Properties

Label 2175.2.a.w.1.1
Level $2175$
Weight $2$
Character 2175.1
Self dual yes
Analytic conductor $17.367$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.246832.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 6x^{2} + 7x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.51908\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.51908 q^{2} -1.00000 q^{3} +4.34577 q^{4} +2.51908 q^{6} -0.173311 q^{7} -5.90919 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-2.51908 q^{2} -1.00000 q^{3} +4.34577 q^{4} +2.51908 q^{6} -0.173311 q^{7} -5.90919 q^{8} +1.00000 q^{9} +5.08250 q^{11} -4.34577 q^{12} -1.82669 q^{13} +0.436584 q^{14} +6.19418 q^{16} +4.24598 q^{17} -2.51908 q^{18} -8.62093 q^{19} +0.173311 q^{21} -12.8032 q^{22} -3.16348 q^{23} +5.90919 q^{24} +4.60158 q^{26} -1.00000 q^{27} -0.753170 q^{28} +1.00000 q^{29} +3.22185 q^{31} -3.78527 q^{32} -5.08250 q^{33} -10.6960 q^{34} +4.34577 q^{36} -1.97828 q^{37} +21.7168 q^{38} +1.82669 q^{39} -9.96541 q^{41} -0.436584 q^{42} -7.91070 q^{43} +22.0874 q^{44} +7.96907 q^{46} +8.66893 q^{47} -6.19418 q^{48} -6.96996 q^{49} -4.24598 q^{51} -7.93837 q^{52} -5.40285 q^{53} +2.51908 q^{54} +1.02413 q^{56} +8.62093 q^{57} -2.51908 q^{58} +7.66286 q^{59} +2.76215 q^{61} -8.11611 q^{62} -0.173311 q^{63} -2.85296 q^{64} +12.8032 q^{66} -8.13872 q^{67} +18.4520 q^{68} +3.16348 q^{69} -6.25938 q^{71} -5.90919 q^{72} +6.74356 q^{73} +4.98345 q^{74} -37.4646 q^{76} -0.880853 q^{77} -4.60158 q^{78} +4.54763 q^{79} +1.00000 q^{81} +25.1037 q^{82} +11.6224 q^{83} +0.753170 q^{84} +19.9277 q^{86} -1.00000 q^{87} -30.0334 q^{88} -16.4911 q^{89} +0.316585 q^{91} -13.7478 q^{92} -3.22185 q^{93} -21.8377 q^{94} +3.78527 q^{96} -2.74419 q^{97} +17.5579 q^{98} +5.08250 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{2} - 5 q^{3} + 5 q^{4} + 3 q^{6} - 8 q^{7} - 9 q^{8} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 3 q^{2} - 5 q^{3} + 5 q^{4} + 3 q^{6} - 8 q^{7} - 9 q^{8} + 5 q^{9} + 12 q^{11} - 5 q^{12} - 2 q^{13} + 6 q^{14} + q^{16} - 3 q^{18} - 2 q^{19} + 8 q^{21} - 14 q^{22} - 8 q^{23} + 9 q^{24} - 5 q^{27} + 6 q^{28} + 5 q^{29} + 2 q^{31} - q^{32} - 12 q^{33} + 4 q^{34} + 5 q^{36} - 16 q^{37} + 14 q^{38} + 2 q^{39} - 14 q^{41} - 6 q^{42} + 20 q^{44} - 6 q^{46} - 2 q^{47} - q^{48} - 7 q^{49} - 16 q^{52} - 26 q^{53} + 3 q^{54} - 2 q^{56} + 2 q^{57} - 3 q^{58} + 4 q^{59} - 12 q^{61} - 8 q^{63} - 9 q^{64} + 14 q^{66} - 12 q^{67} + 20 q^{68} + 8 q^{69} + 30 q^{71} - 9 q^{72} + 12 q^{73} + 2 q^{74} - 44 q^{76} - 18 q^{77} - 18 q^{79} + 5 q^{81} - 10 q^{82} - 2 q^{83} - 6 q^{84} + 30 q^{86} - 5 q^{87} - 42 q^{88} - 22 q^{89} - 12 q^{91} - 20 q^{92} - 2 q^{93} - 50 q^{94} + q^{96} - 20 q^{97} + 9 q^{98} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.51908 −1.78126 −0.890630 0.454729i \(-0.849736\pi\)
−0.890630 + 0.454729i \(0.849736\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.34577 2.17289
\(5\) 0 0
\(6\) 2.51908 1.02841
\(7\) −0.173311 −0.0655054 −0.0327527 0.999463i \(-0.510427\pi\)
−0.0327527 + 0.999463i \(0.510427\pi\)
\(8\) −5.90919 −2.08921
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.08250 1.53243 0.766215 0.642584i \(-0.222138\pi\)
0.766215 + 0.642584i \(0.222138\pi\)
\(12\) −4.34577 −1.25452
\(13\) −1.82669 −0.506632 −0.253316 0.967384i \(-0.581521\pi\)
−0.253316 + 0.967384i \(0.581521\pi\)
\(14\) 0.436584 0.116682
\(15\) 0 0
\(16\) 6.19418 1.54854
\(17\) 4.24598 1.02980 0.514901 0.857250i \(-0.327829\pi\)
0.514901 + 0.857250i \(0.327829\pi\)
\(18\) −2.51908 −0.593753
\(19\) −8.62093 −1.97778 −0.988889 0.148656i \(-0.952505\pi\)
−0.988889 + 0.148656i \(0.952505\pi\)
\(20\) 0 0
\(21\) 0.173311 0.0378196
\(22\) −12.8032 −2.72966
\(23\) −3.16348 −0.659632 −0.329816 0.944045i \(-0.606987\pi\)
−0.329816 + 0.944045i \(0.606987\pi\)
\(24\) 5.90919 1.20621
\(25\) 0 0
\(26\) 4.60158 0.902444
\(27\) −1.00000 −0.192450
\(28\) −0.753170 −0.142336
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 3.22185 0.578662 0.289331 0.957229i \(-0.406567\pi\)
0.289331 + 0.957229i \(0.406567\pi\)
\(32\) −3.78527 −0.669147
\(33\) −5.08250 −0.884749
\(34\) −10.6960 −1.83434
\(35\) 0 0
\(36\) 4.34577 0.724295
\(37\) −1.97828 −0.325227 −0.162614 0.986690i \(-0.551992\pi\)
−0.162614 + 0.986690i \(0.551992\pi\)
\(38\) 21.7168 3.52294
\(39\) 1.82669 0.292504
\(40\) 0 0
\(41\) −9.96541 −1.55634 −0.778168 0.628056i \(-0.783851\pi\)
