Properties

Label 2175.2.c.f.349.1
Level $2175$
Weight $2$
Character 2175.349
Analytic conductor $17.367$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2175,2,Mod(349,2175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2175.349"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-14,0,-2,0,0,-4,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{21})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 11x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.1
Root \(-2.79129i\) of defining polynomial
Character \(\chi\) \(=\) 2175.349
Dual form 2175.2.c.f.349.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.79129i q^{2} -1.00000i q^{3} -5.79129 q^{4} -2.79129 q^{6} +1.00000i q^{7} +10.5826i q^{8} -1.00000 q^{9} +5.00000 q^{11} +5.79129i q^{12} -4.58258i q^{13} +2.79129 q^{14} +17.9564 q^{16} -3.00000i q^{17} +2.79129i q^{18} +5.58258 q^{19} +1.00000 q^{21} -13.9564i q^{22} +4.00000i q^{23} +10.5826 q^{24} -12.7913 q^{26} +1.00000i q^{27} -5.79129i q^{28} -1.00000 q^{29} +4.00000 q^{31} -28.9564i q^{32} -5.00000i q^{33} -8.37386 q^{34} +5.79129 q^{36} -4.00000i q^{37} -15.5826i q^{38} -4.58258 q^{39} +9.16515 q^{41} -2.79129i q^{42} +0.417424i q^{43} -28.9564 q^{44} +11.1652 q^{46} +1.41742i q^{47} -17.9564i q^{48} +6.00000 q^{49} -3.00000 q^{51} +26.5390i q^{52} -9.58258i q^{53} +2.79129 q^{54} -10.5826 q^{56} -5.58258i q^{57} +2.79129i q^{58} -1.58258 q^{59} -14.7477 q^{61} -11.1652i q^{62} -1.00000i q^{63} -44.9129 q^{64} -13.9564 q^{66} +14.1652i q^{67} +17.3739i q^{68} +4.00000 q^{69} -0.417424 q^{71} -10.5826i q^{72} -4.00000i q^{73} -11.1652 q^{74} -32.3303 q^{76} +5.00000i q^{77} +12.7913i q^{78} +1.58258 q^{79} +1.00000 q^{81} -25.5826i q^{82} +2.41742i q^{83} -5.79129 q^{84} +1.16515 q^{86} +1.00000i q^{87} +52.9129i q^{88} -10.5826 q^{89} +4.58258 q^{91} -23.1652i q^{92} -4.00000i q^{93} +3.95644 q^{94} -28.9564 q^{96} +2.41742i q^{97} -16.7477i q^{98} -5.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 14 q^{4} - 2 q^{6} - 4 q^{9} + 20 q^{11} + 2 q^{14} + 26 q^{16} + 4 q^{19} + 4 q^{21} + 24 q^{24} - 42 q^{26} - 4 q^{29} + 16 q^{31} - 6 q^{34} + 14 q^{36} - 70 q^{44} + 8 q^{46} + 24 q^{49} - 12 q^{51}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.79129i − 1.97374i −0.161521 0.986869i \(-0.551640\pi\)
0.161521 0.986869i \(-0.448360\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) −5.79129 −2.89564
\(5\) 0 0
\(6\) −2.79129 −1.13954
\(7\) 1.00000i 0.377964i 0.981981 + 0.188982i \(0.0605189\pi\)
−0.981981 + 0.188982i \(0.939481\pi\)
\(8\) 10.5826i 3.74151i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 5.79129i 1.67180i
\(13\) − 4.58258i − 1.27098i −0.772110 0.635489i \(-0.780799\pi\)
0.772110 0.635489i \(-0.219201\pi\)
\(14\) 2.79129 0.746003
\(15\) 0 0
\(16\) 17.9564 4.48911
\(17\) − 3.00000i − 0.727607i −0.931476 0.363803i \(-0.881478\pi\)
0.931476 0.363803i \(-0.118522\pi\)
\(18\) 2.79129i 0.657913i
\(19\) 5.58258 1.28073 0.640365 0.768070i \(-0.278783\pi\)
0.640365 + 0.768070i \(0.278783\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) − 13.9564i − 2.97552i
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 10.5826 2.16016
\(25\) 0 0
\(26\) −12.7913 −2.50858
\(27\) 1.00000i 0.192450i
\(28\) − 5.79129i − 1.09445i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) − 28.9564i − 5.11882i
\(33\) − 5.00000i − 0.870388i
\(34\) −8.37386 −1.43611
\(35\) 0 0
\(36\) 5.79129 0.965215
\(37\) − 4.00000i − 0.657596i −0.944400 0.328798i \(-0.893356\pi\)
0.944400 0.328798i \(-0.106644\pi\)
\(38\) − 15.5826i − 2.52783i
\(39\) −4.58258 −0.733799
\(40\) 0 0
\(41\) 9.16515 1.43136 0.715678 0.698430i \(-0.246118\pi\)
0.715678 + 0.698430i \(0.246118\pi\)
\(42\) − 2.79129i − 0.430705i
\(43\) 0.417424i 0.0636566i 0.999493 + 0.0318283i \(0.0101330\pi\)
−0.999493 + 0.0318283i \(0.989867\pi\)
\(44\) −28.9564 −4.36535
\(45\) 0 0
\(46\) 11.1652 1.64621
\(47\) 1.41742i 0.206753i 0.994642 + 0.103376i \(0.0329646\pi\)
−0.994642 + 0.103376i \(0.967035\pi\)
\(48\) − 17.9564i − 2.59179i
\(49\) 6.00000 0.857143
\(50\) 0 0
\(51\) −3.00000 −0.420084
\(52\) 26.5390i 3.68030i
\(53\) − 9.58258i − 1.31627i −0.752901 0.658134i \(-0.771346\pi\)
0.752901 0.658134i \(-0.228654\pi\)
\(54\) 2.79129 0.379846
\(55\) 0 0
\(56\) −10.5826 −1.41416
\(57\) − 5.58258i − 0.739430i
\(58\) 2.79129i 0.366514i
\(59\) −1.58258 −0.206034 −0.103017 0.994680i \(-0.532850\pi\)
−0.103017 + 0.994680i \(0.532850\pi\)
\(60\) 0 0
\(61\) −14.7477 −1.88825 −0.944126 0.329583i \(-0.893092\pi\)
−0.944126 + 0.329583i \(0.893092\pi\)
\(62\) − 11.1652i − 1.41798i
\(63\) − 1.00000i − 0.125988i
\(64\) −44.9129 −5.61411
\(65\) 0 0
\(66\) −13.9564 −1.71792
\(67\) 14.1652i 1.73055i 0.501299 + 0.865274i \(0.332856\pi\)
−0.501299 + 0.865274i \(0.667144\pi\)
\(68\) 17.3739i 2.10689i
