665491 0.746406i \(-0.268222\pi\)
0.665491 + 0.746406i \(0.268222\pi\)
\(312\) − 13.9443i − 0.789439i
\(313\) 1.18034i 0.0667168i 0.999443 + 0.0333584i \(0.0106203\pi\)
−0.999443 + 0.0333584i \(0.989380\pi\)
\(314\) 7.23607 0.408355
\(315\) 0 0
\(316\) 10.0000 0.562544
\(317\) 28.4164i 1.59602i 0.602641 + 0.798012i \(0.294115\pi\)
−0.602641 + 0.798012i \(0.705885\pi\)
\(318\) − 4.18034i − 0.234422i
\(319\) 5.47214 0.306381
\(320\) 0 0
\(321\) 7.52786 0.420164
\(322\) 0 0
\(323\) 26.7639i 1.48919i
\(324\) 1.61803 0.0898908
\(325\) 0 0
\(326\) −9.34752 −0.517711
\(327\) 16.4164i 0.907829i
\(328\) 10.0000i 0.552158i
\(329\) 20.1246 1.10951
\(330\) 0 0
\(331\) −15.8885 −0.873313 −0.436657 0.899628i \(-0.643838\pi\)
−0.436657 + 0.899628i \(0.643838\pi\)
\(332\) − 6.00000i − 0.329293i
\(333\) − 8.00000i − 0.438397i
\(334\) 11.0557 0.604943
\(335\) 0 0
\(336\) −5.56231 −0.303449
\(337\) 20.4721i 1.11519i 0.830114 + 0.557594i \(0.188275\pi\)
−0.830114 + 0.557594i \(0.811725\pi\)
\(338\) 16.0000i 0.870285i
\(339\) 7.94427 0.431474
\(340\) 0 0
\(341\) 43.7771 2.37066
\(342\) − 4.76393i − 0.257604i
\(343\) 15.0000i 0.809924i
\(344\) 7.23607 0.390143
\(345\) 0 0
\(346\) −12.0000 −0.645124
\(347\) − 17.5279i − 0.940945i −0.882415 0.470473i \(-0.844083\pi\)
0.882415 0.470473i \(-0.155917\pi\)
\(348\) − 1.61803i − 0.0867357i
\(349\) 18.9443 1.01406 0.507032 0.861927i \(-0.330743\pi\)
0.507032 + 0.861927i \(0.330743\pi\)
\(350\) 0 0
\(351\) −6.23607 −0.332857
\(352\) 30.7426i 1.63859i
\(353\) 3.52786i 0.187769i 0.995583 + 0.0938846i \(0.0299285\pi\)
−0.995583 + 0.0938846i \(0.970072\pi\)
\(354\) −3.23607 −0.171995
\(355\) 0 0
\(356\) −18.0902 −0.958777
\(357\) 10.4164i 0.551295i
\(358\) 2.58359i 0.136547i
\(359\) 4.58359 0.241913 0.120956 0.992658i \(-0.461404\pi\)
0.120956 + 0.992658i \(0.461404\pi\)
\(360\) 0 0
\(361\) 40.4164 2.12718
\(362\) − 5.20163i − 0.273391i
\(363\) 18.9443i 0.994316i
\(364\) 30.2705 1.58661
\(365\) 0 0
\(366\) −3.52786 −0.184404
\(367\) − 15.4164i − 0.804730i −0.915479 0.402365i \(-0.868188\pi\)
0.915479 0.402365i \(-0.131812\pi\)
\(368\) 0 0
\(369\) 4.47214 0.232810
\(370\) 0 0
\(371\) 20.2918 1.05350
\(372\) − 12.9443i − 0.671129i
\(373\) 15.8885i 0.822678i 0.911483 + 0.411339i \(0.134939\pi\)
−0.911483 + 0.411339i \(0.865061\pi\)
\(374\) 11.7426 0.607198
\(375\) 0 0
\(376\) −15.0000 −0.773566
\(377\) 6.23607i 0.321174i
\(378\) − 1.85410i − 0.0953647i
\(379\) −6.94427 −0.356703 −0.178352 0.983967i \(-0.557076\pi\)
−0.178352 + 0.983967i \(0.557076\pi\)
\(380\) 0 0
\(381\) −6.00000 −0.307389
\(382\) − 7.41641i − 0.379456i
\(383\) − 20.0689i − 1.02547i −0.858546 0.512736i \(-0.828632\pi\)
0.858546 0.512736i \(-0.171368\pi\)
\(384\) 11.3820 0.580834
\(385\) 0 0
\(386\) −3.70820 −0.188743
\(387\) − 3.23607i − 0.164499i
\(388\) − 4.47214i − 0.227038i
\(389\) −22.2361 −1.12741 −0.563707 0.825975i \(-0.690625\pi\)
−0.563707 + 0.825975i \(0.690625\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 4.47214i 0.225877i
\(393\) 3.47214i 0.175146i
\(394\) −9.23607 −0.465306
\(395\) 0 0
\(396\) 8.85410 0.444935
