Properties

Label 2175.2.a.w.1.3
Level $2175$
Weight $2$
Character 2175.1
Self dual yes
Analytic conductor $17.367$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.246832.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 6x^{2} + 7x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.245526\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.754474 q^{2} -1.00000 q^{3} -1.43077 q^{4} +0.754474 q^{6} -4.18524 q^{7} +2.58843 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-0.754474 q^{2} -1.00000 q^{3} -1.43077 q^{4} +0.754474 q^{6} -4.18524 q^{7} +2.58843 q^{8} +1.00000 q^{9} +0.596817 q^{11} +1.43077 q^{12} +2.18524 q^{13} +3.15766 q^{14} +0.908639 q^{16} -2.81314 q^{17} -0.754474 q^{18} +0.528904 q^{19} +4.18524 q^{21} -0.450283 q^{22} -0.590044 q^{23} -2.58843 q^{24} -1.64871 q^{26} -1.00000 q^{27} +5.98812 q^{28} +1.00000 q^{29} +8.02005 q^{31} -5.86240 q^{32} -0.596817 q^{33} +2.12244 q^{34} -1.43077 q^{36} +2.52465 q^{37} -0.399044 q^{38} -2.18524 q^{39} +1.57110 q^{41} -3.15766 q^{42} +6.98484 q^{43} -0.853908 q^{44} +0.445173 q^{46} +2.57524 q^{47} -0.908639 q^{48} +10.5163 q^{49} +2.81314 q^{51} -3.12658 q^{52} -10.3878 q^{53} +0.754474 q^{54} -10.8332 q^{56} -0.528904 q^{57} -0.754474 q^{58} +13.9168 q^{59} -11.1942 q^{61} -6.05092 q^{62} -4.18524 q^{63} +2.60575 q^{64} +0.450283 q^{66} -0.614139 q^{67} +4.02495 q^{68} +0.590044 q^{69} +9.28010 q^{71} +2.58843 q^{72} -9.59116 q^{73} -1.90478 q^{74} -0.756739 q^{76} -2.49783 q^{77} +1.64871 q^{78} -10.3396 q^{79} +1.00000 q^{81} -1.18536 q^{82} -3.92531 q^{83} -5.98812 q^{84} -5.26988 q^{86} -1.00000 q^{87} +1.54482 q^{88} -12.3352 q^{89} -9.14577 q^{91} +0.844217 q^{92} -8.02005 q^{93} -1.94295 q^{94} +5.86240 q^{96} -3.21794 q^{97} -7.93424 q^{98} +0.596817 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{2} - 5 q^{3} + 5 q^{4} + 3 q^{6} - 8 q^{7} - 9 q^{8} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 3 q^{2} - 5 q^{3} + 5 q^{4} + 3 q^{6} - 8 q^{7} - 9 q^{8} + 5 q^{9} + 12 q^{11} - 5 q^{12} - 2 q^{13} + 6 q^{14} + q^{16} - 3 q^{18} - 2 q^{19} + 8 q^{21} - 14 q^{22} - 8 q^{23} + 9 q^{24} - 5 q^{27} + 6 q^{28} + 5 q^{29} + 2 q^{31} - q^{32} - 12 q^{33} + 4 q^{34} + 5 q^{36} - 16 q^{37} + 14 q^{38} + 2 q^{39} - 14 q^{41} - 6 q^{42} + 20 q^{44} - 6 q^{46} - 2 q^{47} - q^{48} - 7 q^{49} - 16 q^{52} - 26 q^{53} + 3 q^{54} - 2 q^{56} + 2 q^{57} - 3 q^{58} + 4 q^{59} - 12 q^{61} - 8 q^{63} - 9 q^{64} + 14 q^{66} - 12 q^{67} + 20 q^{68} + 8 q^{69} + 30 q^{71} - 9 q^{72} + 12 q^{73} + 2 q^{74} - 44 q^{76} - 18 q^{77} - 18 q^{79} + 5 q^{81} - 10 q^{82} - 2 q^{83} - 6 q^{84} + 30 q^{86} - 5 q^{87} - 42 q^{88} - 22 q^{89} - 12 q^{91} - 20 q^{92} - 2 q^{93} - 50 q^{94} + q^{96} - 20 q^{97} + 9 q^{98} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.754474 −0.533494 −0.266747 0.963767i \(-0.585949\pi\)
−0.266747 + 0.963767i \(0.585949\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.43077 −0.715385
\(5\) 0 0
\(6\) 0.754474 0.308013
\(7\) −4.18524 −1.58187 −0.790937 0.611898i \(-0.790406\pi\)
−0.790937 + 0.611898i \(0.790406\pi\)
\(8\) 2.58843 0.915147
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.596817 0.179947 0.0899736 0.995944i \(-0.471322\pi\)
0.0899736 + 0.995944i \(0.471322\pi\)
\(12\) 1.43077 0.413027
\(13\) 2.18524 0.606077 0.303039 0.952978i \(-0.401999\pi\)
0.303039 + 0.952978i \(0.401999\pi\)
\(14\) 3.15766 0.843919
\(15\) 0 0
\(16\) 0.908639 0.227160
\(17\) −2.81314 −0.682286 −0.341143 0.940011i \(-0.610814\pi\)
−0.341143 + 0.940011i \(0.610814\pi\)
\(18\) −0.754474 −0.177831
\(19\) 0.528904 0.121339 0.0606694 0.998158i \(-0.480676\pi\)
0.0606694 + 0.998158i \(0.480676\pi\)
\(20\) 0 0
\(21\) 4.18524 0.913295
\(22\) −0.450283 −0.0960007
\(23\) −0.590044 −0.123033 −0.0615163 0.998106i \(-0.519594\pi\)
−0.0615163 + 0.998106i \(0.519594\pi\)
\(24\) −2.58843 −0.528360
\(25\) 0 0
\(26\) −1.64871 −0.323338
\(27\) −1.00000 −0.192450
\(28\) 5.98812 1.13165
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 8.02005 1.44044 0.720222 0.693744i \(-0.244040\pi\)
0.720222 + 0.693744i \(0.244040\pi\)
\(32\) −5.86240 −1.03633
\(33\) −0.596817 −0.103893
\(34\) 2.12244 0.363995
\(35\) 0 0
\(36\) −1.43077 −0.238462
\(37\) 2.52465 0.415050 0.207525 0.978230i \(-0.433459\pi\)
0.207525 + 0.978230i \(0.433459\pi\)
\(38\) −0.399044 −0.0647335
\(39\) −2.18524 −0.349919
\(40\) 0 0
\(41\) 1.57110 0.245365 0.122683 0.992446i \(-0.460850\pi\)
0.122683 + 0.992446i \(0.460850\pi\)
\(42\) −3.15766 −0.487237
\(43\) 6.98484 1.06518 0.532589 0.846374i \(-0.321219\pi\)
0.532589 + 0.846374i \(0.321219\pi\)
\(44\) −0.853908 −0.128731
\(45\) 0 0
\(46\) 0.445173 0.0656372
\(47\) 2.57524 0.375638 0.187819 0.982204i \(-0.439858\pi\)
0.187819 + 0.982204i \(0.439858\pi\)
\(48\) −0.908639 −0.131151
\(49\) 10.5163 1.50232
\(50\) 0 0
\(51\) 2.81314 0.393918
\(52\) −3.12658 −0.433578