−0.778168 + 0.628056i \(0.783851\pi\)
\(42\) −0.436584 −0.0673664
\(43\) −7.91070 −1.20637 −0.603185 0.797601i \(-0.706102\pi\)
−0.603185 + 0.797601i \(0.706102\pi\)
\(44\) 22.0874 3.32980
\(45\) 0 0
\(46\) 7.96907 1.17497
\(47\) 8.66893 1.26449 0.632246 0.774767i \(-0.282133\pi\)
0.632246 + 0.774767i \(0.282133\pi\)
\(48\) −6.19418 −0.894053
\(49\) −6.96996 −0.995709
\(50\) 0 0
\(51\) −4.24598 −0.594556
\(52\) −7.93837 −1.10085
\(53\) −5.40285 −0.742138 −0.371069 0.928605i \(-0.621009\pi\)
−0.371069 + 0.928605i \(0.621009\pi\)
\(54\) 2.51908 0.342804
\(55\) 0 0
\(56\) 1.02413 0.136855
\(57\) 8.62093 1.14187
\(58\) −2.51908 −0.330772
\(59\) 7.66286 0.997619 0.498810 0.866712i \(-0.333771\pi\)
0.498810 + 0.866712i \(0.333771\pi\)
\(60\) 0 0
\(61\) 2.76215 0.353657 0.176828 0.984242i \(-0.443416\pi\)
0.176828 + 0.984242i \(0.443416\pi\)
\(62\) −8.11611 −1.03075
\(63\) −0.173311 −0.0218351
\(64\) −2.85296 −0.356620
\(65\) 0 0
\(66\) 12.8032 1.57597
\(67\) −8.13872 −0.994303 −0.497152 0.867664i \(-0.665621\pi\)
−0.497152 + 0.867664i \(0.665621\pi\)
\(68\) 18.4520 2.23764
\(69\) 3.16348 0.380838
\(70\) 0 0
\(71\) −6.25938 −0.742852 −0.371426 0.928463i \(-0.621131\pi\)
−0.371426 + 0.928463i \(0.621131\pi\)
\(72\) −5.90919 −0.696404
\(73\) 6.74356 0.789274 0.394637 0.918837i \(-0.370870\pi\)
0.394637 + 0.918837i \(0.370870\pi\)
\(74\) 4.98345 0.579314
\(75\) 0 0
\(76\) −37.4646 −4.29748
\(77\) −0.880853 −0.100382
\(78\) −4.60158 −0.521026
\(79\) 4.54763 0.511649 0.255824 0.966723i \(-0.417653\pi\)
0.255824 + 0.966723i \(0.417653\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 25.1037 2.77224
\(83\) 11.6224 1.27573 0.637865 0.770149i \(-0.279818\pi\)
0.637865 + 0.770149i \(0.279818\pi\)
\(84\) 0.753170 0.0821776
\(85\) 0 0
\(86\) 19.9277 2.14886
\(87\) −1.00000 −0.107211
\(88\) −30.0334 −3.20157
\(89\) −16.4911 −1.74805 −0.874024 0.485882i \(-0.838499\pi\)
−0.874024 + 0.485882i \(0.838499\pi\)
\(90\) 0 0
\(91\) 0.316585 0.0331872
\(92\) −13.7478 −1.43330
\(93\) −3.22185 −0.334090
\(94\) −21.8377 −2.25239
\(95\) 0 0
\(96\) 3.78527 0.386332
\(97\) −2.74419 −0.278631 −0.139315 0.990248i \(-0.544490\pi\)
−0.139315 + 0.990248i \(0.544490\pi\)
\(98\) 17.5579 1.77362
\(99\) 5.08250 0.510810
\(100\) 0 0
\(101\) 6.41474 0.638290 0.319145 0.947706i \(-0.396604\pi\)
0.319145 + 0.947706i \(0.396604\pi\)
\(102\) 10.6960 1.05906
\(103\) 7.08642 0.698245 0.349123 0.937077i \(-0.386480\pi\)
0.349123 + 0.937077i \(0.386480\pi\)
\(104\) 10.7942 1.05846
\(105\) 0 0
\(106\) 13.6102 1.32194
\(107\) −0.925187 −0.0894412 −0.0447206 0.999000i \(-0.514240\pi\)
−0.0447206 + 0.999000i \(0.514240\pi\)
\(108\) −4.34577 −0.418172
\(109\) 4.11700 0.394337 0.197169 0.980370i \(-0.436825\pi\)
0.197169 + 0.980370i \(0.436825\pi\)
\(110\) 0 0
\(111\) 1.97828 0.187770
\(112\) −1.07352 −0.101438
\(113\) −6.84626 −0.644042 −0.322021 0.946732i \(-0.604362\pi\)
−0.322021 + 0.946732i \(0.604362\pi\)
\(114\) −21.7168 −2.03397
\(115\) 0 0
\(116\) 4.34577 0.403495
\(117\) −1.82669 −0.168877
\(118\) −19.3034 −1.77702
\(119\) −0.735875 −0.0674575
\(120\) 0 0
\(121\) 14.8318 1.34834
\(122\) −6.95807 −0.629954
\(123\) 9.96541 0.898551
\(124\) 14.0014 1.25737
\(125\) 0 0
\(126\) 0.436584 0.0388940
\(127\) 5.25850 0.466617 0.233308 0.972403i \(-0.425045\pi\)
0.233308 + 0.972403i \(0.425045\pi\)
\(128\) 14.7574 1.30438
\(129\) 7.91070 0.696498
\(130\) 0 0
\(131\) 17.7157 1.54783 0.773913 0.633293i \(-0.218297\pi\)
0.773913 + 0.633293i \(0.218297\pi\)
\(132\) −22.0874 −1.92246
\(133\) 1.49410 0.129555
\(134\) 20.5021 1.77111
\(135\) 0 0
\(136\) −25.0903 −2.15147
\(137\) 1.14479 0.0978057 0.0489028 0.998804i \(-0.484428\pi\)
0.0489028 + 0.998804i \(0.484428\pi\)
\(138\) −7.96907 −0.678372
\(139\) 4.08670 0.346630 0.173315 0.984866i \(-0.444552\pi\)
0.173315 + 0.984866i \(0.444552\pi\)
\(140\) 0 0
\(141\) −8.66893 −0.730055
\(142\) 15.7679 1.32321
\(143\) −9.28414 −0.776379
\(144\) 6.19418 0.516182
\(145\) 0 0
\(146\) −16.9876 −1.40590
\(147\) 6.96996 0.574873
\(148\) −8.59715 −0.706682
\(149\) 1.50268 0.123105 0.0615523 0.998104i \(-0.480395\pi\)
0.0615523 + 0.998104i \(0.480395\pi\)
\(150\) 0 0
\(151\) −21.4897 −1.74881 −0.874404 0.485199i \(-0.838747\pi\)
−0.874404 + 0.485199i \(0.838747\pi\)
\(152\) 50.9427 4.13200
\(153\) 4.24598 0.343267
\(154\) 2.21894 0.178807
\(155\) 0 0
\(156\) 7.93837 0.635578