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) −0.417424 −0.0495392 −0.0247696 0.999693i \(-0.507885\pi\)
−0.0247696 + 0.999693i \(0.507885\pi\)
\(72\) − 10.5826i − 1.24717i
\(73\) − 4.00000i − 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) −11.1652 −1.29792
\(75\) 0 0
\(76\) −32.3303 −3.70854
\(77\) 5.00000i 0.569803i
\(78\) 12.7913i 1.44833i
\(79\) 1.58258 0.178054 0.0890268 0.996029i \(-0.471624\pi\)
0.0890268 + 0.996029i \(0.471624\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 25.5826i − 2.82512i
\(83\) 2.41742i 0.265347i 0.991160 + 0.132673i \(0.0423561\pi\)
−0.991160 + 0.132673i \(0.957644\pi\)
\(84\) −5.79129 −0.631881
\(85\) 0 0
\(86\) 1.16515 0.125642
\(87\) 1.00000i 0.107211i
\(88\) 52.9129i 5.64053i
\(89\) −10.5826 −1.12175 −0.560875 0.827900i \(-0.689535\pi\)
−0.560875 + 0.827900i \(0.689535\pi\)
\(90\) 0 0
\(91\) 4.58258 0.480384
\(92\) − 23.1652i − 2.41513i
\(93\) − 4.00000i − 0.414781i
\(94\) 3.95644 0.408076
\(95\) 0 0
\(96\) −28.9564 −2.95535
\(97\) 2.41742i 0.245452i 0.992441 + 0.122726i \(0.0391637\pi\)
−0.992441 + 0.122726i \(0.960836\pi\)
\(98\) − 16.7477i − 1.69178i
\(99\) −5.00000 −0.502519
\(100\) 0 0
\(101\) 8.58258 0.853998 0.426999 0.904252i \(-0.359571\pi\)
0.426999 + 0.904252i \(0.359571\pi\)
\(102\) 8.37386i 0.829136i
\(103\) 3.16515i 0.311872i 0.987767 + 0.155936i \(0.0498393\pi\)
−0.987767 + 0.155936i \(0.950161\pi\)
\(104\) 48.4955 4.75537
\(105\) 0 0
\(106\) −26.7477 −2.59797
\(107\) − 13.1652i − 1.27272i −0.771391 0.636362i \(-0.780439\pi\)
0.771391 0.636362i \(-0.219561\pi\)
\(108\) − 5.79129i − 0.557267i
\(109\) 4.16515 0.398949 0.199475 0.979903i \(-0.436076\pi\)
0.199475 + 0.979903i \(0.436076\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 17.9564i 1.69672i
\(113\) − 4.16515i − 0.391824i −0.980621 0.195912i \(-0.937233\pi\)
0.980621 0.195912i \(-0.0627668\pi\)
\(114\) −15.5826 −1.45944
\(115\) 0 0
\(116\) 5.79129 0.537708
\(117\) 4.58258i 0.423659i
\(118\) 4.41742i 0.406657i
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 41.1652i 3.72692i
\(123\) − 9.16515i − 0.826394i
\(124\) −23.1652 −2.08029
\(125\) 0 0
\(126\) −2.79129 −0.248668
\(127\) 2.00000i 0.177471i 0.996055 + 0.0887357i \(0.0282826\pi\)
−0.996055 + 0.0887357i \(0.971717\pi\)
\(128\) 67.4519i 5.96196i
\(129\) 0.417424 0.0367522
\(130\) 0 0
\(131\) −15.0000 −1.31056 −0.655278 0.755388i \(-0.727449\pi\)
−0.655278 + 0.755388i \(0.727449\pi\)
\(132\) 28.9564i 2.52033i
\(133\) 5.58258i 0.484071i
\(134\) 39.5390 3.41565
\(135\) 0 0
\(136\) 31.7477 2.72235
\(137\) − 20.3303i − 1.73693i −0.495746 0.868467i \(-0.665105\pi\)
0.495746 0.868467i \(-0.334895\pi\)
\(138\) − 11.1652i − 0.950441i
\(139\) 18.5826 1.57615 0.788077 0.615577i \(-0.211077\pi\)
0.788077 + 0.615577i \(0.211077\pi\)
\(140\) 0 0
\(141\) 1.41742 0.119369
\(142\) 1.16515i 0.0977773i
\(143\) − 22.9129i − 1.91607i
\(144\) −17.9564 −1.49637
\(145\) 0 0
\(146\) −11.1652 −0.924035
\(147\) − 6.00000i − 0.494872i
\(148\) 23.1652i 1.90416i
\(149\) 10.7477 0.880488 0.440244 0.897878i \(-0.354892\pi\)
0.440244 + 0.897878i \(0.354892\pi\)
\(150\) 0 0
\(151\) −11.1652 −0.908607 −0.454304 0.890847i \(-0.650112\pi\)
−0.454304 + 0.890847i \(0.650112\pi\)
\(152\) 59.0780i 4.79186i
\(153\) 3.00000i 0.242536i
\(154\) 13.9564 1.12464
\(155\) 0 0
\(156\) 26.5390 2.12482
\(157\) − 16.7477i − 1.33661i −0.743886 0.668307i \(-0.767019\pi\)
0.743886 0.668307i \(-0.232981\pi\)
\(158\) − 4.41742i − 0.351431i
\(159\) −9.58258 −0.759948
\(160\) 0 0
\(161\) −4.00000 −0.315244
\(162\) − 2.79129i − 0.219304i
\(163\) 1.58258i 0.123957i 0.998077 + 0.0619784i \(0.0197410\pi\)
−0.998077 + 0.0619784i \(0.980259\pi\)
\(164\) −53.0780 −4.14470
\(165\) 0 0
\(166\) 6.74773 0.523725
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 10.5826i 0.816463i
\(169\) −8.00000 −0.615385
\(170\) 0 0
\(171\) −5.58258 −0.426910
\(172\) − 2.41742i − 0.184327i
\(173\) − 15.1652i − 1.15299i −0.817102 0.576493i \(-0.804421\pi\)
0.817102 0.576493i \(-0.195579\pi\)
\(174\) 2.79129 0.211607
\(175\) 0 0
\(176\) 89.7822 6.76759
\(177\) 1.58258i 0.118954i
\(178\) 29.5390i 2.21404i
\(179\) 22.7477 1.70024 0.850122 0.526585i \(-0.176528\pi\)
0.850122 + 0.526585i \(0.176528\pi\)
\(180\) 0 0
\(181\) −2.16515 −0.160934 −0.0804672 0.996757i \(-0.525641\pi\)
−0.0804672 + 0.996757i \(0.525641\pi\)
\(182\) − 12.7913i − 0.948153i
\(183\) 14.7477i 1.09018i
\(184\) −42.3303 −3.12063
\(185\) 0 0
\(186\) −11.1652 −0.818669
\(187\) − 15.0000i − 1.09691i
\(188\) − 8.20871i − 0.598682i
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 44.9129i 3.24131i
\(193\) − 16.3303i − 1.17548i −0.809050 0.587740i \(-0.800018\pi\)
0.809050 0.587740i \(-0.199982\pi\)
\(194\) 6.74773 0.484459
\(195\) 0 0
\(196\) −34.7477 −2.48198
\(197\) 20.3303i 1.44847i 0.689551 + 0.724237i \(0.257808\pi\)
−0.689551 + 0.724237i \(0.742192\pi\)
\(198\) 13.9564i 0.991841i