\(397\) 6.58359i 0.330421i 0.986258 + 0.165211i \(0.0528304\pi\)
−0.986258 + 0.165211i \(0.947170\pi\)
\(398\) 12.7984i 0.641525i
\(399\) 23.1246 1.15768
\(400\) 0 0
\(401\) −36.6525 −1.83034 −0.915169 0.403071i \(-0.867943\pi\)
−0.915169 + 0.403071i \(0.867943\pi\)
\(402\) 7.09017i 0.353626i
\(403\) 49.8885i 2.48513i
\(404\) 6.85410 0.341004
\(405\) 0 0
\(406\) −1.85410 −0.0920175
\(407\) − 43.7771i − 2.16995i
\(408\) − 7.76393i − 0.384372i
\(409\) −8.65248 −0.427837 −0.213919 0.976851i \(-0.568623\pi\)
−0.213919 + 0.976851i \(0.568623\pi\)
\(410\) 0 0
\(411\) −10.9443 −0.539841
\(412\) 12.0000i 0.591198i
\(413\) − 15.7082i − 0.772950i
\(414\) 0 0
\(415\) 0 0
\(416\) −35.0344 −1.71770
\(417\) 0.708204i 0.0346809i
\(418\) − 26.0689i − 1.27507i
\(419\) −34.3607 −1.67863 −0.839315 0.543646i \(-0.817043\pi\)
−0.839315 + 0.543646i \(0.817043\pi\)
\(420\) 0 0
\(421\) −1.81966 −0.0886848 −0.0443424 0.999016i \(-0.514119\pi\)
−0.0443424 + 0.999016i \(0.514119\pi\)
\(422\) 17.2361i 0.839039i
\(423\) 6.70820i 0.326164i
\(424\) −15.1246 −0.734516
\(425\) 0 0
\(426\) 4.47214 0.216676
\(427\) − 17.1246i − 0.828718i
\(428\) − 12.1803i − 0.588759i
\(429\) −34.1246 −1.64755
\(430\) 0 0
\(431\) 34.4721 1.66046 0.830232 0.557418i \(-0.188208\pi\)
0.830232 + 0.557418i \(0.188208\pi\)
\(432\) − 1.85410i − 0.0892055i
\(433\) − 4.65248i − 0.223584i −0.993732 0.111792i \(-0.964341\pi\)
0.993732 0.111792i \(-0.0356590\pi\)
\(434\) −14.8328 −0.711998
\(435\) 0 0
\(436\) 26.5623 1.27210
\(437\) 0 0
\(438\) − 4.94427i − 0.236246i
\(439\) 10.1246 0.483221 0.241611 0.970373i \(-0.422324\pi\)
0.241611 + 0.970373i \(0.422324\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 13.3820i 0.636515i
\(443\) 23.7639i 1.12906i 0.825413 + 0.564529i \(0.190942\pi\)
−0.825413 + 0.564529i \(0.809058\pi\)
\(444\) −12.9443 −0.614308
\(445\) 0 0
\(446\) −8.03444 −0.380442
\(447\) − 20.1803i − 0.954497i
\(448\) 0.708204i 0.0334595i
\(449\) −1.76393 −0.0832451 −0.0416225 0.999133i \(-0.513253\pi\)
−0.0416225 + 0.999133i \(0.513253\pi\)
\(450\) 0 0
\(451\) 24.4721 1.15235
\(452\) − 12.8541i − 0.604606i
\(453\) 2.47214i 0.116151i
\(454\) 3.59675 0.168804
\(455\) 0 0
\(456\) −17.2361 −0.807153
\(457\) − 6.12461i − 0.286497i −0.989687 0.143249i \(-0.954245\pi\)
0.989687 0.143249i \(-0.0457549\pi\)
\(458\) 5.81966i 0.271935i
\(459\) −3.47214 −0.162065
\(460\) 0 0
\(461\) 2.36068 0.109948 0.0549739 0.998488i \(-0.482492\pi\)
0.0549739 + 0.998488i \(0.482492\pi\)
\(462\) − 10.1459i − 0.472030i
\(463\) − 2.52786i − 0.117480i −0.998273 0.0587399i \(-0.981292\pi\)
0.998273 0.0587399i \(-0.0187083\pi\)
\(464\) −1.85410 −0.0860745
\(465\) 0 0
\(466\) 0.875388 0.0405516
\(467\) 12.9443i 0.598989i 0.954098 + 0.299495i \(0.0968181\pi\)
−0.954098 + 0.299495i \(0.903182\pi\)
\(468\) 10.0902i 0.466418i
\(469\) −34.4164 −1.58920
\(470\) 0 0
\(471\) −11.7082 −0.539486
\(472\) 11.7082i 0.538914i
\(473\) − 17.7082i − 0.814224i
\(474\) 3.81966 0.175443
\(475\) 0 0
\(476\) 16.8541 0.772506
\(477\) 6.76393i 0.309699i
\(478\) 7.34752i 0.336068i
\(479\) 6.47214 0.295719 0.147860 0.989008i \(-0.452762\pi\)