\(157\) −11.1167 −0.887206 −0.443603 0.896223i \(-0.646300\pi\)
−0.443603 + 0.896223i \(0.646300\pi\)
\(158\) −11.4559 −0.911379
\(159\) 5.40285 0.428474
\(160\) 0 0
\(161\) 0.548266 0.0432094
\(162\) −2.51908 −0.197918
\(163\) 12.2180 0.956988 0.478494 0.878091i \(-0.341183\pi\)
0.478494 + 0.878091i \(0.341183\pi\)
\(164\) −43.3074 −3.38174
\(165\) 0 0
\(166\) −29.2779 −2.27240
\(167\) −21.3634 −1.65315 −0.826576 0.562826i \(-0.809714\pi\)
−0.826576 + 0.562826i \(0.809714\pi\)
\(168\) −1.02413 −0.0790131
\(169\) −9.66321 −0.743324
\(170\) 0 0
\(171\) −8.62093 −0.659259
\(172\) −34.3781 −2.62130
\(173\) −13.1686 −1.00119 −0.500594 0.865682i \(-0.666885\pi\)
−0.500594 + 0.865682i \(0.666885\pi\)
\(174\) 2.51908 0.190971
\(175\) 0 0
\(176\) 31.4819 2.37304
\(177\) −7.66286 −0.575976
\(178\) 41.5423 3.11373
\(179\) 10.6947 0.799357 0.399679 0.916655i \(-0.369122\pi\)
0.399679 + 0.916655i \(0.369122\pi\)
\(180\) 0 0
\(181\) −15.2511 −1.13361 −0.566804 0.823852i \(-0.691820\pi\)
−0.566804 + 0.823852i \(0.691820\pi\)
\(182\) −0.797504 −0.0591149
\(183\) −2.76215 −0.204184
\(184\) 18.6936 1.37811
\(185\) 0 0
\(186\) 8.11611 0.595102
\(187\) 21.5802 1.57810
\(188\) 37.6732 2.74760
\(189\) 0.173311 0.0126065
\(190\) 0 0
\(191\) −25.7131 −1.86053 −0.930266 0.366885i \(-0.880424\pi\)
−0.930266 + 0.366885i \(0.880424\pi\)
\(192\) 2.85296 0.205895
\(193\) 22.8935 1.64791 0.823953 0.566658i \(-0.191764\pi\)
0.823953 + 0.566658i \(0.191764\pi\)
\(194\) 6.91284 0.496313
\(195\) 0 0
\(196\) −30.2899 −2.16356
\(197\) −0.840810 −0.0599052 −0.0299526 0.999551i \(-0.509536\pi\)
−0.0299526 + 0.999551i \(0.509536\pi\)
\(198\) −12.8032 −0.909885
\(199\) −26.5996 −1.88560 −0.942799 0.333361i \(-0.891817\pi\)
−0.942799 + 0.333361i \(0.891817\pi\)
\(200\) 0 0
\(201\) 8.13872 0.574061
\(202\) −16.1592 −1.13696
\(203\) −0.173311 −0.0121640
\(204\) −18.4520 −1.29190
\(205\) 0 0
\(206\) −17.8513 −1.24376
\(207\) −3.16348 −0.219877
\(208\) −11.3148 −0.784543
\(209\) −43.8159 −3.03081
\(210\) 0 0
\(211\) 1.86360 0.128296 0.0641478 0.997940i \(-0.479567\pi\)
0.0641478 + 0.997940i \(0.479567\pi\)
\(212\) −23.4795 −1.61258
\(213\) 6.25938 0.428886
\(214\) 2.33062 0.159318
\(215\) 0 0
\(216\) 5.90919 0.402069
\(217\) −0.558382 −0.0379055
\(218\) −10.3711 −0.702417
\(219\) −6.74356 −0.455687
\(220\) 0 0
\(221\) −7.75608 −0.521731
\(222\) −4.98345 −0.334467
\(223\) −25.0759 −1.67920 −0.839602 0.543202i \(-0.817212\pi\)
−0.839602 + 0.543202i \(0.817212\pi\)
\(224\) 0.656028 0.0438327
\(225\) 0 0
\(226\) 17.2463 1.14721
\(227\) −20.3877 −1.35318 −0.676590 0.736360i \(-0.736543\pi\)
−0.676590 + 0.736360i \(0.736543\pi\)
\(228\) 37.4646 2.48115
\(229\) −5.84179 −0.386037 −0.193018 0.981195i \(-0.561828\pi\)
−0.193018 + 0.981195i \(0.561828\pi\)
\(230\) 0 0
\(231\) 0.880853 0.0579558
\(232\) −5.90919 −0.387957
\(233\) −14.1216 −0.925134 −0.462567 0.886584i \(-0.653072\pi\)
−0.462567 + 0.886584i \(0.653072\pi\)
\(234\) 4.60158 0.300815
\(235\) 0 0
\(236\) 33.3010 2.16771
\(237\) −4.54763 −0.295400
\(238\) 1.85373 0.120159
\(239\) −6.39059 −0.413373 −0.206686 0.978407i \(-0.566268\pi\)
−0.206686 + 0.978407i \(0.566268\pi\)
\(240\) 0 0
\(241\) −10.1713 −0.655188 −0.327594 0.944819i \(-0.606238\pi\)
−0.327594 + 0.944819i \(0.606238\pi\)
\(242\) −37.3624 −2.40175
\(243\) −1.00000 −0.0641500
\(244\) 12.0037 0.768455
\(245\) 0 0
\(246\) −25.1037 −1.60055
\(247\) 15.7478 1.00201
\(248\) −19.0385 −1.20895
\(249\) −11.6224 −0.736543
\(250\) 0 0
\(251\) −15.7587 −0.994678 −0.497339 0.867556i \(-0.665690\pi\)
−0.497339 + 0.867556i \(0.665690\pi\)
\(252\) −0.753170 −0.0474452
\(253\) −16.0784 −1.01084
\(254\) −13.2466 −0.831165
\(255\) 0 0
\(256\) −31.4691 −1.96682
\(257\) −12.3486 −0.770283 −0.385142 0.922858i \(-0.625847\pi\)
−0.385142 + 0.922858i \(0.625847\pi\)
\(258\) −19.9277 −1.24064
\(259\) 0.342858 0.0213041
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) −44.6272 −2.75708
\(263\) 4.16928 0.257089 0.128545 0.991704i \(-0.458969\pi\)
0.128545 + 0.991704i \(0.458969\pi\)
\(264\) 30.0334 1.84843
\(265\) 0 0
\(266\) −3.76377 −0.230771
\(267\) 16.4911 1.00924
\(268\) −35.3690 −2.16051
\(269\) −1.36011 −0.0829273 −0.0414636 0.999140i \(-0.513202\pi\)
−0.0414636 + 0.999140i \(0.513202\pi\)
\(270\) 0 0
\(271\) 11.1448 0.676998 0.338499 0.940967i \(-0.390081\pi\)
0.338499 + 0.940967i \(0.390081\pi\)