\(199\) −22.5826 −1.60084 −0.800418 0.599442i \(-0.795389\pi\)
−0.800418 + 0.599442i \(0.795389\pi\)
\(200\) 0 0
\(201\) 14.1652 0.999133
\(202\) − 23.9564i − 1.68557i
\(203\) − 1.00000i − 0.0701862i
\(204\) 17.3739 1.21641
\(205\) 0 0
\(206\) 8.83485 0.615553
\(207\) − 4.00000i − 0.278019i
\(208\) − 82.2867i − 5.70556i
\(209\) 27.9129 1.93077
\(210\) 0 0
\(211\) −16.3303 −1.12422 −0.562112 0.827061i \(-0.690011\pi\)
−0.562112 + 0.827061i \(0.690011\pi\)
\(212\) 55.4955i 3.81144i
\(213\) 0.417424i 0.0286014i
\(214\) −36.7477 −2.51202
\(215\) 0 0
\(216\) −10.5826 −0.720053
\(217\) 4.00000i 0.271538i
\(218\) − 11.6261i − 0.787421i
\(219\) −4.00000 −0.270295
\(220\) 0 0
\(221\) −13.7477 −0.924772
\(222\) 11.1652i 0.749356i
\(223\) − 7.00000i − 0.468755i −0.972146 0.234377i \(-0.924695\pi\)
0.972146 0.234377i \(-0.0753051\pi\)
\(224\) 28.9564 1.93473
\(225\) 0 0
\(226\) −11.6261 −0.773359
\(227\) 1.58258i 0.105039i 0.998620 + 0.0525196i \(0.0167252\pi\)
−0.998620 + 0.0525196i \(0.983275\pi\)
\(228\) 32.3303i 2.14113i
\(229\) −1.16515 −0.0769954 −0.0384977 0.999259i \(-0.512257\pi\)
−0.0384977 + 0.999259i \(0.512257\pi\)
\(230\) 0 0
\(231\) 5.00000 0.328976
\(232\) − 10.5826i − 0.694780i
\(233\) − 5.16515i − 0.338380i −0.985583 0.169190i \(-0.945885\pi\)
0.985583 0.169190i \(-0.0541152\pi\)
\(234\) 12.7913 0.836193
\(235\) 0 0
\(236\) 9.16515 0.596601
\(237\) − 1.58258i − 0.102799i
\(238\) − 8.37386i − 0.542797i
\(239\) 26.0000 1.68180 0.840900 0.541190i \(-0.182026\pi\)
0.840900 + 0.541190i \(0.182026\pi\)
\(240\) 0 0
\(241\) −7.33030 −0.472186 −0.236093 0.971730i \(-0.575867\pi\)
−0.236093 + 0.971730i \(0.575867\pi\)
\(242\) − 39.0780i − 2.51203i
\(243\) − 1.00000i − 0.0641500i
\(244\) 85.4083 5.46771
\(245\) 0 0
\(246\) −25.5826 −1.63109
\(247\) − 25.5826i − 1.62778i
\(248\) 42.3303i 2.68798i
\(249\) 2.41742 0.153198
\(250\) 0 0
\(251\) −2.16515 −0.136663 −0.0683316 0.997663i \(-0.521768\pi\)
−0.0683316 + 0.997663i \(0.521768\pi\)
\(252\) 5.79129i 0.364817i
\(253\) 20.0000i 1.25739i
\(254\) 5.58258 0.350282
\(255\) 0 0
\(256\) 98.4519 6.15324
\(257\) − 14.7477i − 0.919938i −0.887935 0.459969i \(-0.847861\pi\)
0.887935 0.459969i \(-0.152139\pi\)
\(258\) − 1.16515i − 0.0725392i
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) 41.8693i 2.58670i
\(263\) 6.33030i 0.390343i 0.980769 + 0.195172i \(0.0625264\pi\)
−0.980769 + 0.195172i \(0.937474\pi\)
\(264\) 52.9129 3.25656
\(265\) 0 0
\(266\) 15.5826 0.955429
\(267\) 10.5826i 0.647643i
\(268\) − 82.0345i − 5.01105i
\(269\) −13.4174 −0.818075 −0.409037 0.912518i \(-0.634135\pi\)
−0.409037 + 0.912518i \(0.634135\pi\)
\(270\) 0 0
\(271\) −17.1652 −1.04271 −0.521354 0.853340i \(-0.674573\pi\)
−0.521354 + 0.853340i \(0.674573\pi\)
\(272\) − 53.8693i − 3.26631i
\(273\) − 4.58258i − 0.277350i
\(274\) −56.7477 −3.42826
\(275\) 0 0
\(276\) −23.1652 −1.39438
\(277\) 20.9129i 1.25653i 0.777998 + 0.628267i \(0.216235\pi\)
−0.777998 + 0.628267i \(0.783765\pi\)
\(278\) − 51.8693i − 3.11091i
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) −9.58258 −0.571649 −0.285824 0.958282i \(-0.592267\pi\)
−0.285824 + 0.958282i \(0.592267\pi\)
\(282\) − 3.95644i − 0.235603i
\(283\) 19.1652i 1.13925i 0.821905 + 0.569625i \(0.192912\pi\)
−0.821905 + 0.569625i \(0.807088\pi\)
\(284\) 2.41742 0.143448
\(285\) 0 0
\(286\) −63.9564 −3.78182
\(287\) 9.16515i 0.541002i
\(288\) 28.9564i 1.70627i
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 2.41742 0.141712
\(292\) 23.1652i 1.35564i
\(293\) − 11.8348i − 0.691399i −0.938345 0.345700i \(-0.887642\pi\)
0.938345 0.345700i \(-0.112358\pi\)
\(294\) −16.7477 −0.976747
\(295\) 0 0
\(296\) 42.3303 2.46040
\(297\) 5.00000i 0.290129i
\(298\) − 30.0000i − 1.73785i
\(299\) 18.3303 1.06007
\(300\) 0 0
\(301\) −0.417424 −0.0240599
\(302\) 31.1652i 1.79335i
\(303\) − 8.58258i − 0.493056i
\(304\) 100.243 5.74934
\(305\) 0 0
\(306\) 8.37386 0.478702
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) − 28.9564i − 1.64995i
\(309\) 3.16515 0.180059
\(310\) 0 0
\(311\) −3.00000 −0.170114 −0.0850572 0.996376i \(-0.527107\pi\)
−0.0850572 + 0.996376i \(0.527107\pi\)
\(312\) − 48.4955i − 2.74551i
\(313\) − 1.41742i − 0.0801176i −0.999197 0.0400588i \(-0.987245\pi\)
0.999197 0.0400588i \(-0.0127545\pi\)
\(314\) −46.7477 −2.63813
\(315\) 0 0
\(316\) −9.16515 −0.515580
\(317\) − 25.0000i − 1.40414i −0.712108 0.702070i \(-0.752259\pi\)
0.712108 0.702070i \(-0.247741\pi\)
\(318\) 26.7477i 1.49994i
\(319\) −5.00000 −0.279946
\(320\) 0 0
\(321\) −13.1652 −0.734807
\(322\) 11.1652i 0.622210i
\(323\) − 16.7477i − 0.931868i
\(324\) −5.79129 −0.321738
\(325\) 0 0
\(326\) 4.41742 0.244659
\(327\) − 4.16515i − 0.230333i
\(328\) 96.9909i 5.35543i
\(329\) −1.41742 −0.0781451
\(330\) 0 0
\(331\) 28.3303 1.55717 0.778587 0.627537i \(-0.215937\pi\)
0.778587 + 0.627537i \(0.215937\pi\)