\(53\) −10.3878 −1.42688 −0.713438 0.700719i \(-0.752863\pi\)
−0.713438 + 0.700719i \(0.752863\pi\)
\(54\) 0.754474 0.102671
\(55\) 0 0
\(56\) −10.8332 −1.44765
\(57\) −0.528904 −0.0700550
\(58\) −0.754474 −0.0990673
\(59\) 13.9168 1.81181 0.905907 0.423477i \(-0.139190\pi\)
0.905907 + 0.423477i \(0.139190\pi\)
\(60\) 0 0
\(61\) −11.1942 −1.43327 −0.716633 0.697450i \(-0.754318\pi\)
−0.716633 + 0.697450i \(0.754318\pi\)
\(62\) −6.05092 −0.768468
\(63\) −4.18524 −0.527291
\(64\) 2.60575 0.325718
\(65\) 0 0
\(66\) 0.450283 0.0554260
\(67\) −0.614139 −0.0750290 −0.0375145 0.999296i \(-0.511944\pi\)
−0.0375145 + 0.999296i \(0.511944\pi\)
\(68\) 4.02495 0.488097
\(69\) 0.590044 0.0710330
\(70\) 0 0
\(71\) 9.28010 1.10134 0.550672 0.834721i \(-0.314371\pi\)
0.550672 + 0.834721i \(0.314371\pi\)
\(72\) 2.58843 0.305049
\(73\) −9.59116 −1.12256 −0.561280 0.827626i \(-0.689691\pi\)
−0.561280 + 0.827626i \(0.689691\pi\)
\(74\) −1.90478 −0.221427
\(75\) 0 0
\(76\) −0.756739 −0.0868039
\(77\) −2.49783 −0.284654
\(78\) 1.64871 0.186680
\(79\) −10.3396 −1.16330 −0.581649 0.813440i \(-0.697592\pi\)
−0.581649 + 0.813440i \(0.697592\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −1.18536 −0.130901
\(83\) −3.92531 −0.430859 −0.215430 0.976519i \(-0.569115\pi\)
−0.215430 + 0.976519i \(0.569115\pi\)
\(84\) −5.98812 −0.653357
\(85\) 0 0
\(86\) −5.26988 −0.568265
\(87\) −1.00000 −0.107211
\(88\) 1.54482 0.164678
\(89\) −12.3352 −1.30752 −0.653762 0.756700i \(-0.726810\pi\)
−0.653762 + 0.756700i \(0.726810\pi\)
\(90\) 0 0
\(91\) −9.14577 −0.958738
\(92\) 0.844217 0.0880157
\(93\) −8.02005 −0.831641
\(94\) −1.94295 −0.200400
\(95\) 0 0
\(96\) 5.86240 0.598328
\(97\) −3.21794 −0.326732 −0.163366 0.986566i \(-0.552235\pi\)
−0.163366 + 0.986566i \(0.552235\pi\)
\(98\) −7.93424 −0.801480
\(99\) 0.596817 0.0599824
\(100\) 0 0
\(101\) 9.31726 0.927102 0.463551 0.886070i \(-0.346575\pi\)
0.463551 + 0.886070i \(0.346575\pi\)
\(102\) −2.12244 −0.210153
\(103\) −20.1574 −1.98617 −0.993085 0.117393i \(-0.962546\pi\)
−0.993085 + 0.117393i \(0.962546\pi\)
\(104\) 5.65634 0.554650
\(105\) 0 0
\(106\) 7.83733 0.761229
\(107\) −1.58569 −0.153295 −0.0766475 0.997058i \(-0.524422\pi\)
−0.0766475 + 0.997058i \(0.524422\pi\)
\(108\) 1.43077 0.137676
\(109\) −7.91051 −0.757690 −0.378845 0.925460i \(-0.623679\pi\)
−0.378845 + 0.925460i \(0.623679\pi\)
\(110\) 0 0
\(111\) −2.52465 −0.239629
\(112\) −3.80287 −0.359338
\(113\) 3.07328 0.289110 0.144555 0.989497i \(-0.453825\pi\)
0.144555 + 0.989497i \(0.453825\pi\)
\(114\) 0.399044 0.0373739
\(115\) 0 0
\(116\) −1.43077 −0.132844
\(117\) 2.18524 0.202026
\(118\) −10.4999 −0.966591
\(119\) 11.7737 1.07929
\(120\) 0 0
\(121\) −10.6438 −0.967619
\(122\) 8.44571 0.764639
\(123\) −1.57110 −0.141662
\(124\) −11.4748 −1.03047
\(125\) 0 0
\(126\) 3.15766 0.281306
\(127\) 12.9254 1.14694 0.573472 0.819225i \(-0.305596\pi\)
0.573472 + 0.819225i \(0.305596\pi\)
\(128\) 9.75882 0.862566
\(129\) −6.98484 −0.614980
\(130\) 0 0
\(131\) −5.69473 −0.497551 −0.248775 0.968561i \(-0.580028\pi\)
−0.248775 + 0.968561i \(0.580028\pi\)
\(132\) 0.853908 0.0743231
\(133\) −2.21359 −0.191943
\(134\) 0.463352 0.0400275
\(135\) 0 0
\(136\) −7.28160 −0.624392
\(137\) −18.7274 −1.59999 −0.799996 0.600005i \(-0.795165\pi\)
−0.799996 + 0.600005i \(0.795165\pi\)
\(138\) −0.445173 −0.0378956
\(139\) 1.34376 0.113976 0.0569880 0.998375i \(-0.481850\pi\)
0.0569880 + 0.998375i \(0.481850\pi\)
\(140\) 0 0
\(141\) −2.57524 −0.216875
\(142\) −7.00159 −0.587560
\(143\) 1.30419 0.109062
\(144\) 0.908639 0.0757199
\(145\) 0 0
\(146\) 7.23628 0.598879
\(147\) −10.5163 −0.867366
\(148\) −3.61219 −0.296920
\(149\) −15.9925 −1.31016 −0.655079 0.755561i \(-0.727365\pi\)
−0.655079 + 0.755561i \(0.727365\pi\)
\(150\) 0 0
\(151\) 17.9595 1.46152 0.730760 0.682635i \(-0.239166\pi\)
0.730760 + 0.682635i \(0.239166\pi\)
\(152\) 1.36903 0.111043
\(153\) −2.81314 −0.227429
\(154\) 1.88454 0.151861
\(155\) 0 0
\(156\) 3.12658 0.250327
\(157\) −6.78158 −0.541229 −0.270615 0.962688i \(-0.587227\pi\)
−0.270615 + 0.962688i \(0.587227\pi\)
\(158\) 7.80097 0.620612
\(159\) 10.3878 0.823807
\(160\) 0 0
\(161\) 2.46948 0.194622
\(162\) −0.754474 −0.0592771
\(163\) −20.9951 −1.64447 −0.822233 0.569151i \(-0.807272\pi\)
−0.822233 + 0.569151i \(0.807272\pi\)
\(164\) −2.24789 −0.175531
\(165\) 0 0
\(166\) 2.96155 0.229861
\(167\) 14.9135 1.15404 0.577020 0.816730i \(-0.304216\pi\)
0.577020 + 0.816730i \(0.304216\pi\)
\(168\) 10.8332 0.835799
\(169\) −8.22471 −0.632670
\(170\) 0 0
\(171\) 0.528904 0.0404463
\(172\) −9.99369 −0.762011
\(173\) 10.8685 0.826318 0.413159 0.910659i \(-0.364425\pi\)
0.413159 + 0.910659i \(0.364425\pi\)
\(174\) 0.754474 0.0571965
\(175\) 0 0
\(176\) 0.542291 0.0408767
\(177\) −13.9168 −1.04605
\(178\) 9.30655 0.697556
\(179\) 1.26613 0.0946349 0.0473175 0.998880i \(-0.484933\pi\)
0.0473175 + 0.998880i \(0.484933\pi\)