\(272\) 26.3003 1.59469
\(273\) −0.316585 −0.0191606
\(274\) −2.88381 −0.174217
\(275\) 0 0
\(276\) 13.7478 0.827518
\(277\) −0.704673 −0.0423397 −0.0211699 0.999776i \(-0.506739\pi\)
−0.0211699 + 0.999776i \(0.506739\pi\)
\(278\) −10.2947 −0.617437
\(279\) 3.22185 0.192887
\(280\) 0 0
\(281\) −13.8119 −0.823950 −0.411975 0.911195i \(-0.635161\pi\)
−0.411975 + 0.911195i \(0.635161\pi\)
\(282\) 21.8377 1.30042
\(283\) −8.92142 −0.530324 −0.265162 0.964204i \(-0.585425\pi\)
−0.265162 + 0.964204i \(0.585425\pi\)
\(284\) −27.2018 −1.61413
\(285\) 0 0
\(286\) 23.3875 1.38293
\(287\) 1.72712 0.101948
\(288\) −3.78527 −0.223049
\(289\) 1.02833 0.0604902
\(290\) 0 0
\(291\) 2.74419 0.160867
\(292\) 29.3060 1.71500
\(293\) 31.2817 1.82750 0.913749 0.406278i \(-0.133174\pi\)
0.913749 + 0.406278i \(0.133174\pi\)
\(294\) −17.5579 −1.02400
\(295\) 0 0
\(296\) 11.6900 0.679469
\(297\) −5.08250 −0.294916
\(298\) −3.78538 −0.219281
\(299\) 5.77870 0.334191
\(300\) 0 0
\(301\) 1.37101 0.0790238
\(302\) 54.1343 3.11508
\(303\) −6.41474 −0.368517
\(304\) −53.3996 −3.06268
\(305\) 0 0
\(306\) −10.6960 −0.611448
\(307\) 21.8533 1.24723 0.623617 0.781730i \(-0.285662\pi\)
0.623617 + 0.781730i \(0.285662\pi\)
\(308\) −3.82798 −0.218120
\(309\) −7.08642 −0.403132
\(310\) 0 0
\(311\) 28.8838 1.63785 0.818925 0.573901i \(-0.194570\pi\)
0.818925 + 0.573901i \(0.194570\pi\)
\(312\) −10.7942 −0.611104
\(313\) −8.24232 −0.465884 −0.232942 0.972491i \(-0.574835\pi\)
−0.232942 + 0.972491i \(0.574835\pi\)
\(314\) 28.0038 1.58034
\(315\) 0 0
\(316\) 19.7630 1.11175
\(317\) 7.15829 0.402050 0.201025 0.979586i \(-0.435573\pi\)
0.201025 + 0.979586i \(0.435573\pi\)
\(318\) −13.6102 −0.763223
\(319\) 5.08250 0.284565
\(320\) 0 0
\(321\) 0.925187 0.0516389
\(322\) −1.38113 −0.0769672
\(323\) −36.6043 −2.03672
\(324\) 4.34577 0.241432
\(325\) 0 0
\(326\) −30.7781 −1.70464
\(327\) −4.11700 −0.227671
\(328\) 58.8875 3.25152
\(329\) −1.50242 −0.0828311
\(330\) 0 0
\(331\) −24.6936 −1.35728 −0.678642 0.734470i \(-0.737431\pi\)
−0.678642 + 0.734470i \(0.737431\pi\)
\(332\) 50.5085 2.77201
\(333\) −1.97828 −0.108409
\(334\) 53.8162 2.94469
\(335\) 0 0
\(336\) 1.07352 0.0585653
\(337\) −11.7142 −0.638116 −0.319058 0.947735i \(-0.603366\pi\)
−0.319058 + 0.947735i \(0.603366\pi\)
\(338\) 24.3424 1.32405
\(339\) 6.84626 0.371838
\(340\) 0 0
\(341\) 16.3751 0.886759
\(342\) 21.7168 1.17431
\(343\) 2.42115 0.130730
\(344\) 46.7458 2.52036
\(345\) 0 0
\(346\) 33.1727 1.78337
\(347\) −0.828990 −0.0445025 −0.0222513 0.999752i \(-0.507083\pi\)
−0.0222513 + 0.999752i \(0.507083\pi\)
\(348\) −4.34577 −0.232958
\(349\) −8.44370 −0.451981 −0.225991 0.974129i \(-0.572562\pi\)
−0.225991 + 0.974129i \(0.572562\pi\)
\(350\) 0 0
\(351\) 1.82669 0.0975014
\(352\) −19.2386 −1.02542
\(353\) 4.90553 0.261095 0.130547 0.991442i \(-0.458327\pi\)
0.130547 + 0.991442i \(0.458327\pi\)
\(354\) 19.3034 1.02596
\(355\) 0 0
\(356\) −71.6664 −3.79831
\(357\) 0.735875 0.0389466
\(358\) −26.9407 −1.42386
\(359\) 4.69044 0.247552 0.123776 0.992310i \(-0.460500\pi\)
0.123776 + 0.992310i \(0.460500\pi\)
\(360\) 0 0
\(361\) 55.3205 2.91161
\(362\) 38.4189 2.01925
\(363\) −14.8318 −0.778466
\(364\) 1.37581 0.0721119
\(365\) 0 0
\(366\) 6.95807 0.363704
\(367\) −29.2460 −1.52663 −0.763314 0.646028i \(-0.776429\pi\)
−0.763314 + 0.646028i \(0.776429\pi\)
\(368\) −19.5952 −1.02147
\(369\) −9.96541 −0.518779
\(370\) 0 0
\(371\) 0.936373 0.0486140
\(372\) −14.0014 −0.725940
\(373\) −34.5171 −1.78723 −0.893613 0.448839i \(-0.851838\pi\)
−0.893613 + 0.448839i \(0.851838\pi\)
\(374\) −54.3622 −2.81100
\(375\) 0 0
\(376\) −51.2263 −2.64179
\(377\) −1.82669 −0.0940793
\(378\) −0.436584 −0.0224555
\(379\) −3.20131 −0.164440 −0.0822201 0.996614i \(-0.526201\pi\)
−0.0822201 + 0.996614i \(0.526201\pi\)
\(380\) 0 0
\(381\) −5.25850 −0.269401
\(382\) 64.7733 3.31409
\(383\) −19.4424 −0.993458 −0.496729 0.867906i \(-0.665466\pi\)
−0.496729 + 0.867906i \(0.665466\pi\)
\(384\) −14.7574 −0.753084
\(385\) 0 0
\(386\) −57.6705 −2.93535
\(387\) −7.91070 −0.402123
\(388\) −11.9256 −0.605432
\(389\) 2.55875 0.129734 0.0648669 0.997894i \(-0.479338\pi\)
0.0648669 + 0.997894i \(0.479338\pi\)
\(390\) 0 0
\(391\) −13.4321 −0.679289
\(392\) 41.1868 2.08025
\(393\) −17.7157 −0.893637
\(394\) 2.11807 0.106707
\(395\) 0 0
\(396\) 22.0874 1.10993
\(397\) −30.6583 −1.53869 −0.769347 0.638831i \(-0.779418\pi\)