\(332\) − 14.0000i − 0.768350i
\(333\) 4.00000i 0.219199i
\(334\) 0 0
\(335\) 0 0
\(336\) 17.9564 0.979604
\(337\) − 2.83485i − 0.154424i −0.997015 0.0772120i \(-0.975398\pi\)
0.997015 0.0772120i \(-0.0246018\pi\)
\(338\) 22.3303i 1.21461i
\(339\) −4.16515 −0.226220
\(340\) 0 0
\(341\) 20.0000 1.08306
\(342\) 15.5826i 0.842609i
\(343\) 13.0000i 0.701934i
\(344\) −4.41742 −0.238172
\(345\) 0 0
\(346\) −42.3303 −2.27569
\(347\) − 11.1652i − 0.599377i −0.954037 0.299688i \(-0.903117\pi\)
0.954037 0.299688i \(-0.0968827\pi\)
\(348\) − 5.79129i − 0.310446i
\(349\) −32.3303 −1.73060 −0.865301 0.501253i \(-0.832873\pi\)
−0.865301 + 0.501253i \(0.832873\pi\)
\(350\) 0 0
\(351\) 4.58258 0.244600
\(352\) − 144.782i − 7.71692i
\(353\) 33.1652i 1.76520i 0.470122 + 0.882601i \(0.344210\pi\)
−0.470122 + 0.882601i \(0.655790\pi\)
\(354\) 4.41742 0.234783
\(355\) 0 0
\(356\) 61.2867 3.24819
\(357\) − 3.00000i − 0.158777i
\(358\) − 63.4955i − 3.35584i
\(359\) 8.83485 0.466285 0.233143 0.972443i \(-0.425099\pi\)
0.233143 + 0.972443i \(0.425099\pi\)
\(360\) 0 0
\(361\) 12.1652 0.640271
\(362\) 6.04356i 0.317643i
\(363\) − 14.0000i − 0.734809i
\(364\) −26.5390 −1.39102
\(365\) 0 0
\(366\) 41.1652 2.15174
\(367\) 17.4955i 0.913255i 0.889658 + 0.456628i \(0.150943\pi\)
−0.889658 + 0.456628i \(0.849057\pi\)
\(368\) 71.8258i 3.74418i
\(369\) −9.16515 −0.477119
\(370\) 0 0
\(371\) 9.58258 0.497503
\(372\) 23.1652i 1.20106i
\(373\) 8.33030i 0.431327i 0.976468 + 0.215663i \(0.0691914\pi\)
−0.976468 + 0.215663i \(0.930809\pi\)
\(374\) −41.8693 −2.16501
\(375\) 0 0
\(376\) −15.0000 −0.773566
\(377\) 4.58258i 0.236015i
\(378\) 2.79129i 0.143568i
\(379\) 26.0000 1.33553 0.667765 0.744372i \(-0.267251\pi\)
0.667765 + 0.744372i \(0.267251\pi\)
\(380\) 0 0
\(381\) 2.00000 0.102463
\(382\) 11.1652i 0.571259i
\(383\) 5.58258i 0.285256i 0.989776 + 0.142628i \(0.0455553\pi\)
−0.989776 + 0.142628i \(0.954445\pi\)
\(384\) 67.4519 3.44214
\(385\) 0 0
\(386\) −45.5826 −2.32009
\(387\) − 0.417424i − 0.0212189i
\(388\) − 14.0000i − 0.710742i
\(389\) −2.58258 −0.130942 −0.0654709 0.997854i \(-0.520855\pi\)
−0.0654709 + 0.997854i \(0.520855\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 63.4955i 3.20700i
\(393\) 15.0000i 0.756650i
\(394\) 56.7477 2.85891
\(395\) 0 0
\(396\) 28.9564 1.45512
\(397\) 29.1652i 1.46376i 0.681435 + 0.731878i \(0.261356\pi\)
−0.681435 + 0.731878i \(0.738644\pi\)
\(398\) 63.0345i 3.15963i
\(399\) 5.58258 0.279478
\(400\) 0 0
\(401\) 21.5826 1.07778 0.538891 0.842375i \(-0.318843\pi\)
0.538891 + 0.842375i \(0.318843\pi\)
\(402\) − 39.5390i − 1.97203i
\(403\) − 18.3303i − 0.913097i
\(404\) −49.7042 −2.47287
\(405\) 0 0
\(406\) −2.79129 −0.138529
\(407\) − 20.0000i − 0.991363i
\(408\) − 31.7477i − 1.57175i
\(409\) −24.7477 −1.22370 −0.611848 0.790975i \(-0.709574\pi\)
−0.611848 + 0.790975i \(0.709574\pi\)
\(410\) 0 0
\(411\) −20.3303 −1.00282
\(412\) − 18.3303i − 0.903069i
\(413\) − 1.58258i − 0.0778735i
\(414\) −11.1652 −0.548737
\(415\) 0 0
\(416\) −132.695 −6.50591
\(417\) − 18.5826i − 0.909993i
\(418\) − 77.9129i − 3.81084i
\(419\) 18.8348 0.920143 0.460071 0.887882i \(-0.347824\pi\)
0.460071 + 0.887882i \(0.347824\pi\)
\(420\) 0 0
\(421\) 13.5826 0.661974 0.330987 0.943635i \(-0.392618\pi\)
0.330987 + 0.943635i \(0.392618\pi\)
\(422\) 45.5826i 2.21893i
\(423\) − 1.41742i − 0.0689175i
\(424\) 101.408 4.92482
\(425\) 0 0
\(426\) 1.16515 0.0564518
\(427\) − 14.7477i − 0.713693i
\(428\) 76.2432i 3.68535i
\(429\) −22.9129 −1.10624
\(430\) 0 0
\(431\) −20.8348 −1.00358 −0.501790 0.864990i \(-0.667325\pi\)
−0.501790 + 0.864990i \(0.667325\pi\)
\(432\) 17.9564i 0.863930i
\(433\) 39.0780i 1.87797i 0.343958 + 0.938985i \(0.388232\pi\)
−0.343958 + 0.938985i \(0.611768\pi\)
\(434\) 11.1652 0.535944
\(435\) 0 0
\(436\) −24.1216 −1.15521
\(437\) 22.3303i 1.06820i
\(438\) 11.1652i 0.533492i
\(439\) −28.9129 −1.37994 −0.689968 0.723840i \(-0.742376\pi\)
−0.689968 + 0.723840i \(0.742376\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 38.3739i 1.82526i
\(443\) 8.58258i 0.407770i 0.978995 + 0.203885i \(0.0653569\pi\)
−0.978995 + 0.203885i \(0.934643\pi\)
\(444\) 23.1652 1.09937
\(445\) 0 0
\(446\) −19.5390 −0.925199
\(447\) − 10.7477i − 0.508350i
\(448\) − 44.9129i − 2.12193i
\(449\) −34.0780 −1.60824 −0.804121 0.594466i \(-0.797364\pi\)
−0.804121 + 0.594466i \(0.797364\pi\)
\(450\) 0 0
\(451\) 45.8258 2.15785
\(452\) 24.1216i 1.13458i
\(453\) 11.1652i 0.524585i
\(454\) 4.41742 0.207320
\(455\) 0 0
\(456\) 59.0780 2.76658
\(457\) 23.7477i 1.11087i 0.831559 + 0.555436i \(0.187449\pi\)
−0.831559 + 0.555436i \(0.812551\pi\)
\(458\) 3.25227i 0.151969i
\(459\) 3.00000 0.140028
\(460\) 0 0
\(461\) 9.16515 0.426864 0.213432 0.976958i \(-0.431536\pi\)
0.213432 + 0.976958i \(0.431536\pi\)
\(462\) − 13.9564i − 0.649312i