\(180\) 0 0
\(181\) −5.80673 −0.431611 −0.215805 0.976436i \(-0.569238\pi\)
−0.215805 + 0.976436i \(0.569238\pi\)
\(182\) 6.90025 0.511480
\(183\) 11.1942 0.827497
\(184\) −1.52729 −0.112593
\(185\) 0 0
\(186\) 6.05092 0.443675
\(187\) −1.67893 −0.122776
\(188\) −3.68458 −0.268725
\(189\) 4.18524 0.304432
\(190\) 0 0
\(191\) 15.3358 1.10966 0.554830 0.831964i \(-0.312783\pi\)
0.554830 + 0.831964i \(0.312783\pi\)
\(192\) −2.60575 −0.188054
\(193\) 16.4946 1.18731 0.593653 0.804721i \(-0.297685\pi\)
0.593653 + 0.804721i \(0.297685\pi\)
\(194\) 2.42785 0.174310
\(195\) 0 0
\(196\) −15.0463 −1.07474
\(197\) −24.2353 −1.72670 −0.863348 0.504609i \(-0.831637\pi\)
−0.863348 + 0.504609i \(0.831637\pi\)
\(198\) −0.450283 −0.0320002
\(199\) 17.4875 1.23965 0.619826 0.784739i \(-0.287203\pi\)
0.619826 + 0.784739i \(0.287203\pi\)
\(200\) 0 0
\(201\) 0.614139 0.0433180
\(202\) −7.02963 −0.494603
\(203\) −4.18524 −0.293746
\(204\) −4.02495 −0.281803
\(205\) 0 0
\(206\) 15.2083 1.05961
\(207\) −0.590044 −0.0410109
\(208\) 1.98560 0.137676
\(209\) 0.315659 0.0218346
\(210\) 0 0
\(211\) −26.0504 −1.79338 −0.896692 0.442655i \(-0.854037\pi\)
−0.896692 + 0.442655i \(0.854037\pi\)
\(212\) 14.8626 1.02076
\(213\) −9.28010 −0.635862
\(214\) 1.19637 0.0817819
\(215\) 0 0
\(216\) −2.58843 −0.176120
\(217\) −33.5659 −2.27860
\(218\) 5.96827 0.404223
\(219\) 9.59116 0.648110
\(220\) 0 0
\(221\) −6.14739 −0.413518
\(222\) 1.90478 0.127841
\(223\) −10.7895 −0.722519 −0.361259 0.932465i \(-0.617653\pi\)
−0.361259 + 0.932465i \(0.617653\pi\)
\(224\) 24.5356 1.63935
\(225\) 0 0
\(226\) −2.31871 −0.154238
\(227\) 6.99182 0.464063 0.232032 0.972708i \(-0.425463\pi\)
0.232032 + 0.972708i \(0.425463\pi\)
\(228\) 0.756739 0.0501163
\(229\) −20.9503 −1.38444 −0.692218 0.721689i \(-0.743366\pi\)
−0.692218 + 0.721689i \(0.743366\pi\)
\(230\) 0 0
\(231\) 2.49783 0.164345
\(232\) 2.58843 0.169938
\(233\) 3.85567 0.252593 0.126297 0.991993i \(-0.459691\pi\)
0.126297 + 0.991993i \(0.459691\pi\)
\(234\) −1.64871 −0.107779
\(235\) 0 0
\(236\) −19.9117 −1.29614
\(237\) 10.3396 0.671630
\(238\) −8.88293 −0.575795
\(239\) −25.3084 −1.63706 −0.818532 0.574461i \(-0.805212\pi\)
−0.818532 + 0.574461i \(0.805212\pi\)
\(240\) 0 0
\(241\) −22.8510 −1.47196 −0.735981 0.677002i \(-0.763279\pi\)
−0.735981 + 0.677002i \(0.763279\pi\)
\(242\) 8.03048 0.516219
\(243\) −1.00000 −0.0641500
\(244\) 16.0163 1.02534
\(245\) 0 0
\(246\) 1.18536 0.0755756
\(247\) 1.15578 0.0735407
\(248\) 20.7593 1.31822
\(249\) 3.92531 0.248757
\(250\) 0 0
\(251\) −7.37025 −0.465206 −0.232603 0.972572i \(-0.574724\pi\)
−0.232603 + 0.972572i \(0.574724\pi\)
\(252\) 5.98812 0.377216
\(253\) −0.352149 −0.0221394
\(254\) −9.75188 −0.611888
\(255\) 0 0
\(256\) −12.5743 −0.785892
\(257\) 3.21575 0.200593 0.100296 0.994958i \(-0.468021\pi\)
0.100296 + 0.994958i \(0.468021\pi\)
\(258\) 5.26988 0.328088
\(259\) −10.5663 −0.656557
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) 4.29652 0.265440
\(263\) 16.0190 0.987774 0.493887 0.869526i \(-0.335576\pi\)
0.493887 + 0.869526i \(0.335576\pi\)
\(264\) −1.54482 −0.0950769
\(265\) 0 0
\(266\) 1.67010 0.102400
\(267\) 12.3352 0.754899
\(268\) 0.878691 0.0536746
\(269\) −19.9820 −1.21832 −0.609161 0.793047i \(-0.708494\pi\)
−0.609161 + 0.793047i \(0.708494\pi\)
\(270\) 0 0
\(271\) −8.72743 −0.530153 −0.265077 0.964227i \(-0.585397\pi\)
−0.265077 + 0.964227i \(0.585397\pi\)
\(272\) −2.55613 −0.154988
\(273\) 9.14577 0.553527
\(274\) 14.1294 0.853585
\(275\) 0 0
\(276\) −0.844217 −0.0508159
\(277\) 30.5856 1.83771 0.918856 0.394594i \(-0.129115\pi\)
0.918856 + 0.394594i \(0.129115\pi\)
\(278\) −1.01383 −0.0608055
\(279\) 8.02005 0.480148
\(280\) 0 0
\(281\) 30.2570 1.80498 0.902490 0.430712i \(-0.141737\pi\)
0.902490 + 0.430712i \(0.141737\pi\)
\(282\) 1.94295 0.115701
\(283\) 9.35107 0.555863 0.277932 0.960601i \(-0.410351\pi\)
0.277932 + 0.960601i \(0.410351\pi\)
\(284\) −13.2777 −0.787885
\(285\) 0 0
\(286\) −0.983978 −0.0581838
\(287\) −6.57545 −0.388137
\(288\) −5.86240 −0.345445
\(289\) −9.08625 −0.534485
\(290\) 0 0
\(291\) 3.21794 0.188639
\(292\) 13.7227 0.803062
\(293\) 8.47749 0.495260 0.247630 0.968855i \(-0.420348\pi\)
0.247630 + 0.968855i \(0.420348\pi\)
\(294\) 7.93424 0.462734
\(295\) 0 0
\(296\) 6.53487 0.379832
\(297\) −0.596817 −0.0346309
\(298\) 12.0659 0.698961
\(299\) −1.28939 −0.0745673
\(300\) 0 0
\(301\) −29.2332 −1.68498
\(302\) −13.5499 −0.779711
\(303\) −9.31726 −0.535263
\(304\) 0.480582 0.0275633
\(305\) 0 0
\(306\) 2.12244 0.121332
\(307\) −19.8740 −1.13427 −0.567135 0.823625i \(-0.691948\pi\)
−0.567135 + 0.823625i \(0.691948\pi\)
\(308\) 3.57381 0.203637
\(309\) 20.1574 1.14672
\(310\) 0 0
\(311\) −12.5476 −0.711507 −0.355754 0.934580i \(-0.615776\pi\)
−0.355754 + 0.934580i \(0.615776\pi\)
\(312\) −5.65634 −0.320227
\(313\) 2.82942 0.159928 0.0799640 0.996798i \(-0.474519\pi\)