0.147860 + 0.989008i \(0.452762\pi\)
\(480\) 0 0
\(481\) 49.8885 2.27472
\(482\) − 4.32624i − 0.197055i
\(483\) 0 0
\(484\) 30.6525 1.39329
\(485\) 0 0
\(486\) 0.618034 0.0280346
\(487\) 12.0000i 0.543772i 0.962329 + 0.271886i \(0.0876473\pi\)
−0.962329 + 0.271886i \(0.912353\pi\)
\(488\) 12.7639i 0.577796i
\(489\) 15.1246 0.683959
\(490\) 0 0
\(491\) 25.8885 1.16833 0.584167 0.811634i \(-0.301421\pi\)
0.584167 + 0.811634i \(0.301421\pi\)
\(492\) − 7.23607i − 0.326227i
\(493\) 3.47214i 0.156377i
\(494\) 29.7082 1.33664
\(495\) 0 0
\(496\) −14.8328 −0.666013
\(497\) 21.7082i 0.973746i
\(498\) − 2.29180i − 0.102698i
\(499\) 23.7639 1.06382 0.531910 0.846801i \(-0.321475\pi\)
0.531910 + 0.846801i \(0.321475\pi\)
\(500\) 0 0
\(501\) −17.8885 −0.799201
\(502\) 15.3820i 0.686531i
\(503\) − 30.5967i − 1.36424i −0.731240 0.682121i \(-0.761058\pi\)
0.731240 0.682121i \(-0.238942\pi\)
\(504\) −6.70820 −0.298807
\(505\) 0 0
\(506\) 0 0
\(507\) − 25.8885i − 1.14975i
\(508\) 9.70820i 0.430732i
\(509\) −6.18034 −0.273939 −0.136969 0.990575i \(-0.543736\pi\)
−0.136969 + 0.990575i \(0.543736\pi\)
\(510\) 0 0
\(511\) 24.0000 1.06170
\(512\) − 18.7082i − 0.826794i
\(513\) 7.70820i 0.340326i
\(514\) 6.00000 0.264649
\(515\) 0 0
\(516\) −5.23607 −0.230505
\(517\) 36.7082i 1.61442i
\(518\) 14.8328i 0.651717i
\(519\) 19.4164 0.852286
\(520\) 0 0
\(521\) −20.7639 −0.909684 −0.454842 0.890572i \(-0.650304\pi\)
−0.454842 + 0.890572i \(0.650304\pi\)
\(522\) − 0.618034i − 0.0270506i
\(523\) − 29.8328i − 1.30450i −0.758005 0.652249i \(-0.773826\pi\)
0.758005 0.652249i \(-0.226174\pi\)
\(524\) 5.61803 0.245425
\(525\) 0 0
\(526\) 14.8328 0.646741
\(527\) 27.7771i 1.20999i
\(528\) − 10.1459i − 0.441544i
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 5.23607 0.227226
\(532\) − 37.4164i − 1.62221i
\(533\) 27.8885i 1.20799i
\(534\) −6.90983 −0.299018
\(535\) 0 0
\(536\) 25.6525 1.10802
\(537\) − 4.18034i − 0.180395i
\(538\) − 18.6869i − 0.805650i
\(539\) 10.9443 0.471403
\(540\) 0 0
\(541\) 38.3607 1.64925 0.824627 0.565677i \(-0.191385\pi\)
0.824627 + 0.565677i \(0.191385\pi\)
\(542\) − 8.87539i − 0.381231i
\(543\) 8.41641i 0.361183i
\(544\) −19.5066 −0.836338
\(545\) 0 0
\(546\) 11.5623 0.494821
\(547\) − 27.4721i − 1.17462i −0.809361 0.587312i \(-0.800186\pi\)
0.809361 0.587312i \(-0.199814\pi\)
\(548\) 17.7082i 0.756457i
\(549\) 5.70820 0.243620
\(550\) 0 0
\(551\) 7.70820 0.328381
\(552\) 0 0
\(553\) 18.5410i 0.788444i
\(554\) −5.38197 −0.228658
\(555\) 0 0
\(556\) 1.14590 0.0485969
\(557\) − 2.76393i − 0.117112i −0.998284 0.0585558i \(-0.981350\pi\)
0.998284 0.0585558i \(-0.0186496\pi\)
\(558\) − 4.94427i − 0.209308i
\(559\) 20.1803 0.853537
\(560\) 0 0
\(561\) −19.0000 −0.802181
\(562\) 14.2918i 0.602863i
\(563\) 44.1246i 1.85963i 0.368026 + 0.929815i \(0.380034\pi\)
−0.368026 + 0.929815i \(0.619966\pi\)
\(564\) 10.8541 0.457040
\(565\) 0 0
\(566\) 11.4164 0.479867
\(567\) 3.00000i 0.125988i
\(568\) − 16.1803i − 0.678912i
\(569\) 5.18034 0.217171 0.108586 0.994087i \(-0.465368\pi\)
0.108586 + 0.994087i \(0.465368\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 55.2148i 2.30865i