\(463\) − 18.1652i − 0.844206i −0.906548 0.422103i \(-0.861292\pi\)
0.906548 0.422103i \(-0.138708\pi\)
\(464\) −17.9564 −0.833607
\(465\) 0 0
\(466\) −14.4174 −0.667874
\(467\) − 8.00000i − 0.370196i −0.982720 0.185098i \(-0.940740\pi\)
0.982720 0.185098i \(-0.0592602\pi\)
\(468\) − 26.5390i − 1.22677i
\(469\) −14.1652 −0.654086
\(470\) 0 0
\(471\) −16.7477 −0.771695
\(472\) − 16.7477i − 0.770877i
\(473\) 2.08712i 0.0959659i
\(474\) −4.41742 −0.202899
\(475\) 0 0
\(476\) −17.3739 −0.796330
\(477\) 9.58258i 0.438756i
\(478\) − 72.5735i − 3.31943i
\(479\) 0.834849 0.0381452 0.0190726 0.999818i \(-0.493929\pi\)
0.0190726 + 0.999818i \(0.493929\pi\)
\(480\) 0 0
\(481\) −18.3303 −0.835790
\(482\) 20.4610i 0.931972i
\(483\) 4.00000i 0.182006i
\(484\) −81.0780 −3.68536
\(485\) 0 0
\(486\) −2.79129 −0.126615
\(487\) − 34.3303i − 1.55565i −0.628478 0.777827i \(-0.716322\pi\)
0.628478 0.777827i \(-0.283678\pi\)
\(488\) − 156.069i − 7.06491i
\(489\) 1.58258 0.0715665
\(490\) 0 0
\(491\) 16.0000 0.722070 0.361035 0.932552i \(-0.382424\pi\)
0.361035 + 0.932552i \(0.382424\pi\)
\(492\) 53.0780i 2.39294i
\(493\) 3.00000i 0.135113i
\(494\) −71.4083 −3.21281
\(495\) 0 0
\(496\) 71.8258 3.22507
\(497\) − 0.417424i − 0.0187240i
\(498\) − 6.74773i − 0.302373i
\(499\) 22.5826 1.01093 0.505467 0.862846i \(-0.331320\pi\)
0.505467 + 0.862846i \(0.331320\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 6.04356i 0.269737i
\(503\) − 22.9129i − 1.02163i −0.859689 0.510817i \(-0.829343\pi\)
0.859689 0.510817i \(-0.170657\pi\)
\(504\) 10.5826 0.471385
\(505\) 0 0
\(506\) 55.8258 2.48176
\(507\) 8.00000i 0.355292i
\(508\) − 11.5826i − 0.513894i
\(509\) 0.747727 0.0331424 0.0165712 0.999863i \(-0.494725\pi\)
0.0165712 + 0.999863i \(0.494725\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) − 139.904i − 6.18293i
\(513\) 5.58258i 0.246477i
\(514\) −41.1652 −1.81572
\(515\) 0 0
\(516\) −2.41742 −0.106421
\(517\) 7.08712i 0.311691i
\(518\) − 11.1652i − 0.490569i
\(519\) −15.1652 −0.665676
\(520\) 0 0
\(521\) −21.0780 −0.923445 −0.461723 0.887024i \(-0.652768\pi\)
−0.461723 + 0.887024i \(0.652768\pi\)
\(522\) − 2.79129i − 0.122171i
\(523\) − 3.33030i − 0.145624i −0.997346 0.0728120i \(-0.976803\pi\)
0.997346 0.0728120i \(-0.0231973\pi\)
\(524\) 86.8693 3.79490
\(525\) 0 0
\(526\) 17.6697 0.770435
\(527\) − 12.0000i − 0.522728i
\(528\) − 89.7822i − 3.90727i
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 1.58258 0.0686779
\(532\) − 32.3303i − 1.40170i
\(533\) − 42.0000i − 1.81922i
\(534\) 29.5390 1.27828
\(535\) 0 0
\(536\) −149.904 −6.47486
\(537\) − 22.7477i − 0.981637i
\(538\) 37.4519i 1.61467i
\(539\) 30.0000 1.29219
\(540\) 0 0
\(541\) 23.4955 1.01015 0.505074 0.863076i \(-0.331465\pi\)
0.505074 + 0.863076i \(0.331465\pi\)
\(542\) 47.9129i 2.05803i
\(543\) 2.16515i 0.0929155i
\(544\) −86.8693 −3.72449
\(545\) 0 0
\(546\) −12.7913 −0.547417
\(547\) − 14.1652i − 0.605658i −0.953045 0.302829i \(-0.902069\pi\)
0.953045 0.302829i \(-0.0979311\pi\)
\(548\) 117.739i 5.02955i
\(549\) 14.7477 0.629418
\(550\) 0 0
\(551\) −5.58258 −0.237826
\(552\) 42.3303i 1.80170i
\(553\) 1.58258i 0.0672980i
\(554\) 58.3739 2.48007
\(555\) 0 0
\(556\) −107.617 −4.56398
\(557\) 4.74773i 0.201168i 0.994929 + 0.100584i \(0.0320711\pi\)
−0.994929 + 0.100584i \(0.967929\pi\)
\(558\) 11.1652i 0.472659i
\(559\) 1.91288 0.0809061
\(560\) 0 0
\(561\) −15.0000 −0.633300
\(562\) 26.7477i 1.12828i
\(563\) 5.41742i 0.228317i 0.993463 + 0.114159i \(0.0364172\pi\)
−0.993463 + 0.114159i \(0.963583\pi\)
\(564\) −8.20871 −0.345649
\(565\) 0 0
\(566\) 53.4955 2.24858
\(567\) 1.00000i 0.0419961i
\(568\) − 4.41742i − 0.185351i
\(569\) −19.4174 −0.814021 −0.407010 0.913424i \(-0.633429\pi\)
−0.407010 + 0.913424i \(0.633429\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 132.695i 5.54826i
\(573\) 4.00000i 0.167102i
\(574\) 25.5826 1.06780
\(575\) 0 0
\(576\) 44.9129 1.87137
\(577\) − 0.834849i − 0.0347552i −0.999849 0.0173776i \(-0.994468\pi\)
0.999849 0.0173776i \(-0.00553174\pi\)
\(578\) − 22.3303i − 0.928818i
\(579\) −16.3303 −0.678664
\(580\) 0 0
\(581\) −2.41742 −0.100292
\(582\) − 6.74773i − 0.279702i
\(583\) − 47.9129i − 1.98435i
\(584\) 42.3303 1.75164
\(585\) 0 0
\(586\) −33.0345 −1.36464
\(587\) − 2.41742i − 0.0997778i −0.998755 0.0498889i \(-0.984113\pi\)
0.998755 0.0498889i \(-0.0158867\pi\)
\(588\) 34.7477i 1.43297i
\(589\) 22.3303 0.920104
\(590\) 0 0
\(591\) 20.3303 0.836277
\(592\) − 71.8258i − 2.95202i
\(593\) − 17.5826i − 0.722030i −0.932560 0.361015i \(-0.882430\pi\)
0.932560 0.361015i \(-0.117570\pi\)
\(594\) 13.9564 0.572640
\(595\) 0 0
\(596\) −62.2432 −2.54958
\(597\) 22.5826i 0.924243i
\(598\) − 51.1652i − 2.09230i
\(599\) 18.1652 0.742208 0.371104 0.928591i \(-0.378979\pi\)
0.371104 + 0.928591i \(0.378979\pi\)
\(600\) 0 0
\(601\) 4.33030 0.176637 0.0883184 0.996092i \(-0.471851\pi\)