0.0799640 + 0.996798i \(0.474519\pi\)
\(314\) 5.11653 0.288742
\(315\) 0 0
\(316\) 14.7936 0.832205
\(317\) −6.27390 −0.352377 −0.176189 0.984356i \(-0.556377\pi\)
−0.176189 + 0.984356i \(0.556377\pi\)
\(318\) −7.83733 −0.439496
\(319\) 0.596817 0.0334154
\(320\) 0 0
\(321\) 1.58569 0.0885049
\(322\) −1.86316 −0.103830
\(323\) −1.48788 −0.0827878
\(324\) −1.43077 −0.0794872
\(325\) 0 0
\(326\) 15.8403 0.877312
\(327\) 7.91051 0.437452
\(328\) 4.06669 0.224545
\(329\) −10.7780 −0.594211
\(330\) 0 0
\(331\) −4.47271 −0.245843 −0.122921 0.992416i \(-0.539226\pi\)
−0.122921 + 0.992416i \(0.539226\pi\)
\(332\) 5.61622 0.308230
\(333\) 2.52465 0.138350
\(334\) −11.2518 −0.615673
\(335\) 0 0
\(336\) 3.80287 0.207464
\(337\) 3.62191 0.197298 0.0986489 0.995122i \(-0.468548\pi\)
0.0986489 + 0.995122i \(0.468548\pi\)
\(338\) 6.20533 0.337526
\(339\) −3.07328 −0.166918
\(340\) 0 0
\(341\) 4.78651 0.259204
\(342\) −0.399044 −0.0215778
\(343\) −14.7164 −0.794611
\(344\) 18.0797 0.974794
\(345\) 0 0
\(346\) −8.20002 −0.440836
\(347\) 34.4636 1.85010 0.925051 0.379844i \(-0.124022\pi\)
0.925051 + 0.379844i \(0.124022\pi\)
\(348\) 1.43077 0.0766973
\(349\) −18.0401 −0.965665 −0.482832 0.875713i \(-0.660392\pi\)
−0.482832 + 0.875713i \(0.660392\pi\)
\(350\) 0 0
\(351\) −2.18524 −0.116640
\(352\) −3.49878 −0.186486
\(353\) −7.60470 −0.404757 −0.202379 0.979307i \(-0.564867\pi\)
−0.202379 + 0.979307i \(0.564867\pi\)
\(354\) 10.4999 0.558062
\(355\) 0 0
\(356\) 17.6488 0.935382
\(357\) −11.7737 −0.623129
\(358\) −0.955261 −0.0504871
\(359\) −2.32286 −0.122596 −0.0612980 0.998120i \(-0.519524\pi\)
−0.0612980 + 0.998120i \(0.519524\pi\)
\(360\) 0 0
\(361\) −18.7203 −0.985277
\(362\) 4.38103 0.230262
\(363\) 10.6438 0.558655
\(364\) 13.0855 0.685866
\(365\) 0 0
\(366\) −8.44571 −0.441464
\(367\) 6.38930 0.333519 0.166759 0.985998i \(-0.446670\pi\)
0.166759 + 0.985998i \(0.446670\pi\)
\(368\) −0.536137 −0.0279481
\(369\) 1.57110 0.0817884
\(370\) 0 0
\(371\) 43.4755 2.25714
\(372\) 11.4748 0.594943
\(373\) 24.1627 1.25110 0.625549 0.780185i \(-0.284875\pi\)
0.625549 + 0.780185i \(0.284875\pi\)
\(374\) 1.26671 0.0654999
\(375\) 0 0
\(376\) 6.66583 0.343764
\(377\) 2.18524 0.112546
\(378\) −3.15766 −0.162412
\(379\) −29.2093 −1.50038 −0.750191 0.661222i \(-0.770038\pi\)
−0.750191 + 0.661222i \(0.770038\pi\)
\(380\) 0 0
\(381\) −12.9254 −0.662189
\(382\) −11.5705 −0.591997
\(383\) −31.7731 −1.62353 −0.811766 0.583983i \(-0.801493\pi\)
−0.811766 + 0.583983i \(0.801493\pi\)
\(384\) −9.75882 −0.498003
\(385\) 0 0
\(386\) −12.4447 −0.633420
\(387\) 6.98484 0.355059
\(388\) 4.60413 0.233739
\(389\) 23.7158 1.20244 0.601220 0.799084i \(-0.294682\pi\)
0.601220 + 0.799084i \(0.294682\pi\)
\(390\) 0 0
\(391\) 1.65988 0.0839435
\(392\) 27.2206 1.37485
\(393\) 5.69473 0.287261
\(394\) 18.2849 0.921181
\(395\) 0 0
\(396\) −0.853908 −0.0429105
\(397\) 32.8280 1.64759 0.823794 0.566889i \(-0.191853\pi\)
0.823794 + 0.566889i \(0.191853\pi\)
\(398\) −13.1938 −0.661347
\(399\) 2.21359 0.110818
\(400\) 0 0
\(401\) −8.21905 −0.410440 −0.205220 0.978716i \(-0.565791\pi\)
−0.205220 + 0.978716i \(0.565791\pi\)
\(402\) −0.463352 −0.0231099
\(403\) 17.5258 0.873020
\(404\) −13.3308 −0.663234
\(405\) 0 0
\(406\) 3.15766 0.156712
\(407\) 1.50676 0.0746871
\(408\) 7.28160 0.360493
\(409\) 27.9114 1.38013 0.690065 0.723748i \(-0.257582\pi\)
0.690065 + 0.723748i \(0.257582\pi\)
\(410\) 0 0
\(411\) 18.7274 0.923756
\(412\) 28.8406 1.42088
\(413\) −58.2452 −2.86606
\(414\) 0.445173 0.0218791
\(415\) 0 0
\(416\) −12.8108 −0.628099
\(417\) −1.34376 −0.0658041
\(418\) −0.238156 −0.0116486
\(419\) 27.0379 1.32089 0.660445 0.750874i \(-0.270368\pi\)
0.660445 + 0.750874i \(0.270368\pi\)
\(420\) 0 0
\(421\) 3.79559 0.184986 0.0924928 0.995713i \(-0.470516\pi\)
0.0924928 + 0.995713i \(0.470516\pi\)
\(422\) 19.6544 0.956759
\(423\) 2.57524 0.125213
\(424\) −26.8881 −1.30580
\(425\) 0 0
\(426\) 7.00159 0.339228
\(427\) 46.8503 2.26725
\(428\) 2.26876 0.109665
\(429\) −1.30419 −0.0629669
\(430\) 0 0
\(431\) −0.405550 −0.0195347 −0.00976733 0.999952i \(-0.503109\pi\)
−0.00976733 + 0.999952i \(0.503109\pi\)
\(432\) −0.908639 −0.0437169
\(433\) 25.5978 1.23015 0.615075 0.788468i \(-0.289126\pi\)
0.615075 + 0.788468i \(0.289126\pi\)
\(434\) 25.3246 1.21562
\(435\) 0 0
\(436\) 11.3181 0.542039
\(437\) −0.312077 −0.0149286
\(438\) −7.23628 −0.345763
\(439\) −26.2378 −1.25226 −0.626132 0.779717i \(-0.715363\pi\)
−0.626132 + 0.779717i \(0.715363\pi\)
\(440\) 0 0
\(441\) 10.5163 0.500774
\(442\) 4.63805 0.220609
\(443\) −26.5050 −1.25929 −0.629645 0.776883i \(-0.716800\pi\)
−0.629645 + 0.776883i \(0.716800\pi\)
\(444\) 3.61219 0.171427
\(445\) 0 0
\(446\) 8.14040 0.385459
\(447\) 15.9925 0.756420
\(448\) −10.9057 −0.515245
\(449\) 5.57064 0.262895 0.131447 0.991323i \(-0.458038\pi\)
0.131447 + 0.991323i \(0.458038\pi\)
\(450\) 0 0
\(451\) 0.937662 0.0441528