−0.769347 + 0.638831i \(0.779418\pi\)
\(398\) 67.0067 3.35874
\(399\) −1.49410 −0.0747987
\(400\) 0 0
\(401\) 11.1628 0.557446 0.278723 0.960372i \(-0.410089\pi\)
0.278723 + 0.960372i \(0.410089\pi\)
\(402\) −20.5021 −1.02255
\(403\) −5.88532 −0.293169
\(404\) 27.8770 1.38693
\(405\) 0 0
\(406\) 0.436584 0.0216673
\(407\) −10.0546 −0.498388
\(408\) 25.0903 1.24215
\(409\) 13.3880 0.661994 0.330997 0.943632i \(-0.392615\pi\)
0.330997 + 0.943632i \(0.392615\pi\)
\(410\) 0 0
\(411\) −1.14479 −0.0564681
\(412\) 30.7959 1.51721
\(413\) −1.32806 −0.0653495
\(414\) 7.96907 0.391658
\(415\) 0 0
\(416\) 6.91451 0.339012
\(417\) −4.08670 −0.200127
\(418\) 110.376 5.39865
\(419\) 29.2982 1.43131 0.715655 0.698454i \(-0.246128\pi\)
0.715655 + 0.698454i \(0.246128\pi\)
\(420\) 0 0
\(421\) 10.1098 0.492724 0.246362 0.969178i \(-0.420765\pi\)
0.246362 + 0.969178i \(0.420765\pi\)
\(422\) −4.69456 −0.228528
\(423\) 8.66893 0.421498
\(424\) 31.9264 1.55048
\(425\) 0 0
\(426\) −15.7679 −0.763957
\(427\) −0.478710 −0.0231664
\(428\) −4.02065 −0.194345
\(429\) 9.28414 0.448243
\(430\) 0 0
\(431\) 30.3330 1.46109 0.730545 0.682865i \(-0.239266\pi\)
0.730545 + 0.682865i \(0.239266\pi\)
\(432\) −6.19418 −0.298018
\(433\) 6.50520 0.312620 0.156310 0.987708i \(-0.450040\pi\)
0.156310 + 0.987708i \(0.450040\pi\)
\(434\) 1.40661 0.0675195
\(435\) 0 0
\(436\) 17.8915 0.856850
\(437\) 27.2722 1.30460
\(438\) 16.9876 0.811698
\(439\) −9.40248 −0.448756 −0.224378 0.974502i \(-0.572035\pi\)
−0.224378 + 0.974502i \(0.572035\pi\)
\(440\) 0 0
\(441\) −6.96996 −0.331903
\(442\) 19.5382 0.929337
\(443\) −28.1657 −1.33819 −0.669097 0.743175i \(-0.733319\pi\)
−0.669097 + 0.743175i \(0.733319\pi\)
\(444\) 8.59715 0.408003
\(445\) 0 0
\(446\) 63.1682 2.99110
\(447\) −1.50268 −0.0710744
\(448\) 0.494450 0.0233605
\(449\) −32.2625 −1.52256 −0.761281 0.648422i \(-0.775429\pi\)
−0.761281 + 0.648422i \(0.775429\pi\)
\(450\) 0 0
\(451\) −50.6492 −2.38498
\(452\) −29.7523 −1.39943
\(453\) 21.4897 1.00967
\(454\) 51.3583 2.41037
\(455\) 0 0
\(456\) −50.9427 −2.38561
\(457\) −27.1466 −1.26986 −0.634932 0.772568i \(-0.718972\pi\)
−0.634932 + 0.772568i \(0.718972\pi\)
\(458\) 14.7160 0.687631
\(459\) −4.24598 −0.198185
\(460\) 0 0
\(461\) 7.00940 0.326460 0.163230 0.986588i \(-0.447809\pi\)
0.163230 + 0.986588i \(0.447809\pi\)
\(462\) −2.21894 −0.103234
\(463\) 21.7590 1.01123 0.505613 0.862760i \(-0.331266\pi\)
0.505613 + 0.862760i \(0.331266\pi\)
\(464\) 6.19418 0.287558
\(465\) 0 0
\(466\) 35.5733 1.64790
\(467\) −30.7825 −1.42445 −0.712223 0.701953i \(-0.752312\pi\)
−0.712223 + 0.701953i \(0.752312\pi\)
\(468\) −7.93837 −0.366951
\(469\) 1.41053 0.0651322
\(470\) 0 0
\(471\) 11.1167 0.512228
\(472\) −45.2813 −2.08424
\(473\) −40.2061 −1.84868
\(474\) 11.4559 0.526185
\(475\) 0 0
\(476\) −3.19794 −0.146577
\(477\) −5.40285 −0.247379
\(478\) 16.0984 0.736324
\(479\) −6.29237 −0.287506 −0.143753 0.989614i \(-0.545917\pi\)
−0.143753 + 0.989614i \(0.545917\pi\)
\(480\) 0 0
\(481\) 3.61370 0.164771
\(482\) 25.6222 1.16706
\(483\) −0.548266 −0.0249470
\(484\) 64.4555 2.92979
\(485\) 0 0
\(486\) 2.51908 0.114268
\(487\) 30.3406 1.37487 0.687433 0.726248i \(-0.258738\pi\)
0.687433 + 0.726248i \(0.258738\pi\)
\(488\) −16.3220 −0.738864
\(489\) −12.2180 −0.552517
\(490\) 0 0
\(491\) 17.7822 0.802502 0.401251 0.915968i \(-0.368576\pi\)
0.401251 + 0.915968i \(0.368576\pi\)
\(492\) 43.3074 1.95245
\(493\) 4.24598 0.191229
\(494\) −39.6699 −1.78483
\(495\) 0 0
\(496\) 19.9567 0.896083
\(497\) 1.08482 0.0486608
\(498\) 29.2779 1.31197
\(499\) 0.262248 0.0117399 0.00586993 0.999983i \(-0.498132\pi\)
0.00586993 + 0.999983i \(0.498132\pi\)
\(500\) 0 0
\(501\) 21.3634 0.954447
\(502\) 39.6974 1.77178
\(503\) 15.0486 0.670986 0.335493 0.942043i \(-0.391097\pi\)
0.335493 + 0.942043i \(0.391097\pi\)
\(504\) 1.02413 0.0456182
\(505\) 0 0
\(506\) 40.5028 1.80057
\(507\) 9.66321 0.429158
\(508\) 22.8522 1.01390
\(509\) 39.8752 1.76744 0.883719 0.468019i \(-0.155032\pi\)
0.883719 + 0.468019i \(0.155032\pi\)
\(510\) 0 0
\(511\) −1.16873 −0.0517017
\(512\) 49.7585 2.19904
\(513\) 8.62093 0.380624
\(514\) 31.1071 1.37207
\(515\) 0 0
\(516\) 34.3781 1.51341
\(517\) 44.0598 1.93775
\(518\) −0.863687 −0.0379482
\(519\) 13.1686 0.578036
\(520\) 0 0
\(521\) 18.3187 0.802557 0.401279 0.915956i \(-0.368566\pi\)
0.401279 + 0.915956i \(0.368566\pi\)
