# Properties

 Label 2175.2.c.b Level $2175$ Weight $2$ Character orbit 2175.c Analytic conductor $17.367$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2175,2,Mod(349,2175)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2175, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2175.349");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2175 = 3 \cdot 5^{2} \cdot 29$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2175.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$17.3674624396$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 435) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{2} - i q^{3} + q^{4} + q^{6} + 4 i q^{7} + 3 i q^{8} - q^{9} +O(q^{10})$$ q + i * q^2 - i * q^3 + q^4 + q^6 + 4*i * q^7 + 3*i * q^8 - q^9 $$q + i q^{2} - i q^{3} + q^{4} + q^{6} + 4 i q^{7} + 3 i q^{8} - q^{9} - 4 q^{11} - i q^{12} - 6 i q^{13} - 4 q^{14} - q^{16} + 6 i q^{17} - i q^{18} + 4 q^{19} + 4 q^{21} - 4 i q^{22} + 4 i q^{23} + 3 q^{24} + 6 q^{26} + i q^{27} + 4 i q^{28} - q^{29} - 8 q^{31} + 5 i q^{32} + 4 i q^{33} - 6 q^{34} - q^{36} + 2 i q^{37} + 4 i q^{38} - 6 q^{39} - 6 q^{41} + 4 i q^{42} - 4 i q^{43} - 4 q^{44} - 4 q^{46} + i q^{48} - 9 q^{49} + 6 q^{51} - 6 i q^{52} + 10 i q^{53} - q^{54} - 12 q^{56} - 4 i q^{57} - i q^{58} + 12 q^{59} - 10 q^{61} - 8 i q^{62} - 4 i q^{63} - 7 q^{64} - 4 q^{66} + 8 i q^{67} + 6 i q^{68} + 4 q^{69} - 8 q^{71} - 3 i q^{72} + 2 i q^{73} - 2 q^{74} + 4 q^{76} - 16 i q^{77} - 6 i q^{78} + q^{81} - 6 i q^{82} - 8 i q^{83} + 4 q^{84} + 4 q^{86} + i q^{87} - 12 i q^{88} + 6 q^{89} + 24 q^{91} + 4 i q^{92} + 8 i q^{93} + 5 q^{96} - 2 i q^{97} - 9 i q^{98} + 4 q^{99} +O(q^{100})$$ q + i * q^2 - i * q^3 + q^4 + q^6 + 4*i * q^7 + 3*i * q^8 - q^9 - 4 * q^11 - i * q^12 - 6*i * q^13 - 4 * q^14 - q^16 + 6*i * q^17 - i * q^18 + 4 * q^19 + 4 * q^21 - 4*i * q^22 + 4*i * q^23 + 3 * q^24 + 6 * q^26 + i * q^27 + 4*i * q^28 - q^29 - 8 * q^31 + 5*i * q^32 + 4*i * q^33 - 6 * q^34 - q^36 + 2*i * q^37 + 4*i * q^38 - 6 * q^39 - 6 * q^41 + 4*i * q^42 - 4*i * q^43 - 4 * q^44 - 4 * q^46 + i * q^48 - 9 * q^49 + 6 * q^51 - 6*i * q^52 + 10*i * q^53 - q^54 - 12 * q^56 - 4*i * q^57 - i * q^58 + 12 * q^59 - 10 * q^61 - 8*i * q^62 - 4*i * q^63 - 7 * q^64 - 4 * q^66 + 8*i * q^67 + 6*i * q^68 + 4 * q^69 - 8 * q^71 - 3*i * q^72 + 2*i * q^73 - 2 * q^74 + 4 * q^76 - 16*i * q^77 - 6*i * q^78 + q^81 - 6*i * q^82 - 8*i * q^83 + 4 * q^84 + 4 * q^86 + i * q^87 - 12*i * q^88 + 6 * q^89 + 24 * q^91 + 4*i * q^92 + 8*i * q^93 + 5 * q^96 - 2*i * q^97 - 9*i * q^98 + 4 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{4} + 2 q^{6} - 2 q^{9}+O(q^{10})$$ 2 * q + 2 * q^4 + 2 * q^6 - 2 * q^9 $$2 q + 2 q^{4} + 2 q^{6} - 2 q^{9} - 8 q^{11} - 8 q^{14} - 2 q^{16} + 8 q^{19} + 8 q^{21} + 6 q^{24} + 12 q^{26} - 2 q^{29} - 16 q^{31} - 12 q^{34} - 2 q^{36} - 12 q^{39} - 12 q^{41} - 8 q^{44} - 8 q^{46} - 18 q^{49} + 12 q^{51} - 2 q^{54} - 24 q^{56} + 24 q^{59} - 20 q^{61} - 14 q^{64} - 8 q^{66} + 8 q^{69} - 16 q^{71} - 4 q^{74} + 8 q^{76} + 2 q^{81} + 8 q^{84} + 8 q^{86} + 12 q^{89} + 48 q^{91} + 10 q^{96} + 8 q^{99}+O(q^{100})$$ 2 * q + 2 * q^4 + 2 * q^6 - 2 * q^9 - 8 * q^11 - 8 * q^14 - 2 * q^16 + 8 * q^19 + 8 * q^21 + 6 * q^24 + 12 * q^26 - 2 * q^29 - 16 * q^31 - 12 * q^34 - 2 * q^36 - 12 * q^39 - 12 * q^41 - 8 * q^44 - 8 * q^46 - 18 * q^49 + 12 * q^51 - 2 * q^54 - 24 * q^56 + 24 * q^59 - 20 * q^61 - 14 * q^64 - 8 * q^66 + 8 * q^69 - 16 * q^71 - 4 * q^74 + 8 * q^76 + 2 * q^81 + 8 * q^84 + 8 * q^86 + 12 * q^89 + 48 * q^91 + 10 * q^96 + 8 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times$$.