\(452\) −4.39715 −0.206825
\(453\) −17.9595 −0.843809
\(454\) −5.27514 −0.247575
\(455\) 0 0
\(456\) −1.36903 −0.0641106
\(457\) −25.3774 −1.18710 −0.593551 0.804796i \(-0.702275\pi\)
−0.593551 + 0.804796i \(0.702275\pi\)
\(458\) 15.8065 0.738587
\(459\) 2.81314 0.131306
\(460\) 0 0
\(461\) 2.20886 0.102877 0.0514384 0.998676i \(-0.483619\pi\)
0.0514384 + 0.998676i \(0.483619\pi\)
\(462\) −1.88454 −0.0876769
\(463\) −7.56591 −0.351618 −0.175809 0.984424i \(-0.556254\pi\)
−0.175809 + 0.984424i \(0.556254\pi\)
\(464\) 0.908639 0.0421825
\(465\) 0 0
\(466\) −2.90900 −0.134757
\(467\) −19.9056 −0.921120 −0.460560 0.887629i \(-0.652351\pi\)
−0.460560 + 0.887629i \(0.652351\pi\)
\(468\) −3.12658 −0.144526
\(469\) 2.57032 0.118686
\(470\) 0 0
\(471\) 6.78158 0.312479
\(472\) 36.0226 1.65808
\(473\) 4.16867 0.191676
\(474\) −7.80097 −0.358311
\(475\) 0 0
\(476\) −16.8454 −0.772108
\(477\) −10.3878 −0.475625
\(478\) 19.0945 0.873363
\(479\) 10.3910 0.474778 0.237389 0.971415i \(-0.423708\pi\)
0.237389 + 0.971415i \(0.423708\pi\)
\(480\) 0 0
\(481\) 5.51698 0.251552
\(482\) 17.2405 0.785282
\(483\) −2.46948 −0.112365
\(484\) 15.2288 0.692220
\(485\) 0 0
\(486\) 0.754474 0.0342236
\(487\) −10.0574 −0.455744 −0.227872 0.973691i \(-0.573177\pi\)
−0.227872 + 0.973691i \(0.573177\pi\)
\(488\) −28.9753 −1.31165
\(489\) 20.9951 0.949433
\(490\) 0 0
\(491\) −0.193599 −0.00873699 −0.00436849 0.999990i \(-0.501391\pi\)
−0.00436849 + 0.999990i \(0.501391\pi\)
\(492\) 2.24789 0.101343
\(493\) −2.81314 −0.126697
\(494\) −0.872008 −0.0392335
\(495\) 0 0
\(496\) 7.28733 0.327211
\(497\) −38.8395 −1.74219
\(498\) −2.96155 −0.132710
\(499\) 13.6181 0.609630 0.304815 0.952412i \(-0.401405\pi\)
0.304815 + 0.952412i \(0.401405\pi\)
\(500\) 0 0
\(501\) −14.9135 −0.666285
\(502\) 5.56066 0.248185
\(503\) 30.7553 1.37131 0.685655 0.727926i \(-0.259516\pi\)
0.685655 + 0.727926i \(0.259516\pi\)
\(504\) −10.8332 −0.482549
\(505\) 0 0
\(506\) 0.265687 0.0118112
\(507\) 8.22471 0.365272
\(508\) −18.4933 −0.820506
\(509\) −1.01272 −0.0448881 −0.0224441 0.999748i \(-0.507145\pi\)
−0.0224441 + 0.999748i \(0.507145\pi\)
\(510\) 0 0
\(511\) 40.1413 1.77575
\(512\) −10.0307 −0.443298
\(513\) −0.528904 −0.0233517
\(514\) −2.42620 −0.107015
\(515\) 0 0
\(516\) 9.99369 0.439948
\(517\) 1.53695 0.0675950
\(518\) 7.97198 0.350269
\(519\) −10.8685 −0.477075
\(520\) 0 0
\(521\) 6.02284 0.263865 0.131933 0.991259i \(-0.457882\pi\)
0.131933 + 0.991259i \(0.457882\pi\)
\(522\) −0.754474 −0.0330224
\(523\) −20.3870 −0.891460 −0.445730 0.895167i \(-0.647056\pi\)
−0.445730 + 0.895167i \(0.647056\pi\)
\(524\) 8.14784 0.355940
\(525\) 0 0
\(526\) −12.0859 −0.526971
\(527\) −22.5615 −0.982795
\(528\) −0.542291 −0.0236002
\(529\) −22.6518 −0.984863
\(530\) 0 0
\(531\) 13.9168 0.603938
\(532\) 3.16714 0.137313
\(533\) 3.43324 0.148710
\(534\) −9.30655 −0.402734
\(535\) 0 0
\(536\) −1.58965 −0.0686625
\(537\) −1.26613 −0.0546375
\(538\) 15.0759 0.649967
\(539\) 6.27629 0.270339
\(540\) 0 0
\(541\) −16.4420 −0.706895 −0.353448 0.935454i \(-0.614991\pi\)
−0.353448 + 0.935454i \(0.614991\pi\)
\(542\) 6.58461 0.282833
\(543\) 5.80673 0.249191
\(544\) 16.4917 0.707077
\(545\) 0 0
\(546\) −6.90025 −0.295303
\(547\) 28.2531 1.20802 0.604008 0.796979i \(-0.293570\pi\)
0.604008 + 0.796979i \(0.293570\pi\)
\(548\) 26.7946 1.14461
\(549\) −11.1942 −0.477756
\(550\) 0 0
\(551\) 0.528904 0.0225321
\(552\) 1.52729 0.0650056
\(553\) 43.2738 1.84019
\(554\) −23.0760 −0.980407
\(555\) 0 0
\(556\) −1.92261 −0.0815367
\(557\) −36.3662 −1.54089 −0.770443 0.637508i \(-0.779965\pi\)
−0.770443 + 0.637508i \(0.779965\pi\)
\(558\) −6.05092 −0.256156
\(559\) 15.2636 0.645580
\(560\) 0 0
\(561\) 1.67893 0.0708845
\(562\) −22.8281 −0.962945
\(563\) 5.24750 0.221156 0.110578 0.993867i \(-0.464730\pi\)
0.110578 + 0.993867i \(0.464730\pi\)
\(564\) 3.68458 0.155149
\(565\) 0 0
\(566\) −7.05514 −0.296550
\(567\) −4.18524 −0.175764
\(568\) 24.0208 1.00789
\(569\) 17.3773 0.728495 0.364248 0.931302i \(-0.381326\pi\)
0.364248 + 0.931302i \(0.381326\pi\)
\(570\) 0 0
\(571\) −22.2889 −0.932760 −0.466380 0.884584i \(-0.654442\pi\)
−0.466380 + 0.884584i \(0.654442\pi\)
\(572\) −1.86600 −0.0780212
\(573\) −15.3358 −0.640663
\(574\) 4.96101 0.207068
\(575\) 0 0
\(576\) 2.60575 0.108573
\(577\) −26.1738 −1.08963 −0.544816 0.838556i \(-0.683400\pi\)
−0.544816 + 0.838556i \(0.683400\pi\)
\(578\) 6.85534 0.285145
\(579\) −16.4946 −0.685491
\(580\) 0 0
\(581\) 16.4284 0.681564
\(582\) −2.42785 −0.100638
\(583\) −6.19962 −0.256762
\(584\) −24.8260 −1.02731
\(585\) 0 0
\(586\) −6.39604 −0.264218
\(587\) 26.4002 1.08965 0.544827 0.838549i \(-0.316595\pi\)
0.544827 + 0.838549i \(0.316595\pi\)
\(588\) 15.0463 0.620501
\(589\) 4.24184 0.174782
\(590\) 0 0
\(591\) 24.2353 0.996908
\(592\) 2.29400 0.0942826
\(593\) −19.4942 −0.800532 −0.400266 0.916399i \(-0.631082\pi\)