\(522\) −2.51908 −0.110257
\(523\) 6.04576 0.264363 0.132181 0.991226i \(-0.457802\pi\)
0.132181 + 0.991226i \(0.457802\pi\)
\(524\) 76.9882 3.36325
\(525\) 0 0
\(526\) −10.5028 −0.457942
\(527\) 13.6799 0.595906
\(528\) −31.4819 −1.37007
\(529\) −12.9924 −0.564886
\(530\) 0 0
\(531\) 7.66286 0.332540
\(532\) 6.49303 0.281508
\(533\) 18.2037 0.788490
\(534\) −41.5423 −1.79771
\(535\) 0 0
\(536\) 48.0932 2.07731
\(537\) −10.6947 −0.461509
\(538\) 3.42622 0.147715
\(539\) −35.4248 −1.52585
\(540\) 0 0
\(541\) −35.6643 −1.53333 −0.766664 0.642049i \(-0.778085\pi\)
−0.766664 + 0.642049i \(0.778085\pi\)
\(542\) −28.0746 −1.20591
\(543\) 15.2511 0.654489
\(544\) −16.0722 −0.689088
\(545\) 0 0
\(546\) 0.797504 0.0341300
\(547\) 5.23087 0.223656 0.111828 0.993728i \(-0.464329\pi\)
0.111828 + 0.993728i \(0.464329\pi\)
\(548\) 4.97498 0.212520
\(549\) 2.76215 0.117886
\(550\) 0 0
\(551\) −8.62093 −0.367264
\(552\) −18.6936 −0.795653
\(553\) −0.788155 −0.0335157
\(554\) 1.77513 0.0754180
\(555\) 0 0
\(556\) 17.7599 0.753186
\(557\) −32.9893 −1.39780 −0.698900 0.715219i \(-0.746327\pi\)
−0.698900 + 0.715219i \(0.746327\pi\)
\(558\) −8.11611 −0.343582
\(559\) 14.4504 0.611186
\(560\) 0 0
\(561\) −21.5802 −0.911116
\(562\) 34.7933 1.46767
\(563\) −5.94931 −0.250734 −0.125367 0.992110i \(-0.540011\pi\)
−0.125367 + 0.992110i \(0.540011\pi\)
\(564\) −37.6732 −1.58633
\(565\) 0 0
\(566\) 22.4738 0.944644
\(567\) −0.173311 −0.00727838
\(568\) 36.9878 1.55198
\(569\) −14.6940 −0.616003 −0.308002 0.951386i \(-0.599660\pi\)
−0.308002 + 0.951386i \(0.599660\pi\)
\(570\) 0 0
\(571\) 7.86509 0.329144 0.164572 0.986365i \(-0.447376\pi\)
0.164572 + 0.986365i \(0.447376\pi\)
\(572\) −40.3467 −1.68698
\(573\) 25.7131 1.07418
\(574\) −4.35074 −0.181597
\(575\) 0 0
\(576\) −2.85296 −0.118873
\(577\) −29.7454 −1.23832 −0.619159 0.785265i \(-0.712526\pi\)
−0.619159 + 0.785265i \(0.712526\pi\)
\(578\) −2.59045 −0.107749
\(579\) −22.8935 −0.951419
\(580\) 0 0
\(581\) −2.01430 −0.0835671
\(582\) −6.91284 −0.286547
\(583\) −27.4599 −1.13727
\(584\) −39.8489 −1.64896
\(585\) 0 0
\(586\) −78.8013 −3.25525
\(587\) 46.1639 1.90539 0.952695 0.303929i \(-0.0982987\pi\)
0.952695 + 0.303929i \(0.0982987\pi\)
\(588\) 30.2899 1.24913
\(589\) −27.7754 −1.14446
\(590\) 0 0
\(591\) 0.840810 0.0345863
\(592\) −12.2538 −0.503629
\(593\) 22.6806 0.931382 0.465691 0.884948i \(-0.345806\pi\)
0.465691 + 0.884948i \(0.345806\pi\)
\(594\) 12.8032 0.525323
\(595\) 0 0
\(596\) 6.53031 0.267492
\(597\) 26.5996 1.08865
\(598\) −14.5570 −0.595280
\(599\) 22.8764 0.934704 0.467352 0.884071i \(-0.345208\pi\)
0.467352 + 0.884071i \(0.345208\pi\)
\(600\) 0 0
\(601\) 14.6918 0.599291 0.299646 0.954051i \(-0.403132\pi\)
0.299646 + 0.954051i \(0.403132\pi\)
\(602\) −3.45369 −0.140762
\(603\) −8.13872 −0.331434
\(604\) −93.3893 −3.79996
\(605\) 0 0
\(606\) 16.1592 0.656424
\(607\) 20.9484 0.850270 0.425135 0.905130i \(-0.360227\pi\)
0.425135 + 0.905130i \(0.360227\pi\)
\(608\) 32.6325 1.32342
\(609\) 0.173311 0.00702292
\(610\) 0 0
\(611\) −15.8354 −0.640633
\(612\) 18.4520 0.745880
\(613\) 42.0373 1.69787 0.848936 0.528496i \(-0.177244\pi\)
0.848936 + 0.528496i \(0.177244\pi\)
\(614\) −55.0503 −2.22165
\(615\) 0 0
\(616\) 5.20512 0.209720
\(617\) −44.6853 −1.79896 −0.899482 0.436958i \(-0.856056\pi\)
−0.899482 + 0.436958i \(0.856056\pi\)
\(618\) 17.8513 0.718083
\(619\) −22.1966 −0.892157 −0.446079 0.894994i \(-0.647180\pi\)
−0.446079 + 0.894994i \(0.647180\pi\)
\(620\) 0 0
\(621\) 3.16348 0.126946
\(622\) −72.7606 −2.91744
\(623\) 2.85808 0.114507
\(624\) 11.3148 0.452956
\(625\) 0 0
\(626\) 20.7631 0.829859
\(627\) 43.8159 1.74984
\(628\) −48.3104 −1.92780
\(629\) −8.39974 −0.334919
\(630\) 0 0
\(631\) −5.29765 −0.210896 −0.105448 0.994425i \(-0.533628\pi\)
−0.105448 + 0.994425i \(0.533628\pi\)
\(632\) −26.8728 −1.06894
\(633\) −1.86360 −0.0740715
\(634\) −18.0323 −0.716155
\(635\) 0 0
\(636\) 23.4795 0.931024
\(637\) 12.7320 0.504458
\(638\) −12.8032 −0.506884
\(639\) −6.25938 −0.247617
\(640\) 0 0
\(641\) 3.21592 0.127021 0.0635107 0.997981i \(-0.479770\pi\)
0.0635107 + 0.997981i \(0.479770\pi\)
\(642\) −2.33062 −0.0919823
\(643\) −32.0630 −1.26444 −0.632221 0.774788i \(-0.717857\pi\)
−0.632221 + 0.774788i \(0.717857\pi\)
\(644\) 2.38264 0.0938891
\(645\) 0 0
\(646\) 92.2092 3.62792
\(647\) −9.26571 −0.364273 −0.182136 0.983273i \(-0.558301\pi\)