\(573\) 12.0000i 0.501307i
\(574\) −8.29180 −0.346093
\(575\) 0 0
\(576\) −0.236068 −0.00983617
\(577\) 29.3050i 1.21998i 0.792409 + 0.609991i \(0.208827\pi\)
−0.792409 + 0.609991i \(0.791173\pi\)
\(578\) − 3.05573i − 0.127102i
\(579\) 6.00000 0.249351
\(580\) 0 0
\(581\) 11.1246 0.461527
\(582\) − 1.70820i − 0.0708073i
\(583\) 37.0132i 1.53293i
\(584\) −17.8885 −0.740233
\(585\) 0 0
\(586\) −11.0902 −0.458131
\(587\) 1.81966i 0.0751054i 0.999295 + 0.0375527i \(0.0119562\pi\)
−0.999295 + 0.0375527i \(0.988044\pi\)
\(588\) − 3.23607i − 0.133453i
\(589\) 61.6656 2.54089
\(590\) 0 0
\(591\) 14.9443 0.614725
\(592\) 14.8328i 0.609625i
\(593\) − 24.6525i − 1.01236i −0.862429 0.506178i \(-0.831058\pi\)
0.862429 0.506178i \(-0.168942\pi\)
\(594\) 3.38197 0.138764
\(595\) 0 0
\(596\) −32.6525 −1.33750
\(597\) − 20.7082i − 0.847530i
\(598\) 0 0
\(599\) 8.88854 0.363176 0.181588 0.983375i \(-0.441876\pi\)
0.181588 + 0.983375i \(0.441876\pi\)
\(600\) 0 0
\(601\) 8.11146 0.330873 0.165437 0.986220i \(-0.447097\pi\)
0.165437 + 0.986220i \(0.447097\pi\)
\(602\) 6.00000i 0.244542i
\(603\) − 11.4721i − 0.467181i
\(604\) 4.00000 0.162758
\(605\) 0 0
\(606\) 2.61803 0.106350
\(607\) − 40.6525i − 1.65003i −0.565109 0.825017i \(-0.691166\pi\)
0.565109 0.825017i \(-0.308834\pi\)
\(608\) 43.3050i 1.75625i
\(609\) 3.00000 0.121566
\(610\) 0 0
\(611\) −41.8328 −1.69237
\(612\) 5.61803i 0.227096i
\(613\) 7.29180i 0.294513i 0.989098 + 0.147256i \(0.0470443\pi\)
−0.989098 + 0.147256i \(0.952956\pi\)
\(614\) −15.4164 −0.622156
\(615\) 0 0
\(616\) −36.7082 −1.47902
\(617\) − 43.3050i − 1.74339i −0.490047 0.871696i \(-0.663020\pi\)
0.490047 0.871696i \(-0.336980\pi\)
\(618\) 4.58359i 0.184379i
\(619\) 3.52786 0.141797 0.0708984 0.997484i \(-0.477413\pi\)
0.0708984 + 0.997484i \(0.477413\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 14.5066i − 0.581661i
\(623\) − 33.5410i − 1.34379i
\(624\) 11.5623 0.462863
\(625\) 0 0
\(626\) 0.729490 0.0291563
\(627\) 42.1803i 1.68452i
\(628\) 18.9443i 0.755959i
\(629\) 27.7771 1.10755
\(630\) 0 0
\(631\) −38.4853 −1.53208 −0.766038 0.642796i \(-0.777774\pi\)
−0.766038 + 0.642796i \(0.777774\pi\)
\(632\) − 13.8197i − 0.549717i
\(633\) − 27.8885i − 1.10847i
\(634\) 17.5623 0.697488
\(635\) 0 0
\(636\) 10.9443 0.433969
\(637\) 12.4721i 0.494164i
\(638\) − 3.38197i − 0.133893i
\(639\) −7.23607 −0.286254
\(640\) 0 0
\(641\) 46.2361 1.82621 0.913107 0.407719i \(-0.133676\pi\)
0.913107 + 0.407719i \(0.133676\pi\)
\(642\) − 4.65248i − 0.183619i
\(643\) − 35.8328i − 1.41311i −0.707659 0.706554i \(-0.750249\pi\)
0.707659 0.706554i \(-0.249751\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 16.5410 0.650798
\(647\) − 11.2361i − 0.441735i −0.975304 0.220868i \(-0.929111\pi\)
0.975304 0.220868i \(-0.0708889\pi\)
\(648\) − 2.23607i − 0.0878410i
\(649\) 28.6525 1.12471
\(650\) 0 0
\(651\) 24.0000 0.940634
\(652\) − 24.4721i − 0.958403i
\(653\) 8.88854i 0.347836i 0.984760 + 0.173918i \(0.0556427\pi\)
−0.984760 + 0.173918i \(0.944357\pi\)
\(654\) 10.1459 0.396736
\(655\) 0 0
\(656\) −8.29180 −0.323740