−0.400266 + 0.916399i \(0.631082\pi\)
\(594\) 0.450283 0.0184753
\(595\) 0 0
\(596\) 22.8816 0.937266
\(597\) −17.4875 −0.715714
\(598\) 0.972811 0.0397812
\(599\) 20.9453 0.855800 0.427900 0.903826i \(-0.359254\pi\)
0.427900 + 0.903826i \(0.359254\pi\)
\(600\) 0 0
\(601\) 14.3956 0.587208 0.293604 0.955927i \(-0.405145\pi\)
0.293604 + 0.955927i \(0.405145\pi\)
\(602\) 22.0557 0.898924
\(603\) −0.614139 −0.0250097
\(604\) −25.6958 −1.04555
\(605\) 0 0
\(606\) 7.02963 0.285559
\(607\) 8.53979 0.346620 0.173310 0.984867i \(-0.444554\pi\)
0.173310 + 0.984867i \(0.444554\pi\)
\(608\) −3.10064 −0.125748
\(609\) 4.18524 0.169595
\(610\) 0 0
\(611\) 5.62753 0.227666
\(612\) 4.02495 0.162699
\(613\) −36.7173 −1.48300 −0.741499 0.670954i \(-0.765885\pi\)
−0.741499 + 0.670954i \(0.765885\pi\)
\(614\) 14.9944 0.605125
\(615\) 0 0
\(616\) −6.46544 −0.260500
\(617\) 45.1304 1.81688 0.908441 0.418014i \(-0.137274\pi\)
0.908441 + 0.418014i \(0.137274\pi\)
\(618\) −15.2083 −0.611766
\(619\) −18.9737 −0.762618 −0.381309 0.924448i \(-0.624527\pi\)
−0.381309 + 0.924448i \(0.624527\pi\)
\(620\) 0 0
\(621\) 0.590044 0.0236777
\(622\) 9.46681 0.379585
\(623\) 51.6256 2.06834
\(624\) −1.98560 −0.0794875
\(625\) 0 0
\(626\) −2.13472 −0.0853206
\(627\) −0.315659 −0.0126062
\(628\) 9.70288 0.387187
\(629\) −7.10219 −0.283183
\(630\) 0 0
\(631\) −18.5514 −0.738518 −0.369259 0.929327i \(-0.620388\pi\)
−0.369259 + 0.929327i \(0.620388\pi\)
\(632\) −26.7633 −1.06459
\(633\) 26.0504 1.03541
\(634\) 4.73349 0.187991
\(635\) 0 0
\(636\) −14.8626 −0.589339
\(637\) 22.9806 0.910524
\(638\) −0.450283 −0.0178269
\(639\) 9.28010 0.367115
\(640\) 0 0
\(641\) −34.5735 −1.36557 −0.682785 0.730619i \(-0.739231\pi\)
−0.682785 + 0.730619i \(0.739231\pi\)
\(642\) −1.19637 −0.0472168
\(643\) −6.58510 −0.259691 −0.129846 0.991534i \(-0.541448\pi\)
−0.129846 + 0.991534i \(0.541448\pi\)
\(644\) −3.53325 −0.139230
\(645\) 0 0
\(646\) 1.12257 0.0441668
\(647\) −10.0375 −0.394614 −0.197307 0.980342i \(-0.563220\pi\)
−0.197307 + 0.980342i \(0.563220\pi\)
\(648\) 2.58843 0.101683
\(649\) 8.30579 0.326031
\(650\) 0 0
\(651\) 33.5659 1.31555
\(652\) 30.0392 1.17643
\(653\) −3.25188 −0.127256 −0.0636280 0.997974i \(-0.520267\pi\)
−0.0636280 + 0.997974i \(0.520267\pi\)
\(654\) −5.96827 −0.233378
\(655\) 0 0
\(656\) 1.42757 0.0557371
\(657\) −9.59116 −0.374187
\(658\) 8.13173 0.317008
\(659\) −9.93148 −0.386875 −0.193438 0.981113i \(-0.561964\pi\)
−0.193438 + 0.981113i \(0.561964\pi\)
\(660\) 0 0
\(661\) −9.44925 −0.367533 −0.183767 0.982970i \(-0.558829\pi\)
−0.183767 + 0.982970i \(0.558829\pi\)
\(662\) 3.37455 0.131155
\(663\) 6.14739 0.238745
\(664\) −10.1604 −0.394299
\(665\) 0 0
\(666\) −1.90478 −0.0738088
\(667\) −0.590044 −0.0228466
\(668\) −21.3377 −0.825582
\(669\) 10.7895 0.417146
\(670\) 0 0
\(671\) −6.68088 −0.257912
\(672\) −24.5356 −0.946479
\(673\) −11.1154 −0.428468 −0.214234 0.976782i \(-0.568725\pi\)
−0.214234 + 0.976782i \(0.568725\pi\)
\(674\) −2.73263 −0.105257
\(675\) 0 0
\(676\) 11.7677 0.452603
\(677\) 44.6045 1.71429 0.857145 0.515075i \(-0.172236\pi\)
0.857145 + 0.515075i \(0.172236\pi\)
\(678\) 2.31871 0.0890495
\(679\) 13.4679 0.516849
\(680\) 0 0
\(681\) −6.99182 −0.267927
\(682\) −3.61129 −0.138284
\(683\) −0.490486 −0.0187679 −0.00938396 0.999956i \(-0.502987\pi\)
−0.00938396 + 0.999956i \(0.502987\pi\)
\(684\) −0.756739 −0.0289346
\(685\) 0 0
\(686\) 11.1031 0.423920
\(687\) 20.9503 0.799304
\(688\) 6.34669 0.241965
\(689\) −22.6999 −0.864797
\(690\) 0 0
\(691\) −6.72252 −0.255737 −0.127868 0.991791i \(-0.540814\pi\)
−0.127868 + 0.991791i \(0.540814\pi\)
\(692\) −15.5503 −0.591135
\(693\) −2.49783 −0.0948845
\(694\) −26.0019 −0.987017
\(695\) 0 0
\(696\) −2.58843 −0.0981140
\(697\) −4.41973 −0.167409
\(698\) 13.6108 0.515176
\(699\) −3.85567 −0.145835
\(700\) 0 0
\(701\) −32.2913 −1.21963 −0.609813 0.792546i \(-0.708755\pi\)
−0.609813 + 0.792546i \(0.708755\pi\)
\(702\) 1.64871 0.0622265
\(703\) 1.33530 0.0503617
\(704\) 1.55515 0.0586121
\(705\) 0 0
\(706\) 5.73755 0.215936
\(707\) −38.9950 −1.46656
\(708\) 19.9117 0.748329
\(709\) 9.75887 0.366502 0.183251 0.983066i \(-0.441338\pi\)
0.183251 + 0.983066i \(0.441338\pi\)
\(710\) 0 0
\(711\) −10.3396 −0.387766
\(712\) −31.9286 −1.19658
\(713\) −4.73218 −0.177222
\(714\) 8.88293 0.332435
\(715\) 0 0
\(716\) −1.81154 −0.0677004
\(717\) 25.3084 0.945159
\(718\) 1.75254 0.0654042
\(719\) 44.2063 1.64862 0.824308 0.566142i \(-0.191565\pi\)
0.824308 + 0.566142i \(0.191565\pi\)
\(720\) 0 0
\(721\) 84.3638 3.14187
\(722\) 14.1239 0.525639
\(723\) 22.8510 0.849837
\(724\) 8.30809 0.308768
\(725\) 0 0
\(726\) −8.03048 −0.298039
\(727\) −44.9849 −1.66840 −0.834199 0.551463i \(-0.814070\pi\)
−0.834199 + 0.551463i \(0.814070\pi\)
\(728\) −23.6732 −0.877385
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −19.6493 −0.726756
\(732\) −16.0163 −0.591979
