Properties

Label 2175.2.a.z
Level $2175$
Weight $2$
Character orbit 2175.a
Self dual yes
Analytic conductor $17.367$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2175,2,Mod(1,2175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2175.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,3,5,5,0,3,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.246832.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 6x^{2} + 7x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + q^{3} + (\beta_{2} - \beta_1 + 1) q^{4} + ( - \beta_1 + 1) q^{6} + ( - \beta_{2} + 2) q^{7} + ( - \beta_{3} + \beta_{2} - \beta_1 + 2) q^{8} + q^{9} + ( - \beta_{3} - \beta_1 + 3) q^{11}+ \cdots + ( - \beta_{3} - \beta_1 + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{2} + 5 q^{3} + 5 q^{4} + 3 q^{6} + 8 q^{7} + 9 q^{8} + 5 q^{9} + 12 q^{11} + 5 q^{12} + 2 q^{13} + 6 q^{14} + q^{16} + 3 q^{18} - 2 q^{19} + 8 q^{21} + 14 q^{22} + 8 q^{23} + 9 q^{24} + 5 q^{27}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 5x^{3} + 6x^{2} + 7x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 3\nu + 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 3\nu^{3} - 2\nu^{2} + 7\nu + 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 3\beta_{3} + 8\beta_{2} + 10\beta _1 + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.71457
1.71250
0.245526
−1.15351
−1.51908
−1.71457 1.00000 0.939748 0 −1.71457 −0.654317 1.81788 1.00000 0
1.2 −0.712495 1.00000 −1.49235 0 −0.712495 2.77986 2.48828 1.00000 0
1.3 0.754474 1.00000 −1.43077 0 0.754474 4.18524 −2.58843 1.00000 0
1.4 2.15351 1.00000 2.63760 0 2.15351 1.51591 1.37308 1.00000 0
1.5 2.51908 1.00000 4.34577 0 2.51908 0.173311 5.90919 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2175.2.a.z 5
3.b odd 2 1 6525.2.a.bl 5
5.b even 2 1 2175.2.a.w 5
5.c odd 4 2 435.2.c.e 10
15.d odd 2 1 6525.2.a.bs 5
15.e even 4 2 1305.2.c.j 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.2.c.e 10 5.c odd 4 2
1305.2.c.j 10 15.e even 4 2
2175.2.a.w 5 5.b even 2 1
2175.2.a.z 5 1.a even 1 1 trivial
6525.2.a.bl 5 3.b odd 2 1
6525.2.a.bs 5 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2175))\):

\( T_{2}^{5} - 3T_{2}^{4} - 3T_{2}^{3} + 11T_{2}^{2} + T_{2} - 5 \) Copy content Toggle raw display
\( T_{7}^{5} - 8T_{7}^{4} + 18T_{7}^{3} - 6T_{7}^{2} - 11T_{7} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 3 T^{4} + \cdots - 5 \) Copy content Toggle raw display
$3$ \( (T - 1)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - 8 T^{4} + \cdots + 2 \) Copy content Toggle raw display
$11$ \( T^{5} - 12 T^{4} + \cdots - 4 \) Copy content Toggle raw display
$13$ \( T^{5} - 2 T^{4} + \cdots - 4 \) Copy content Toggle raw display
$17$ \( T^{5} - 28 T^{3} + \cdots - 298 \) Copy content Toggle raw display
$19$ \( T^{5} + 2 T^{4} + \cdots - 304 \) Copy content Toggle raw display
$23$ \( T^{5} - 8 T^{4} + \cdots - 40 \) Copy content Toggle raw display
$29$ \( (T - 1)^{5} \) Copy content Toggle raw display
$31$ \( T^{5} - 2 T^{4} + \cdots - 6304 \) Copy content Toggle raw display
$37$ \( T^{5} - 16 T^{4} + \cdots - 584 \) Copy content Toggle raw display
$41$ \( T^{5} + 14 T^{4} + \cdots + 6176 \) Copy content Toggle raw display
$43$ \( T^{5} - 146 T^{3} + \cdots - 6848 \) Copy content Toggle raw display
$47$ \( T^{5} - 2 T^{4} + \cdots + 2692 \) Copy content Toggle raw display
$53$ \( T^{5} - 26 T^{4} + \cdots + 15056 \) Copy content Toggle raw display
$59$ \( T^{5} - 4 T^{4} + \cdots + 2000 \) Copy content Toggle raw display
$61$ \( T^{5} + 12 T^{4} + \cdots + 6872 \) Copy content Toggle raw display
$67$ \( T^{5} - 12 T^{4} + \cdots + 1310 \) Copy content Toggle raw display
$71$ \( T^{5} - 30 T^{4} + \cdots + 6592 \) Copy content Toggle raw display
$73$ \( T^{5} + 12 T^{4} + \cdots + 3368 \) Copy content Toggle raw display
$79$ \( T^{5} + 18 T^{4} + \cdots + 52048 \) Copy content Toggle raw display
$83$ \( T^{5} - 2 T^{4} + \cdots + 8 \) Copy content Toggle raw display
$89$ \( T^{5} + 22 T^{4} + \cdots + 40682 \) Copy content Toggle raw display
$97$ \( T^{5} - 20 T^{4} + \cdots - 328 \) Copy content Toggle raw display
show more
show less