\(657\) 8.00000i 0.312110i
\(658\) − 12.4377i − 0.484872i
\(659\) 21.0000 0.818044 0.409022 0.912525i \(-0.365870\pi\)
0.409022 + 0.912525i \(0.365870\pi\)
\(660\) 0 0
\(661\) −37.8328 −1.47153 −0.735763 0.677239i \(-0.763176\pi\)
−0.735763 + 0.677239i \(0.763176\pi\)
\(662\) 9.81966i 0.381652i
\(663\) − 21.6525i − 0.840912i
\(664\) −8.29180 −0.321784
\(665\) 0 0
\(666\) −4.94427 −0.191587
\(667\) 0 0
\(668\) 28.9443i 1.11989i
\(669\) 13.0000 0.502609
\(670\) 0 0
\(671\) 31.2361 1.20586
\(672\) 16.8541i 0.650161i
\(673\) − 33.2918i − 1.28330i −0.766996 0.641652i \(-0.778249\pi\)
0.766996 0.641652i \(-0.221751\pi\)
\(674\) 12.6525 0.487355
\(675\) 0 0
\(676\) −41.8885 −1.61110
\(677\) 20.8885i 0.802812i 0.915900 + 0.401406i \(0.131478\pi\)
−0.915900 + 0.401406i \(0.868522\pi\)
\(678\) − 4.90983i − 0.188561i
\(679\) 8.29180 0.318210
\(680\) 0 0
\(681\) −5.81966 −0.223010
\(682\) − 27.0557i − 1.03602i
\(683\) 7.41641i 0.283781i 0.989882 + 0.141890i \(0.0453181\pi\)
−0.989882 + 0.141890i \(0.954682\pi\)
\(684\) 12.4721 0.476884
\(685\) 0 0
\(686\) 9.27051 0.353950
\(687\) − 9.41641i − 0.359258i
\(688\) 6.00000i 0.228748i
\(689\) −42.1803 −1.60694
\(690\) 0 0
\(691\) −34.7082 −1.32036 −0.660181 0.751106i \(-0.729520\pi\)
−0.660181 + 0.751106i \(0.729520\pi\)
\(692\) − 31.4164i − 1.19427i
\(693\) 16.4164i 0.623608i
\(694\) −10.8328 −0.411208
\(695\) 0 0
\(696\) −2.23607 −0.0847579
\(697\) 15.5279i 0.588160i
\(698\) − 11.7082i − 0.443162i
\(699\) −1.41641 −0.0535735
\(700\) 0 0
\(701\) −5.12461 −0.193554 −0.0967770 0.995306i \(-0.530853\pi\)
−0.0967770 + 0.995306i \(0.530853\pi\)
\(702\) 3.85410i 0.145464i
\(703\) − 61.6656i − 2.32576i
\(704\) −1.29180 −0.0486864
\(705\) 0 0
\(706\) 2.18034 0.0820582
\(707\) 12.7082i 0.477941i
\(708\) − 8.47214i − 0.318402i
\(709\) −19.8885 −0.746930 −0.373465 0.927644i \(-0.621830\pi\)
−0.373465 + 0.927644i \(0.621830\pi\)
\(710\) 0 0
\(711\) −6.18034 −0.231781
\(712\) 25.0000i 0.936915i
\(713\) 0 0
\(714\) 6.43769 0.240925
\(715\) 0 0
\(716\) −6.76393 −0.252780
\(717\) − 11.8885i − 0.443986i
\(718\) − 2.83282i − 0.105720i
\(719\) 11.2361 0.419035 0.209517 0.977805i \(-0.432811\pi\)
0.209517 + 0.977805i \(0.432811\pi\)
\(720\) 0 0
\(721\) −22.2492 −0.828604
\(722\) − 24.9787i − 0.929611i
\(723\) 7.00000i 0.260333i
\(724\) 13.6180 0.506110
\(725\) 0 0
\(726\) 11.7082 0.434532
\(727\) − 2.11146i − 0.0783096i −0.999233 0.0391548i \(-0.987533\pi\)
0.999233 0.0391548i \(-0.0124665\pi\)
\(728\) − 41.8328i − 1.55043i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 11.2361 0.415581
\(732\) − 9.23607i − 0.341375i
\(733\) − 14.2918i − 0.527880i −0.964539 0.263940i \(-0.914978\pi\)
0.964539 0.263940i \(-0.0850220\pi\)
\(734\) −9.52786 −0.351680
\(735\) 0 0
\(736\) 0 0
\(737\) − 62.7771i − 2.31242i
\(738\) − 2.76393i − 0.101742i
\(739\) −41.4853 −1.52606 −0.763031 0.646362i \(-0.776289\pi\)
−0.763031 + 0.646362i \(0.776289\pi\)
\(740\) 0 0
\(741\) −48.0689 −1.76585
\(742\) − 12.5410i − 0.460395i
\(743\) − 10.8197i − 0.396935i −0.980107 0.198467i \(-0.936404\pi\)
0.980107 0.198467i \(-0.0635964\pi\)