\(733\) −1.59233 −0.0588142 −0.0294071 0.999568i \(-0.509362\pi\)
−0.0294071 + 0.999568i \(0.509362\pi\)
\(734\) −4.82056 −0.177930
\(735\) 0 0
\(736\) 3.45907 0.127503
\(737\) −0.366529 −0.0135013
\(738\) −1.18536 −0.0436336
\(739\) −37.2457 −1.37011 −0.685053 0.728493i \(-0.740221\pi\)
−0.685053 + 0.728493i \(0.740221\pi\)
\(740\) 0 0
\(741\) −1.15578 −0.0424588
\(742\) −32.8011 −1.20417
\(743\) −41.1086 −1.50813 −0.754065 0.656800i \(-0.771909\pi\)
−0.754065 + 0.656800i \(0.771909\pi\)
\(744\) −20.7593 −0.761073
\(745\) 0 0
\(746\) −18.2301 −0.667452
\(747\) −3.92531 −0.143620
\(748\) 2.40216 0.0878317
\(749\) 6.63652 0.242493
\(750\) 0 0
\(751\) −44.6707 −1.63006 −0.815029 0.579420i \(-0.803279\pi\)
−0.815029 + 0.579420i \(0.803279\pi\)
\(752\) 2.33997 0.0853298
\(753\) 7.37025 0.268587
\(754\) −1.64871 −0.0600424
\(755\) 0 0
\(756\) −5.98812 −0.217786
\(757\) −13.8828 −0.504577 −0.252289 0.967652i \(-0.581183\pi\)
−0.252289 + 0.967652i \(0.581183\pi\)
\(758\) 22.0377 0.800444
\(759\) 0.352149 0.0127822
\(760\) 0 0
\(761\) −30.9137 −1.12062 −0.560310 0.828283i \(-0.689318\pi\)
−0.560310 + 0.828283i \(0.689318\pi\)
\(762\) 9.75188 0.353273
\(763\) 33.1074 1.19857
\(764\) −21.9420 −0.793834
\(765\) 0 0
\(766\) 23.9720 0.866144
\(767\) 30.4116 1.09810
\(768\) 12.5743 0.453735
\(769\) 31.1489 1.12326 0.561630 0.827389i \(-0.310175\pi\)
0.561630 + 0.827389i \(0.310175\pi\)
\(770\) 0 0
\(771\) −3.21575 −0.115812
\(772\) −23.5999 −0.849380
\(773\) 25.7705 0.926902 0.463451 0.886123i \(-0.346611\pi\)
0.463451 + 0.886123i \(0.346611\pi\)
\(774\) −5.26988 −0.189422
\(775\) 0 0
\(776\) −8.32940 −0.299008
\(777\) 10.5663 0.379063
\(778\) −17.8930 −0.641494
\(779\) 0.830963 0.0297723
\(780\) 0 0
\(781\) 5.53852 0.198184
\(782\) −1.25233 −0.0447833
\(783\) −1.00000 −0.0357371
\(784\) 9.55548 0.341267
\(785\) 0 0
\(786\) −4.29652 −0.153252
\(787\) −26.2806 −0.936802 −0.468401 0.883516i \(-0.655170\pi\)
−0.468401 + 0.883516i \(0.655170\pi\)
\(788\) 34.6752 1.23525
\(789\) −16.0190 −0.570292
\(790\) 0 0
\(791\) −12.8624 −0.457335
\(792\) 1.54482 0.0548927
\(793\) −24.4620 −0.868671
\(794\) −24.7678 −0.878978
\(795\) 0 0
\(796\) −25.0205 −0.886828
\(797\) −53.7239 −1.90300 −0.951500 0.307650i \(-0.900457\pi\)
−0.951500 + 0.307650i \(0.900457\pi\)
\(798\) −1.67010 −0.0591208
\(799\) −7.24452 −0.256293
\(800\) 0 0
\(801\) −12.3352 −0.435841
\(802\) 6.20106 0.218967
\(803\) −5.72417 −0.202002
\(804\) −0.878691 −0.0309890
\(805\) 0 0
\(806\) −13.2227 −0.465751
\(807\) 19.9820 0.703398
\(808\) 24.1170 0.848434
\(809\) −6.02488 −0.211824 −0.105912 0.994376i \(-0.533776\pi\)
−0.105912 + 0.994376i \(0.533776\pi\)
\(810\) 0 0
\(811\) −7.70554 −0.270578 −0.135289 0.990806i \(-0.543196\pi\)
−0.135289 + 0.990806i \(0.543196\pi\)
\(812\) 5.98812 0.210142
\(813\) 8.72743 0.306084
\(814\) −1.13681 −0.0398451
\(815\) 0 0
\(816\) 2.55613 0.0894823
\(817\) 3.69431 0.129247
\(818\) −21.0584 −0.736290
\(819\) −9.14577 −0.319579
\(820\) 0 0
\(821\) 16.4338 0.573543 0.286772 0.957999i \(-0.407418\pi\)
0.286772 + 0.957999i \(0.407418\pi\)
\(822\) −14.1294 −0.492818
\(823\) −45.4920 −1.58575 −0.792876 0.609383i \(-0.791417\pi\)
−0.792876 + 0.609383i \(0.791417\pi\)
\(824\) −52.1760 −1.81764
\(825\) 0 0
\(826\) 43.9445 1.52902
\(827\) 33.1498 1.15273 0.576367 0.817191i \(-0.304470\pi\)
0.576367 + 0.817191i \(0.304470\pi\)
\(828\) 0.844217 0.0293386
\(829\) 27.9403 0.970407 0.485203 0.874401i \(-0.338746\pi\)
0.485203 + 0.874401i \(0.338746\pi\)
\(830\) 0 0
\(831\) −30.5856 −1.06100
\(832\) 5.69419 0.197411
\(833\) −29.5837 −1.02501
\(834\) 1.01383 0.0351060
\(835\) 0 0
\(836\) −0.451635 −0.0156201
\(837\) −8.02005 −0.277214
\(838\) −20.3994 −0.704686
\(839\) 27.5639 0.951610 0.475805 0.879551i \(-0.342157\pi\)
0.475805 + 0.879551i \(0.342157\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −2.86367 −0.0986886
\(843\) −30.2570 −1.04211
\(844\) 37.2721 1.28296
\(845\) 0 0
\(846\) −1.94295 −0.0668001
\(847\) 44.5469 1.53065
\(848\) −9.43876 −0.324128
\(849\) −9.35107 −0.320928
\(850\) 0 0
\(851\) −1.48966 −0.0510647
\(852\) 13.2777 0.454886
\(853\) 14.4467 0.494645 0.247323 0.968933i \(-0.420449\pi\)
0.247323 + 0.968933i \(0.420449\pi\)
\(854\) −35.3474 −1.20956
\(855\) 0 0
\(856\) −4.10445 −0.140287
\(857\) 20.6065 0.703904 0.351952 0.936018i \(-0.385518\pi\)
0.351952 + 0.936018i \(0.385518\pi\)
\(858\) 0.983978 0.0335925
\(859\) −22.6473 −0.772717 −0.386358 0.922349i \(-0.626267\pi\)
−0.386358 + 0.922349i \(0.626267\pi\)
\(860\) 0 0
\(861\) 6.57545 0.224091
\(862\) 0.305977 0.0104216
\(863\) 18.3880 0.625935 0.312967 0.949764i \(-0.398677\pi\)
0.312967 + 0.949764i \(0.398677\pi\)
\(864\) 5.86240 0.199443
\(865\) 0 0
\(866\) −19.3129 −0.656278
\(867\) 9.08625 0.308585
\(868\) 48.0250 1.63007
\(869\) −6.17086 −0.209332
\(870\) 0 0
\(871\) −1.34204 −0.0454734
\(872\) −20.4758 −0.693397
\(873\) −3.21794 −0.108911