0.0883184 + 0.996092i \(0.471851\pi\)
\(602\) 1.16515i 0.0474880i
\(603\) − 14.1652i − 0.576850i
\(604\) 64.6606 2.63100
\(605\) 0 0
\(606\) −23.9564 −0.973164
\(607\) − 5.58258i − 0.226590i −0.993561 0.113295i \(-0.963860\pi\)
0.993561 0.113295i \(-0.0361405\pi\)
\(608\) − 161.652i − 6.55583i
\(609\) −1.00000 −0.0405220
\(610\) 0 0
\(611\) 6.49545 0.262778
\(612\) − 17.3739i − 0.702297i
\(613\) 16.2523i 0.656423i 0.944604 + 0.328212i \(0.106446\pi\)
−0.944604 + 0.328212i \(0.893554\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −52.9129 −2.13192
\(617\) − 39.4955i − 1.59003i −0.606592 0.795014i \(-0.707464\pi\)
0.606592 0.795014i \(-0.292536\pi\)
\(618\) − 8.83485i − 0.355390i
\(619\) 5.16515 0.207605 0.103802 0.994598i \(-0.466899\pi\)
0.103802 + 0.994598i \(0.466899\pi\)
\(620\) 0 0
\(621\) −4.00000 −0.160514
\(622\) 8.37386i 0.335761i
\(623\) − 10.5826i − 0.423982i
\(624\) −82.2867 −3.29411
\(625\) 0 0
\(626\) −3.95644 −0.158131
\(627\) − 27.9129i − 1.11473i
\(628\) 96.9909i 3.87036i
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −34.9129 −1.38986 −0.694930 0.719078i \(-0.744565\pi\)
−0.694930 + 0.719078i \(0.744565\pi\)
\(632\) 16.7477i 0.666189i
\(633\) 16.3303i 0.649071i
\(634\) −69.7822 −2.77141
\(635\) 0 0
\(636\) 55.4955 2.20054
\(637\) − 27.4955i − 1.08941i
\(638\) 13.9564i 0.552541i
\(639\) 0.417424 0.0165131
\(640\) 0 0
\(641\) 2.58258 0.102006 0.0510028 0.998699i \(-0.483758\pi\)
0.0510028 + 0.998699i \(0.483758\pi\)
\(642\) 36.7477i 1.45032i
\(643\) 29.6606i 1.16970i 0.811141 + 0.584850i \(0.198847\pi\)
−0.811141 + 0.584850i \(0.801153\pi\)
\(644\) 23.1652 0.912835
\(645\) 0 0
\(646\) −46.7477 −1.83926
\(647\) − 2.74773i − 0.108024i −0.998540 0.0540121i \(-0.982799\pi\)
0.998540 0.0540121i \(-0.0172010\pi\)
\(648\) 10.5826i 0.415723i
\(649\) −7.91288 −0.310608
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) − 9.16515i − 0.358935i
\(653\) − 7.83485i − 0.306601i −0.988180 0.153301i \(-0.951010\pi\)
0.988180 0.153301i \(-0.0489903\pi\)
\(654\) −11.6261 −0.454618
\(655\) 0 0
\(656\) 164.573 6.42552
\(657\) 4.00000i 0.156055i
\(658\) 3.95644i 0.154238i
\(659\) 0.165151 0.00643338 0.00321669 0.999995i \(-0.498976\pi\)
0.00321669 + 0.999995i \(0.498976\pi\)
\(660\) 0 0
\(661\) 25.0000 0.972387 0.486194 0.873851i \(-0.338385\pi\)
0.486194 + 0.873851i \(0.338385\pi\)
\(662\) − 79.0780i − 3.07345i
\(663\) 13.7477i 0.533917i
\(664\) −25.5826 −0.992796
\(665\) 0 0
\(666\) 11.1652 0.432641
\(667\) − 4.00000i − 0.154881i
\(668\) 0 0
\(669\) −7.00000 −0.270636
\(670\) 0 0
\(671\) −73.7386 −2.84665
\(672\) − 28.9564i − 1.11702i
\(673\) 25.7477i 0.992502i 0.868179 + 0.496251i \(0.165290\pi\)
−0.868179 + 0.496251i \(0.834710\pi\)
\(674\) −7.91288 −0.304793
\(675\) 0 0
\(676\) 46.3303 1.78193
\(677\) − 46.8258i − 1.79966i −0.436241 0.899830i \(-0.643690\pi\)
0.436241 0.899830i \(-0.356310\pi\)
\(678\) 11.6261i 0.446499i
\(679\) −2.41742 −0.0927722
\(680\) 0 0
\(681\) 1.58258 0.0606444
\(682\) − 55.8258i − 2.13768i
\(683\) 11.1652i 0.427223i 0.976919 + 0.213611i \(0.0685226\pi\)
−0.976919 + 0.213611i \(0.931477\pi\)
\(684\) 32.3303 1.23618
\(685\) 0 0
\(686\) 36.2867 1.38543
\(687\) 1.16515i 0.0444533i
\(688\) 7.49545i 0.285762i
\(689\) −43.9129 −1.67295
\(690\) 0 0
\(691\) −2.91288 −0.110811 −0.0554056 0.998464i \(-0.517645\pi\)
−0.0554056 + 0.998464i \(0.517645\pi\)
\(692\) 87.8258i 3.33863i
\(693\) − 5.00000i − 0.189934i
\(694\) −31.1652 −1.18301
\(695\) 0 0
\(696\) −10.5826 −0.401131
\(697\) − 27.4955i − 1.04146i
\(698\) 90.2432i 3.41575i
\(699\) −5.16515 −0.195364
\(700\) 0 0
\(701\) 41.0780 1.55150 0.775748 0.631043i \(-0.217373\pi\)
0.775748 + 0.631043i \(0.217373\pi\)
\(702\) − 12.7913i − 0.482776i
\(703\) − 22.3303i − 0.842203i
\(704\) −224.564 −8.46359
\(705\) 0 0
\(706\) 92.5735 3.48405
\(707\) 8.58258i 0.322781i
\(708\) − 9.16515i − 0.344447i
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) −1.58258 −0.0593512
\(712\) − 111.991i − 4.19704i
\(713\) 16.0000i 0.599205i
\(714\) −8.37386 −0.313384
\(715\) 0 0
\(716\) −131.739 −4.92330
\(717\) − 26.0000i − 0.970988i
\(718\) − 24.6606i − 0.920326i
\(719\) 37.9129 1.41391 0.706956 0.707258i \(-0.250068\pi\)
0.706956 + 0.707258i \(0.250068\pi\)
\(720\) 0 0
\(721\) −3.16515 −0.117876
\(722\) − 33.9564i − 1.26373i
\(723\) 7.33030i 0.272617i
\(724\) 12.5390 0.466009
\(725\) 0 0
\(726\) −39.0780 −1.45032
\(727\) 46.3303i 1.71830i 0.511727 + 0.859148i \(0.329006\pi\)
−0.511727 + 0.859148i \(0.670994\pi\)
\(728\) 48.4955i 1.79736i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 1.25227 0.0463170
\(732\) − 85.4083i − 3.15678i
\(733\) 47.5826i 1.75750i 0.477280 + 0.878751i \(0.341623\pi\)
−0.477280 + 0.878751i \(0.658377\pi\)
\(734\) 48.8348 1.80253
\(735\) 0 0
\(736\) 115.826 4.26939
\(737\) 70.8258i 2.60890i
\(738\) 25.5826i 0.941708i