−0.182136 + 0.983273i \(0.558301\pi\)
\(648\) −5.90919 −0.232135
\(649\) 38.9465 1.52878
\(650\) 0 0
\(651\) 0.558382 0.0218847
\(652\) 53.0966 2.07942
\(653\) −22.2362 −0.870171 −0.435085 0.900389i \(-0.643282\pi\)
−0.435085 + 0.900389i \(0.643282\pi\)
\(654\) 10.3711 0.405541
\(655\) 0 0
\(656\) −61.7275 −2.41006
\(657\) 6.74356 0.263091
\(658\) 3.78472 0.147544
\(659\) 34.6708 1.35058 0.675291 0.737552i \(-0.264018\pi\)
0.675291 + 0.737552i \(0.264018\pi\)
\(660\) 0 0
\(661\) −9.67217 −0.376204 −0.188102 0.982150i \(-0.560234\pi\)
−0.188102 + 0.982150i \(0.560234\pi\)
\(662\) 62.2052 2.41767
\(663\) 7.75608 0.301221
\(664\) −68.6792 −2.66527
\(665\) 0 0
\(666\) 4.98345 0.193105
\(667\) −3.16348 −0.122491
\(668\) −92.8405 −3.59211
\(669\) 25.0759 0.969489
\(670\) 0 0
\(671\) 14.0386 0.541954
\(672\) −0.656028 −0.0253068
\(673\) −24.7689 −0.954770 −0.477385 0.878694i \(-0.658415\pi\)
−0.477385 + 0.878694i \(0.658415\pi\)
\(674\) 29.5091 1.13665
\(675\) 0 0
\(676\) −41.9941 −1.61516
\(677\) −33.3636 −1.28227 −0.641133 0.767430i \(-0.721535\pi\)
−0.641133 + 0.767430i \(0.721535\pi\)
\(678\) −17.2463 −0.662340
\(679\) 0.475599 0.0182518
\(680\) 0 0
\(681\) 20.3877 0.781259
\(682\) −41.2501 −1.57955
\(683\) 13.9516 0.533842 0.266921 0.963718i \(-0.413994\pi\)
0.266921 + 0.963718i \(0.413994\pi\)
\(684\) −37.4646 −1.43249
\(685\) 0 0
\(686\) −6.09907 −0.232864
\(687\) 5.84179 0.222878
\(688\) −49.0003 −1.86812
\(689\) 9.86932 0.375991
\(690\) 0 0
\(691\) 50.5611 1.92344 0.961718 0.274042i \(-0.0883607\pi\)
0.961718 + 0.274042i \(0.0883607\pi\)
\(692\) −57.2276 −2.17547
\(693\) −0.880853 −0.0334608
\(694\) 2.08829 0.0792705
\(695\) 0 0
\(696\) 5.90919 0.223987
\(697\) −42.3129 −1.60272
\(698\) 21.2704 0.805096
\(699\) 14.1216 0.534126
\(700\) 0 0
\(701\) −24.0803 −0.909499 −0.454749 0.890620i \(-0.650271\pi\)
−0.454749 + 0.890620i \(0.650271\pi\)
\(702\) −4.60158 −0.173675
\(703\) 17.0546 0.643227
\(704\) −14.5002 −0.546496
\(705\) 0 0
\(706\) −12.3574 −0.465078
\(707\) −1.11174 −0.0418114
\(708\) −33.3010 −1.25153
\(709\) 0.769569 0.0289018 0.0144509 0.999896i \(-0.495400\pi\)
0.0144509 + 0.999896i \(0.495400\pi\)
\(710\) 0 0
\(711\) 4.54763 0.170550
\(712\) 97.4487 3.65205
\(713\) −10.1923 −0.381703
\(714\) −1.85373 −0.0693740
\(715\) 0 0
\(716\) 46.4766 1.73691
\(717\) 6.39059 0.238661
\(718\) −11.8156 −0.440955
\(719\) 4.92456 0.183655 0.0918275 0.995775i \(-0.470729\pi\)
0.0918275 + 0.995775i \(0.470729\pi\)
\(720\) 0 0
\(721\) −1.22815 −0.0457388
\(722\) −139.357 −5.18632
\(723\) 10.1713 0.378273
\(724\) −66.2780 −2.46320
\(725\) 0 0
\(726\) 37.3624 1.38665
\(727\) 41.8838 1.55339 0.776693 0.629880i \(-0.216896\pi\)
0.776693 + 0.629880i \(0.216896\pi\)
\(728\) −1.87076 −0.0693350
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −33.5887 −1.24232
\(732\) −12.0037 −0.443668
\(733\) −27.1372 −1.00234 −0.501168 0.865350i \(-0.667096\pi\)
−0.501168 + 0.865350i \(0.667096\pi\)
\(734\) 73.6730 2.71932
\(735\) 0 0
\(736\) 11.9746 0.441390
\(737\) −41.3650 −1.52370
\(738\) 25.1037 0.924079
\(739\) −3.41445 −0.125603 −0.0628013 0.998026i \(-0.520003\pi\)
−0.0628013 + 0.998026i \(0.520003\pi\)
\(740\) 0 0
\(741\) −15.7478 −0.578509
\(742\) −2.35880 −0.0865942
\(743\) 3.73961 0.137193 0.0685966 0.997644i \(-0.478148\pi\)
0.0685966 + 0.997644i \(0.478148\pi\)
\(744\) 19.0385 0.697986
\(745\) 0 0
\(746\) 86.9513 3.18351
\(747\) 11.6224 0.425243
\(748\) 93.7825 3.42903
\(749\) 0.160345 0.00585888
\(750\) 0 0
\(751\) −24.1900 −0.882707 −0.441354 0.897333i \(-0.645502\pi\)
−0.441354 + 0.897333i \(0.645502\pi\)
\(752\) 53.6969 1.95812
\(753\) 15.7587 0.574278
\(754\) 4.60158 0.167580
\(755\) 0 0
\(756\) 0.753170 0.0273925
\(757\) −3.55451 −0.129191 −0.0645953 0.997912i \(-0.520576\pi\)
−0.0645953 + 0.997912i \(0.520576\pi\)
\(758\) 8.06436 0.292911
\(759\) 16.0784 0.583608
\(760\) 0 0
\(761\) −44.2390 −1.60366 −0.801832 0.597550i \(-0.796141\pi\)
−0.801832 + 0.597550i \(0.796141\pi\)
\(762\) 13.2466 0.479873
\(763\) −0.713522 −0.0258312
\(764\) −111.743 −4.04272
\(765\) 0 0
\(766\) 48.9769 1.76961
\(767\) −13.9977 −0.505426
\(768\) 31.4691 1.13554
\(769\) 6.30558 0.227385 0.113692 0.993516i \(-0.463732\pi\)
0.113692 + 0.993516i \(0.463732\pi\)
\(770\) 0 0
\(771\) 12.3486 0.444723
\(772\) 99.4897 3.58071
\(773\) −24.2649 −0.872747 −0.436374 0.899766i \(-0.643737\pi\)