\(874\) 0.235454 0.00796434
\(875\) 0 0
\(876\) −13.7227 −0.463648
\(877\) 20.7681 0.701289 0.350645 0.936509i \(-0.385962\pi\)
0.350645 + 0.936509i \(0.385962\pi\)
\(878\) 19.7958 0.668075
\(879\) −8.47749 −0.285939
\(880\) 0 0
\(881\) 25.7085 0.866140 0.433070 0.901360i \(-0.357430\pi\)
0.433070 + 0.901360i \(0.357430\pi\)
\(882\) −7.93424 −0.267160
\(883\) −48.3574 −1.62736 −0.813679 0.581315i \(-0.802539\pi\)
−0.813679 + 0.581315i \(0.802539\pi\)
\(884\) 8.79550 0.295825
\(885\) 0 0
\(886\) 19.9973 0.671824
\(887\) 48.7809 1.63790 0.818951 0.573864i \(-0.194556\pi\)
0.818951 + 0.573864i \(0.194556\pi\)
\(888\) −6.53487 −0.219296
\(889\) −54.0960 −1.81432
\(890\) 0 0
\(891\) 0.596817 0.0199941
\(892\) 15.4373 0.516879
\(893\) 1.36206 0.0455795
\(894\) −12.0659 −0.403545
\(895\) 0 0
\(896\) −40.8430 −1.36447
\(897\) 1.28939 0.0430515
\(898\) −4.20291 −0.140253
\(899\) 8.02005 0.267484
\(900\) 0 0
\(901\) 29.2223 0.973537
\(902\) −0.707442 −0.0235552
\(903\) 29.2332 0.972821
\(904\) 7.95495 0.264578
\(905\) 0 0
\(906\) 13.5499 0.450166
\(907\) −10.8048 −0.358767 −0.179383 0.983779i \(-0.557410\pi\)
−0.179383 + 0.983779i \(0.557410\pi\)
\(908\) −10.0037 −0.331984
\(909\) 9.31726 0.309034
\(910\) 0 0
\(911\) 22.2530 0.737274 0.368637 0.929573i \(-0.379825\pi\)
0.368637 + 0.929573i \(0.379825\pi\)
\(912\) −0.480582 −0.0159137
\(913\) −2.34269 −0.0775319
\(914\) 19.1466 0.633312
\(915\) 0 0
\(916\) 29.9751 0.990404
\(917\) 23.8338 0.787062
\(918\) −2.12244 −0.0700509
\(919\) 47.1476 1.55526 0.777628 0.628724i \(-0.216423\pi\)
0.777628 + 0.628724i \(0.216423\pi\)
\(920\) 0 0
\(921\) 19.8740 0.654871
\(922\) −1.66653 −0.0548841
\(923\) 20.2793 0.667500
\(924\) −3.57381 −0.117570
\(925\) 0 0
\(926\) 5.70828 0.187586
\(927\) −20.1574 −0.662057
\(928\) −5.86240 −0.192443
\(929\) 13.0115 0.426893 0.213446 0.976955i \(-0.431531\pi\)
0.213446 + 0.976955i \(0.431531\pi\)
\(930\) 0 0
\(931\) 5.56209 0.182290
\(932\) −5.51657 −0.180701
\(933\) 12.5476 0.410789
\(934\) 15.0182 0.491412
\(935\) 0 0
\(936\) 5.65634 0.184883
\(937\) −19.4077 −0.634021 −0.317011 0.948422i \(-0.602679\pi\)
−0.317011 + 0.948422i \(0.602679\pi\)
\(938\) −1.93924 −0.0633184
\(939\) −2.82942 −0.0923345
\(940\) 0 0
\(941\) 16.3192 0.531990 0.265995 0.963974i \(-0.414299\pi\)
0.265995 + 0.963974i \(0.414299\pi\)
\(942\) −5.11653 −0.166705
\(943\) −0.927021 −0.0301880
\(944\) 12.6453 0.411571
\(945\) 0 0
\(946\) −3.14515 −0.102258
\(947\) −20.0894 −0.652819 −0.326409 0.945229i \(-0.605839\pi\)
−0.326409 + 0.945229i \(0.605839\pi\)
\(948\) −14.7936 −0.480474
\(949\) −20.9590 −0.680358
\(950\) 0 0
\(951\) 6.27390 0.203445
\(952\) 30.4753 0.987709
\(953\) −23.6518 −0.766158 −0.383079 0.923716i \(-0.625136\pi\)
−0.383079 + 0.923716i \(0.625136\pi\)
\(954\) 7.83733 0.253743
\(955\) 0 0
\(956\) 36.2105 1.17113
\(957\) −0.596817 −0.0192924
\(958\) −7.83975 −0.253291
\(959\) 78.3788 2.53098
\(960\) 0 0
\(961\) 33.3212 1.07488
\(962\) −4.16241 −0.134202
\(963\) −1.58569 −0.0510983
\(964\) 32.6945 1.05302
\(965\) 0 0
\(966\) 1.86316 0.0599461
\(967\) 5.19177 0.166956 0.0834780 0.996510i \(-0.473397\pi\)
0.0834780 + 0.996510i \(0.473397\pi\)
\(968\) −27.5507 −0.885513
\(969\) 1.48788 0.0477976
\(970\) 0 0
\(971\) −31.0165 −0.995366 −0.497683 0.867359i \(-0.665816\pi\)
−0.497683 + 0.867359i \(0.665816\pi\)
\(972\) 1.43077 0.0458919
\(973\) −5.62395 −0.180296
\(974\) 7.58804 0.243137
\(975\) 0 0
\(976\) −10.1715 −0.325580
\(977\) −35.0578 −1.12160 −0.560798 0.827952i \(-0.689506\pi\)
−0.560798 + 0.827952i \(0.689506\pi\)
\(978\) −15.8403 −0.506517
\(979\) −7.36183 −0.235285
\(980\) 0 0
\(981\) −7.91051 −0.252563
\(982\) 0.146065 0.00466113
\(983\) 11.3717 0.362702 0.181351 0.983418i \(-0.441953\pi\)
0.181351 + 0.983418i \(0.441953\pi\)
\(984\) −4.06669 −0.129641
\(985\) 0 0
\(986\) 2.12244 0.0675922
\(987\) 10.7780 0.343068
\(988\) −1.65366 −0.0526099
\(989\) −4.12136 −0.131052
\(990\) 0 0
\(991\) −20.5008 −0.651230 −0.325615 0.945503i \(-0.605571\pi\)
−0.325615 + 0.945503i \(0.605571\pi\)
\(992\) −47.0167 −1.49278
\(993\) 4.47271 0.141937
\(994\) 29.3034 0.929446
\(995\) 0 0
\(996\) −5.61622 −0.177957
\(997\) −8.50559 −0.269375 −0.134687 0.990888i \(-0.543003\pi\)
−0.134687 + 0.990888i \(0.543003\pi\)
\(998\) −10.2745 −0.325234
\(999\) −2.52465 −0.0798764
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.a.w.1.3 5
3.2 odd 2 6525.2.a.bs.1.3 5
5.2 odd 4 435.2.c.e.349.4 10
5.3 odd 4 435.2.c.e.349.7 yes 10
5.4 even 2 2175.2.a.z.1.3 5
15.2 even 4 1305.2.c.j.784.7 10
15.8 even 4 1305.2.c.j.784.4 10
15.14 odd 2 6525.2.a.bl.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.c.e.349.4 10 5.2 odd 4
435.2.c.e.349.7 yes 10 5.3 odd 4
1305.2.c.j.784.4 10 15.8 even 4
1305.2.c.j.784.7 10 15.2 even 4
2175.2.a.w.1.3 5 1.1 even 1 trivial
2175.2.a.z.1.3 5 5.4 even 2
6525.2.a.bl.1.3 5 15.14 odd 2
6525.2.a.bs.1.3 5 3.2 odd 2