\(739\) −46.7477 −1.71964 −0.859821 0.510595i \(-0.829425\pi\)
−0.859821 + 0.510595i \(0.829425\pi\)
\(740\) 0 0
\(741\) −25.5826 −0.939799
\(742\) − 26.7477i − 0.981940i
\(743\) − 2.25227i − 0.0826279i −0.999146 0.0413139i \(-0.986846\pi\)
0.999146 0.0413139i \(-0.0131544\pi\)
\(744\) 42.3303 1.55190
\(745\) 0 0
\(746\) 23.2523 0.851326
\(747\) − 2.41742i − 0.0884489i
\(748\) 86.8693i 3.17626i
\(749\) 13.1652 0.481044
\(750\) 0 0
\(751\) 37.4955 1.36823 0.684114 0.729375i \(-0.260189\pi\)
0.684114 + 0.729375i \(0.260189\pi\)
\(752\) 25.4519i 0.928135i
\(753\) 2.16515i 0.0789025i
\(754\) 12.7913 0.465831
\(755\) 0 0
\(756\) 5.79129 0.210627
\(757\) 34.3303i 1.24776i 0.781522 + 0.623878i \(0.214444\pi\)
−0.781522 + 0.623878i \(0.785556\pi\)
\(758\) − 72.5735i − 2.63599i
\(759\) 20.0000 0.725954
\(760\) 0 0
\(761\) 45.5826 1.65237 0.826184 0.563401i \(-0.190507\pi\)
0.826184 + 0.563401i \(0.190507\pi\)
\(762\) − 5.58258i − 0.202235i
\(763\) 4.16515i 0.150789i
\(764\) 23.1652 0.838086
\(765\) 0 0
\(766\) 15.5826 0.563021
\(767\) 7.25227i 0.261864i
\(768\) − 98.4519i − 3.55258i
\(769\) −16.4174 −0.592027 −0.296014 0.955184i \(-0.595657\pi\)
−0.296014 + 0.955184i \(0.595657\pi\)
\(770\) 0 0
\(771\) −14.7477 −0.531126
\(772\) 94.5735i 3.40377i
\(773\) − 13.1652i − 0.473518i −0.971568 0.236759i \(-0.923915\pi\)
0.971568 0.236759i \(-0.0760851\pi\)
\(774\) −1.16515 −0.0418805
\(775\) 0 0
\(776\) −25.5826 −0.918361
\(777\) − 4.00000i − 0.143499i
\(778\) 7.20871i 0.258445i
\(779\) 51.1652 1.83318
\(780\) 0 0
\(781\) −2.08712 −0.0746831
\(782\) − 33.4955i − 1.19779i
\(783\) − 1.00000i − 0.0357371i
\(784\) 107.739 3.84781
\(785\) 0 0
\(786\) 41.8693 1.49343
\(787\) − 24.0000i − 0.855508i −0.903895 0.427754i \(-0.859305\pi\)
0.903895 0.427754i \(-0.140695\pi\)
\(788\) − 117.739i − 4.19427i
\(789\) 6.33030 0.225365
\(790\) 0 0
\(791\) 4.16515 0.148096
\(792\) − 52.9129i − 1.88018i
\(793\) 67.5826i 2.39993i
\(794\) 81.4083 2.88907
\(795\) 0 0
\(796\) 130.782 4.63545
\(797\) − 4.33030i − 0.153387i −0.997055 0.0766936i \(-0.975564\pi\)
0.997055 0.0766936i \(-0.0244363\pi\)
\(798\) − 15.5826i − 0.551617i
\(799\) 4.25227 0.150435
\(800\) 0 0
\(801\) 10.5826 0.373917
\(802\) − 60.2432i − 2.12726i
\(803\) − 20.0000i − 0.705785i
\(804\) −82.0345 −2.89313
\(805\) 0 0
\(806\) −51.1652 −1.80222
\(807\) 13.4174i 0.472316i
\(808\) 90.8258i 3.19524i
\(809\) 20.0780 0.705906 0.352953 0.935641i \(-0.385178\pi\)
0.352953 + 0.935641i \(0.385178\pi\)
\(810\) 0 0
\(811\) 23.4174 0.822297 0.411148 0.911568i \(-0.365128\pi\)
0.411148 + 0.911568i \(0.365128\pi\)
\(812\) 5.79129i 0.203234i
\(813\) 17.1652i 0.602008i
\(814\) −55.8258 −1.95669
\(815\) 0 0
\(816\) −53.8693 −1.88580
\(817\) 2.33030i 0.0815270i
\(818\) 69.0780i 2.41526i
\(819\) −4.58258 −0.160128
\(820\) 0 0
\(821\) 23.4955 0.819997 0.409999 0.912086i \(-0.365529\pi\)
0.409999 + 0.912086i \(0.365529\pi\)
\(822\) 56.7477i 1.97930i
\(823\) 13.0780i 0.455871i 0.973676 + 0.227936i \(0.0731976\pi\)
−0.973676 + 0.227936i \(0.926802\pi\)
\(824\) −33.4955 −1.16687
\(825\) 0 0
\(826\) −4.41742 −0.153702
\(827\) 47.8258i 1.66306i 0.555476 + 0.831532i \(0.312536\pi\)
−0.555476 + 0.831532i \(0.687464\pi\)
\(828\) 23.1652i 0.805045i
\(829\) −4.00000 −0.138926 −0.0694629 0.997585i \(-0.522129\pi\)
−0.0694629 + 0.997585i \(0.522129\pi\)
\(830\) 0 0
\(831\) 20.9129 0.725460
\(832\) 205.817i 7.13541i
\(833\) − 18.0000i − 0.623663i
\(834\) −51.8693 −1.79609
\(835\) 0 0
\(836\) −161.652 −5.59083
\(837\) 4.00000i 0.138260i
\(838\) − 52.5735i − 1.81612i
\(839\) −6.49545 −0.224248 −0.112124 0.993694i \(-0.535765\pi\)
−0.112124 + 0.993694i \(0.535765\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) − 37.9129i − 1.30656i
\(843\) 9.58258i 0.330041i
\(844\) 94.5735 3.25535
\(845\) 0 0
\(846\) −3.95644 −0.136025
\(847\) 14.0000i 0.481046i
\(848\) − 172.069i − 5.90887i
\(849\) 19.1652 0.657746
\(850\) 0 0
\(851\) 16.0000 0.548473
\(852\) − 2.41742i − 0.0828196i
\(853\) 6.74773i 0.231038i 0.993305 + 0.115519i \(0.0368531\pi\)
−0.993305 + 0.115519i \(0.963147\pi\)
\(854\) −41.1652 −1.40864
\(855\) 0 0
\(856\) 139.321 4.76190
\(857\) 26.6606i 0.910709i 0.890310 + 0.455354i \(0.150487\pi\)
−0.890310 + 0.455354i \(0.849513\pi\)
\(858\) 63.9564i 2.18344i
\(859\) 38.4174 1.31079 0.655393 0.755288i \(-0.272503\pi\)
0.655393 + 0.755288i \(0.272503\pi\)
\(860\) 0 0
\(861\) 9.16515 0.312348
\(862\) 58.1561i 1.98080i
\(863\) 15.5826i 0.530437i 0.964188 + 0.265219i \(0.0854441\pi\)
−0.964188 + 0.265219i \(0.914556\pi\)
\(864\) 28.9564 0.985118
\(865\) 0 0
\(866\) 109.078 3.70662
\(867\) − 8.00000i − 0.271694i
\(868\) − 23.1652i − 0.786276i
\(869\) 7.91288 0.268426
\(870\) 0 0
\(871\) 64.9129 2.19949
\(872\) 44.0780i 1.49267i
\(873\) − 2.41742i − 0.0818174i
\(874\) 62.3303 2.10835
\(875\) 0 0
\(876\) 23.1652 0.782678