\(744\) −17.8885 −0.655826
\(745\) 0 0
\(746\) 9.81966 0.359523
\(747\) 3.70820i 0.135676i
\(748\) 30.7426i 1.12406i
\(749\) 22.5836 0.825186
\(750\) 0 0
\(751\) 43.4164 1.58429 0.792144 0.610335i \(-0.208965\pi\)
0.792144 + 0.610335i \(0.208965\pi\)
\(752\) − 12.4377i − 0.453556i
\(753\) − 24.8885i − 0.906989i
\(754\) 3.85410 0.140358
\(755\) 0 0
\(756\) 4.85410 0.176542
\(757\) 34.8328i 1.26602i 0.774144 + 0.633010i \(0.218181\pi\)
−0.774144 + 0.633010i \(0.781819\pi\)
\(758\) 4.29180i 0.155885i
\(759\) 0 0
\(760\) 0 0
\(761\) 33.0132 1.19673 0.598363 0.801225i \(-0.295818\pi\)
0.598363 + 0.801225i \(0.295818\pi\)
\(762\) 3.70820i 0.134334i
\(763\) 49.2492i 1.78294i
\(764\) 19.4164 0.702461
\(765\) 0 0
\(766\) −12.4033 −0.448148
\(767\) 32.6525i 1.17901i
\(768\) − 6.56231i − 0.236797i
\(769\) −34.6525 −1.24960 −0.624800 0.780785i \(-0.714820\pi\)
−0.624800 + 0.780785i \(0.714820\pi\)
\(770\) 0 0
\(771\) −9.70820 −0.349632
\(772\) − 9.70820i − 0.349406i
\(773\) − 52.2492i − 1.87927i −0.342173 0.939637i \(-0.611163\pi\)
0.342173 0.939637i \(-0.388837\pi\)
\(774\) −2.00000 −0.0718885
\(775\) 0 0
\(776\) −6.18034 −0.221861
\(777\) − 24.0000i − 0.860995i
\(778\) 13.7426i 0.492698i
\(779\) 34.4721 1.23509
\(780\) 0 0
\(781\) −39.5967 −1.41688
\(782\) 0 0
\(783\) 1.00000i 0.0357371i
\(784\) −3.70820 −0.132436
\(785\) 0 0
\(786\) 2.14590 0.0765416
\(787\) − 1.88854i − 0.0673193i −0.999433 0.0336597i \(-0.989284\pi\)
0.999433 0.0336597i \(-0.0107162\pi\)
\(788\) − 24.1803i − 0.861389i
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) 23.8328 0.847397
\(792\) − 12.2361i − 0.434790i
\(793\) 35.5967i 1.26408i
\(794\) 4.06888 0.144399
\(795\) 0 0
\(796\) −33.5066 −1.18761
\(797\) − 6.94427i − 0.245979i −0.992408 0.122989i \(-0.960752\pi\)
0.992408 0.122989i \(-0.0392481\pi\)
\(798\) − 14.2918i − 0.505924i
\(799\) −23.2918 −0.824005
\(800\) 0 0
\(801\) 11.1803 0.395038
\(802\) 22.6525i 0.799887i
\(803\) 43.7771i 1.54486i
\(804\) −18.5623 −0.654642
\(805\) 0 0
\(806\) 30.8328 1.08604
\(807\) 30.2361i 1.06436i
\(808\) − 9.47214i − 0.333229i
\(809\) −44.2361 −1.55526 −0.777629 0.628724i \(-0.783578\pi\)
−0.777629 + 0.628724i \(0.783578\pi\)
\(810\) 0 0
\(811\) −22.7082 −0.797393 −0.398696 0.917083i \(-0.630537\pi\)
−0.398696 + 0.917083i \(0.630537\pi\)
\(812\) − 4.85410i − 0.170346i
\(813\) 14.3607i 0.503651i
\(814\) −27.0557 −0.948303
\(815\) 0 0
\(816\) 6.43769 0.225364
\(817\) − 24.9443i − 0.872690i
\(818\) 5.34752i 0.186972i
\(819\) −18.7082 −0.653718
\(820\) 0 0
\(821\) −10.5836 −0.369370 −0.184685 0.982798i \(-0.559126\pi\)
−0.184685 + 0.982798i \(0.559126\pi\)
\(822\) 6.76393i 0.235919i
\(823\) − 28.7639i − 1.00265i −0.865260 0.501324i \(-0.832847\pi\)
0.865260 0.501324i \(-0.167153\pi\)
\(824\) 16.5836 0.577717
\(825\) 0 0
\(826\) −9.70820 −0.337792
\(827\) 7.41641i 0.257894i 0.991652 + 0.128947i \(0.0411597\pi\)
−0.991652 + 0.128947i \(0.958840\pi\)
\(828\) 0 0
\(829\) 20.0000 0.694629 0.347314 0.937749i \(-0.387094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(830\) 0 0
\(831\) 8.70820 0.302084
\(832\) − 1.47214i − 0.0510371i