 $$n$$ $$901$$ $$1451$$ $$2002$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
349.1
 − 1.00000i 1.00000i
1.00000i 1.00000i 1.00000 0 1.00000 4.00000i 3.00000i −1.00000 0
349.2 1.00000i 1.00000i 1.00000 0 1.00000 4.00000i 3.00000i −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2175.2.c.b 2
5.b even 2 1 inner 2175.2.c.b 2
5.c odd 4 1 435.2.a.d 1
5.c odd 4 1 2175.2.a.b 1
15.e even 4 1 1305.2.a.b 1
15.e even 4 1 6525.2.a.j 1
20.e even 4 1 6960.2.a.l 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.2.a.d 1 5.c odd 4 1
1305.2.a.b 1 15.e even 4 1
2175.2.a.b 1 5.c odd 4 1
2175.2.c.b 2 1.a even 1 1 trivial
2175.2.c.b 2 5.b even 2 1 inner
6525.2.a.j 1 15.e even 4 1
6960.2.a.l 1 20.e even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2175, [\chi])$$:

 $$T_{2}^{2} + 1$$ T2^2 + 1 $$T_{7}^{2} + 16$$ T7^2 + 16 $$T_{11} + 4$$ T11 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + 1$$
$3$ $$T^{2} + 1$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 16$$
$11$ $$(T + 4)^{2}$$
$13$ $$T^{2} + 36$$
$17$ $$T^{2} + 36$$
$19$ $$(T - 4)^{2}$$
$23$ $$T^{2} + 16$$
$29$ $$(T + 1)^{2}$$
$31$ $$(T + 8)^{2}$$
$37$ $$T^{2} + 4$$
$41$ $$(T + 6)^{2}$$
$43$ $$T^{2} + 16$$
$47$ $$T^{2}$$
$53$ $$T^{2} + 100$$
$59$ $$(T - 12)^{2}$$
$61$ $$(T + 10)^{2}$$
$67$ $$T^{2} + 64$$
$71$ $$(T + 8)^{2}$$
$73$ $$T^{2} + 4$$
$79$ $$T^{2}$$
$83$ $$T^{2} + 64$$
$89$ $$(T - 6)^{2}$$
$97$ $$T^{2} + 4$$