\(877\) 56.3303i 1.90214i 0.308977 + 0.951070i \(0.400013\pi\)
−0.308977 + 0.951070i \(0.599987\pi\)
\(878\) 80.7042i 2.72363i
\(879\) −11.8348 −0.399180
\(880\) 0 0
\(881\) 32.0780 1.08074 0.540368 0.841429i \(-0.318285\pi\)
0.540368 + 0.841429i \(0.318285\pi\)
\(882\) 16.7477i 0.563925i
\(883\) − 16.0000i − 0.538443i −0.963078 0.269221i \(-0.913234\pi\)
0.963078 0.269221i \(-0.0867663\pi\)
\(884\) 79.6170 2.67781
\(885\) 0 0
\(886\) 23.9564 0.804832
\(887\) 0.912878i 0.0306515i 0.999883 + 0.0153257i \(0.00487852\pi\)
−0.999883 + 0.0153257i \(0.995121\pi\)
\(888\) − 42.3303i − 1.42051i
\(889\) −2.00000 −0.0670778
\(890\) 0 0
\(891\) 5.00000 0.167506
\(892\) 40.5390i 1.35735i
\(893\) 7.91288i 0.264794i
\(894\) −30.0000 −1.00335
\(895\) 0 0
\(896\) −67.4519 −2.25341
\(897\) − 18.3303i − 0.612031i
\(898\) 95.1216i 3.17425i
\(899\) −4.00000 −0.133407
\(900\) 0 0
\(901\) −28.7477 −0.957726
\(902\) − 127.913i − 4.25903i
\(903\) 0.417424i 0.0138910i
\(904\) 44.0780 1.46601
\(905\) 0 0
\(906\) 31.1652 1.03539
\(907\) 14.4174i 0.478723i 0.970931 + 0.239361i \(0.0769381\pi\)
−0.970931 + 0.239361i \(0.923062\pi\)
\(908\) − 9.16515i − 0.304156i
\(909\) −8.58258 −0.284666
\(910\) 0 0
\(911\) 40.8258 1.35262 0.676309 0.736618i \(-0.263578\pi\)
0.676309 + 0.736618i \(0.263578\pi\)
\(912\) − 100.243i − 3.31938i
\(913\) 12.0871i 0.400025i
\(914\) 66.2867 2.19257
\(915\) 0 0
\(916\) 6.74773 0.222951
\(917\) − 15.0000i − 0.495344i
\(918\) − 8.37386i − 0.276379i
\(919\) 26.9129 0.887774 0.443887 0.896083i \(-0.353599\pi\)
0.443887 + 0.896083i \(0.353599\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 25.5826i − 0.842517i
\(923\) 1.91288i 0.0629632i
\(924\) −28.9564 −0.952597
\(925\) 0 0
\(926\) −50.7042 −1.66624
\(927\) − 3.16515i − 0.103957i
\(928\) 28.9564i 0.950542i
\(929\) −52.3303 −1.71690 −0.858451 0.512896i \(-0.828573\pi\)
−0.858451 + 0.512896i \(0.828573\pi\)
\(930\) 0 0
\(931\) 33.4955 1.09777
\(932\) 29.9129i 0.979829i
\(933\) 3.00000i 0.0982156i
\(934\) −22.3303 −0.730670
\(935\) 0 0
\(936\) −48.4955 −1.58512
\(937\) − 9.41742i − 0.307654i −0.988098 0.153827i \(-0.950840\pi\)
0.988098 0.153827i \(-0.0491598\pi\)
\(938\) 39.5390i 1.29099i
\(939\) −1.41742 −0.0462559
\(940\) 0 0
\(941\) −25.9129 −0.844736 −0.422368 0.906425i \(-0.638801\pi\)
−0.422368 + 0.906425i \(0.638801\pi\)
\(942\) 46.7477i 1.52312i
\(943\) 36.6606i 1.19383i
\(944\) −28.4174 −0.924908
\(945\) 0 0
\(946\) 5.82576 0.189412
\(947\) − 9.08712i − 0.295292i −0.989040 0.147646i \(-0.952830\pi\)
0.989040 0.147646i \(-0.0471696\pi\)
\(948\) 9.16515i 0.297670i
\(949\) −18.3303 −0.595027
\(950\) 0 0
\(951\) −25.0000 −0.810681
\(952\) 31.7477i 1.02895i
\(953\) 28.4174i 0.920531i 0.887781 + 0.460265i \(0.152246\pi\)
−0.887781 + 0.460265i \(0.847754\pi\)
\(954\) 26.7477 0.865990
\(955\) 0 0
\(956\) −150.573 −4.86989
\(957\) 5.00000i 0.161627i
\(958\) − 2.33030i − 0.0752887i
\(959\) 20.3303 0.656500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 51.1652i 1.64963i
\(963\) 13.1652i 0.424241i
\(964\) 42.4519 1.36728
\(965\) 0 0
\(966\) 11.1652 0.359233
\(967\) 36.7477i 1.18173i 0.806771 + 0.590864i \(0.201213\pi\)
−0.806771 + 0.590864i \(0.798787\pi\)
\(968\) 148.156i 4.76192i
\(969\) −16.7477 −0.538015
\(970\) 0 0
\(971\) 20.0000 0.641831 0.320915 0.947108i \(-0.396010\pi\)
0.320915 + 0.947108i \(0.396010\pi\)
\(972\) 5.79129i 0.185756i
\(973\) 18.5826i 0.595730i
\(974\) −95.8258 −3.07046
\(975\) 0 0
\(976\) −264.817 −8.47657
\(977\) − 57.4955i − 1.83944i −0.392572 0.919721i \(-0.628415\pi\)
0.392572 0.919721i \(-0.371585\pi\)
\(978\) − 4.41742i − 0.141254i
\(979\) −52.9129 −1.69110
\(980\) 0 0
\(981\) −4.16515 −0.132983
\(982\) − 44.6606i − 1.42518i
\(983\) − 36.8348i − 1.17485i −0.809279 0.587425i \(-0.800142\pi\)
0.809279 0.587425i \(-0.199858\pi\)
\(984\) 96.9909 3.09196
\(985\) 0 0
\(986\) 8.37386 0.266678
\(987\) 1.41742i 0.0451171i
\(988\) 148.156i 4.71347i
\(989\) −1.66970 −0.0530933
\(990\) 0 0
\(991\) −48.0780 −1.52725 −0.763624 0.645661i \(-0.776582\pi\)
−0.763624 + 0.645661i \(0.776582\pi\)
\(992\) − 115.826i − 3.67747i
\(993\) − 28.3303i − 0.899035i
\(994\) −1.16515 −0.0369564
\(995\) 0 0
\(996\) −14.0000 −0.443607
\(997\) − 19.1652i − 0.606966i −0.952837 0.303483i \(-0.901850\pi\)
0.952837 0.303483i \(-0.0981496\pi\)
\(998\) − 63.0345i − 1.99532i
\(999\) 4.00000 0.126554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.c.f.349.1 4
5.2 odd 4 2175.2.a.r.1.2 2
5.3 odd 4 435.2.a.f.1.1 2
5.4 even 2 inner 2175.2.c.f.349.4 4
15.2 even 4 6525.2.a.t.1.1 2
15.8 even 4 1305.2.a.m.1.2 2
20.3 even 4 6960.2.a.bw.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.a.f.1.1 2 5.3 odd 4
1305.2.a.m.1.2 2 15.8 even 4
2175.2.a.r.1.2 2 5.2 odd 4
2175.2.c.f.349.1 4 1.1 even 1 trivial
2175.2.c.f.349.4 4 5.4 even 2 inner
6525.2.a.t.1.1 2 15.2 even 4
6960.2.a.bw.1.2 2 20.3 even 4