\(833\) 6.94427i 0.240605i
\(834\) 0.437694 0.0151561
\(835\) 0 0
\(836\) 68.2492 2.36045
\(837\) 8.00000i 0.276520i
\(838\) 21.2361i 0.733588i
\(839\) −14.8885 −0.514010 −0.257005 0.966410i \(-0.582736\pi\)
−0.257005 + 0.966410i \(0.582736\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 1.12461i 0.0387567i
\(843\) − 23.1246i − 0.796454i
\(844\) −45.1246 −1.55325
\(845\) 0 0
\(846\) 4.14590 0.142539
\(847\) 56.8328i 1.95280i
\(848\) − 12.5410i − 0.430660i
\(849\) −18.4721 −0.633962
\(850\) 0 0
\(851\) 0 0
\(852\) 11.7082i 0.401116i
\(853\) − 28.7639i − 0.984858i −0.870353 0.492429i \(-0.836109\pi\)
0.870353 0.492429i \(-0.163891\pi\)
\(854\) −10.5836 −0.362163
\(855\) 0 0
\(856\) −16.8328 −0.575334
\(857\) 23.8885i 0.816017i 0.912978 + 0.408009i \(0.133777\pi\)
−0.912978 + 0.408009i \(0.866223\pi\)
\(858\) 21.0902i 0.720007i
\(859\) 15.7082 0.535957 0.267979 0.963425i \(-0.413644\pi\)
0.267979 + 0.963425i \(0.413644\pi\)
\(860\) 0 0
\(861\) 13.4164 0.457230
\(862\) − 21.3050i − 0.725650i
\(863\) 15.5967i 0.530919i 0.964122 + 0.265460i \(0.0855237\pi\)
−0.964122 + 0.265460i \(0.914476\pi\)
\(864\) −5.61803 −0.191129
\(865\) 0 0
\(866\) −2.87539 −0.0977097
\(867\) 4.94427i 0.167916i
\(868\) − 38.8328i − 1.31807i
\(869\) −33.8197 −1.14725
\(870\) 0 0
\(871\) 71.5410 2.42407
\(872\) − 36.7082i − 1.24310i
\(873\) 2.76393i 0.0935449i
\(874\) 0 0
\(875\) 0 0
\(876\) 12.9443 0.437346
\(877\) − 48.8328i − 1.64897i −0.565886 0.824484i \(-0.691466\pi\)
0.565886 0.824484i \(-0.308534\pi\)
\(878\) − 6.25735i − 0.211175i
\(879\) 17.9443 0.605245
\(880\) 0 0
\(881\) 12.7082 0.428150 0.214075 0.976817i \(-0.431326\pi\)
0.214075 + 0.976817i \(0.431326\pi\)
\(882\) − 1.23607i − 0.0416206i
\(883\) − 32.0000i − 1.07689i −0.842662 0.538443i \(-0.819013\pi\)
0.842662 0.538443i \(-0.180987\pi\)
\(884\) −35.0344 −1.17834
\(885\) 0 0
\(886\) 14.6869 0.493417
\(887\) 44.5967i 1.49741i 0.662902 + 0.748706i \(0.269325\pi\)
−0.662902 + 0.748706i \(0.730675\pi\)
\(888\) 17.8885i 0.600300i
\(889\) −18.0000 −0.603701
\(890\) 0 0
\(891\) −5.47214 −0.183323
\(892\) − 21.0344i − 0.704285i
\(893\) 51.7082i 1.73035i
\(894\) −12.4721 −0.417131
\(895\) 0 0
\(896\) 34.1459 1.14073
\(897\) 0 0
\(898\) 1.09017i 0.0363794i
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) −23.4853 −0.782409
\(902\) − 15.1246i − 0.503594i
\(903\) − 9.70820i − 0.323069i
\(904\) −17.7639 −0.590820
\(905\) 0 0
\(906\) 1.52786 0.0507599
\(907\) − 26.7639i − 0.888682i −0.895858 0.444341i \(-0.853438\pi\)
0.895858 0.444341i \(-0.146562\pi\)
\(908\) 9.41641i 0.312494i
\(909\) −4.23607 −0.140502
\(910\) 0 0
\(911\) −18.0557 −0.598213 −0.299106 0.954220i \(-0.596689\pi\)
−0.299106 + 0.954220i \(0.596689\pi\)
\(912\) − 14.2918i − 0.473249i
\(913\) 20.2918i 0.671560i
\(914\) −3.78522 −0.125204
\(915\) 0 0
\(916\) −15.2361 −0.503414
\(917\) 10.4164i 0.343980i
\(918\) 2.14590i 0.0708252i
\(919\) −20.1246 −0.663850 −0.331925 0.943306i \(-0.607698\pi\)
−0.331925 + 0.943306i \(0.607698\pi\)
\(920\) 0 0
\(921\) 24.9443 0.821942
\(922\) − 1.45898i − 0.0480490i
\(923\) − 45.1246i − 1.48529i
\(924\) 26.5623 0.873836
\(925\) 0 0
\(926\) −1.56231 −0.0513406
\(927\) − 7.41641i − 0.243587i
\(928\) 5.61803i 0.184421i
\(929\) 56.8328 1.86462 0.932312 0.361655i \(-0.117788\pi\)
0.932312 + 0.361655i \(0.117788\pi\)
\(930\) 0 0
\(931\) 15.4164 0.505252
\(932\) 2.29180i 0.0750703i
\(933\) 23.4721i 0.768443i
\(934\) 8.00000 0.261768
\(935\) 0 0
\(936\) 13.9443 0.455783
\(937\) − 19.7639i − 0.645660i −0.946457 0.322830i \(-0.895366\pi\)
0.946457 0.322830i \(-0.104634\pi\)
\(938\) 21.2705i 0.694507i
\(939\) −1.18034 −0.0385189
\(940\) 0 0
\(941\) −46.0689 −1.50180 −0.750901 0.660414i \(-0.770381\pi\)
−0.750901 + 0.660414i \(0.770381\pi\)
\(942\) 7.23607i 0.235764i
\(943\) 0 0
\(944\) −9.70820 −0.315975
\(945\) 0 0
\(946\) −10.9443 −0.355829
\(947\) 12.7082i 0.412961i 0.978451 + 0.206481i \(0.0662010\pi\)
−0.978451 + 0.206481i \(0.933799\pi\)
\(948\) 10.0000i 0.324785i
\(949\) −49.8885 −1.61945
\(950\) 0 0
\(951\) −28.4164 −0.921465
\(952\) − 23.2918i − 0.754891i
\(953\) 19.0132i 0.615897i 0.951403 + 0.307948i \(0.0996424\pi\)
−0.951403 + 0.307948i \(0.900358\pi\)
\(954\) 4.18034 0.135344
\(955\) 0 0
\(956\) −19.2361 −0.622139
\(957\) 5.47214i 0.176889i
\(958\) − 4.00000i − 0.129234i
\(959\) −32.8328 −1.06023
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) − 30.8328i − 0.994090i
\(963\) 7.52786i 0.242582i
\(964\) 11.3262 0.364794
\(965\) 0 0
\(966\) 0 0
\(967\) 35.1246i 1.12953i 0.825251 + 0.564766i \(0.191033\pi\)
−0.825251 + 0.564766i \(0.808967\pi\)
\(968\) − 42.3607i − 1.36152i
\(969\) −26.7639 −0.859781
\(970\) 0 0
\(971\) −23.0557 −0.739894 −0.369947 0.929053i \(-0.620624\pi\)
−0.369947 + 0.929053i \(0.620624\pi\)
\(972\) 1.61803i 0.0518985i
\(973\) 2.12461i 0.0681119i
\(974\) 7.41641 0.237637
\(975\) 0 0
\(976\) −10.5836 −0.338773
\(977\) 22.4721i 0.718947i 0.933155 + 0.359474i \(0.117044\pi\)
−0.933155 + 0.359474i \(0.882956\pi\)
\(978\) − 9.34752i − 0.298901i
\(979\) 61.1803 1.95533
\(980\) 0 0
\(981\) −16.4164 −0.524136
\(982\) − 16.0000i − 0.510581i
\(983\) 37.5279i 1.19695i 0.801140 + 0.598476i \(0.204227\pi\)
−0.801140 + 0.598476i \(0.795773\pi\)
\(984\) −10.0000 −0.318788
\(985\) 0 0
\(986\) 2.14590 0.0683393
\(987\) 20.1246i 0.640573i
\(988\) 77.7771i 2.47442i
\(989\) 0 0
\(990\) 0 0
\(991\) 22.4853 0.714269 0.357134 0.934053i \(-0.383754\pi\)
0.357134 + 0.934053i \(0.383754\pi\)
\(992\) 44.9443i 1.42698i
\(993\) − 15.8885i − 0.504208i
\(994\) 13.4164 0.425543
\(995\) 0 0
\(996\) 6.00000 0.190117
\(997\) − 7.41641i − 0.234880i −0.993080 0.117440i \(-0.962531\pi\)
0.993080 0.117440i \(-0.0374688\pi\)
\(998\) − 14.6869i − 0.464906i
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.c.j.349.2 4
5.2 odd 4 435.2.a.e.1.2 2
5.3 odd 4 2175.2.a.q.1.1 2
5.4 even 2 inner 2175.2.c.j.349.3 4
15.2 even 4 1305.2.a.k.1.1 2
15.8 even 4 6525.2.a.s.1.2 2
20.7 even 4 6960.2.a.bu.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.a.e.1.2 2 5.2 odd 4
1305.2.a.k.1.1 2 15.2 even 4
2175.2.a.q.1.1 2 5.3 odd 4
2175.2.c.j.349.2 4 1.1 even 1 trivial
2175.2.c.j.349.3 4 5.4 even 2 inner
6525.2.a.s.1.2 2 15.8 even 4
6960.2.a.bu.1.2 2 20.7 even 4