−0.436374 + 0.899766i \(0.643737\pi\)
\(774\) 19.9277 0.716286
\(775\) 0 0
\(776\) 16.2159 0.582118
\(777\) −0.342858 −0.0123000
\(778\) −6.44570 −0.231090
\(779\) 85.9111 3.07809
\(780\) 0 0
\(781\) −31.8133 −1.13837
\(782\) 33.8365 1.20999
\(783\) −1.00000 −0.0357371
\(784\) −43.1732 −1.54190
\(785\) 0 0
\(786\) 44.6272 1.59180
\(787\) 39.1338 1.39497 0.697484 0.716600i \(-0.254303\pi\)
0.697484 + 0.716600i \(0.254303\pi\)
\(788\) −3.65397 −0.130167
\(789\) −4.16928 −0.148430
\(790\) 0 0
\(791\) 1.18653 0.0421882
\(792\) −30.0334 −1.06719
\(793\) −5.04558 −0.179174
\(794\) 77.2307 2.74081
\(795\) 0 0
\(796\) −115.596 −4.09719
\(797\) −29.3166 −1.03845 −0.519224 0.854638i \(-0.673779\pi\)
−0.519224 + 0.854638i \(0.673779\pi\)
\(798\) 3.76377 0.133236
\(799\) 36.8081 1.30218
\(800\) 0 0
\(801\) −16.4911 −0.582683
\(802\) −28.1201 −0.992956
\(803\) 34.2741 1.20951
\(804\) 35.3690 1.24737
\(805\) 0 0
\(806\) 14.8256 0.522210
\(807\) 1.36011 0.0478781
\(808\) −37.9059 −1.33352
\(809\) −28.7412 −1.01049 −0.505244 0.862977i \(-0.668597\pi\)
−0.505244 + 0.862977i \(0.668597\pi\)
\(810\) 0 0
\(811\) 4.04326 0.141978 0.0709891 0.997477i \(-0.477384\pi\)
0.0709891 + 0.997477i \(0.477384\pi\)
\(812\) −0.753170 −0.0264311
\(813\) −11.1448 −0.390865
\(814\) 25.3284 0.887759
\(815\) 0 0
\(816\) −26.3003 −0.920696
\(817\) 68.1976 2.38593
\(818\) −33.7255 −1.17918
\(819\) 0.316585 0.0110624
\(820\) 0 0
\(821\) 1.38325 0.0482758 0.0241379 0.999709i \(-0.492316\pi\)
0.0241379 + 0.999709i \(0.492316\pi\)
\(822\) 2.88381 0.100584
\(823\) 11.7734 0.410395 0.205197 0.978721i \(-0.434216\pi\)
0.205197 + 0.978721i \(0.434216\pi\)
\(824\) −41.8749 −1.45878
\(825\) 0 0
\(826\) 3.34549 0.116404
\(827\) −19.4700 −0.677040 −0.338520 0.940959i \(-0.609926\pi\)
−0.338520 + 0.940959i \(0.609926\pi\)
\(828\) −13.7478 −0.477768
\(829\) 16.9194 0.587634 0.293817 0.955862i \(-0.405074\pi\)
0.293817 + 0.955862i \(0.405074\pi\)
\(830\) 0 0
\(831\) 0.704673 0.0244448
\(832\) 5.21147 0.180675
\(833\) −29.5943 −1.02538
\(834\) 10.2947 0.356478
\(835\) 0 0
\(836\) −190.414 −6.58560
\(837\) −3.22185 −0.111363
\(838\) −73.8045 −2.54953
\(839\) 17.9764 0.620615 0.310308 0.950636i \(-0.399568\pi\)
0.310308 + 0.950636i \(0.399568\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −25.4675 −0.877669
\(843\) 13.8119 0.475708
\(844\) 8.09878 0.278772
\(845\) 0 0
\(846\) −21.8377 −0.750797
\(847\) −2.57051 −0.0883237
\(848\) −33.4662 −1.14923
\(849\) 8.92142 0.306182
\(850\) 0 0
\(851\) 6.25826 0.214530
\(852\) 27.2018 0.931919
\(853\) 25.1608 0.861489 0.430744 0.902474i \(-0.358251\pi\)
0.430744 + 0.902474i \(0.358251\pi\)
\(854\) 1.20591 0.0412654
\(855\) 0 0
\(856\) 5.46710 0.186862
\(857\) −27.8748 −0.952184 −0.476092 0.879395i \(-0.657947\pi\)
−0.476092 + 0.879395i \(0.657947\pi\)
\(858\) −23.3875 −0.798436
\(859\) 21.0421 0.717947 0.358973 0.933348i \(-0.383127\pi\)
0.358973 + 0.933348i \(0.383127\pi\)
\(860\) 0 0
\(861\) −1.72712 −0.0588599
\(862\) −76.4113 −2.60258
\(863\) 29.1647 0.992779 0.496390 0.868100i \(-0.334659\pi\)
0.496390 + 0.868100i \(0.334659\pi\)
\(864\) 3.78527 0.128777
\(865\) 0 0
\(866\) −16.3871 −0.556858
\(867\) −1.02833 −0.0349240
\(868\) −2.42660 −0.0823642
\(869\) 23.1133 0.784066
\(870\) 0 0
\(871\) 14.8669 0.503746
\(872\) −24.3281 −0.823854
\(873\) −2.74419 −0.0928768
\(874\) −68.7008 −2.32384
\(875\) 0 0
\(876\) −29.3060 −0.990156
\(877\) −11.5743 −0.390836 −0.195418 0.980720i \(-0.562606\pi\)
−0.195418 + 0.980720i \(0.562606\pi\)
\(878\) 23.6856 0.799350
\(879\) −31.2817 −1.05511
\(880\) 0 0
\(881\) 21.8843 0.737299 0.368650 0.929568i \(-0.379820\pi\)
0.368650 + 0.929568i \(0.379820\pi\)
\(882\) 17.5579 0.591205
\(883\) 20.2591 0.681773 0.340887 0.940104i \(-0.389273\pi\)
0.340887 + 0.940104i \(0.389273\pi\)
\(884\) −33.7062 −1.13366
\(885\) 0 0
\(886\) 70.9517 2.38367
\(887\) 37.5330 1.26023 0.630117 0.776500i \(-0.283007\pi\)
0.630117 + 0.776500i \(0.283007\pi\)
\(888\) −11.6900 −0.392292
\(889\) −0.911356 −0.0305659
\(890\) 0 0
\(891\) 5.08250 0.170270
\(892\) −108.974 −3.64872
\(893\) −74.7342 −2.50089
\(894\) 3.78538 0.126602
\(895\) 0 0
\(896\) −2.55762 −0.0854439
\(897\) −5.77870 −0.192945
\(898\) 81.2719 2.71208
\(899\) 3.22185 0.107455
\(900\) 0 0
\(901\) −22.9404 −0.764254
\(902\) 127.589 4.24826
\(903\) −1.37101 −0.0456244
\(904\) 40.4558 1.34554
\(905\) 0 0
\(906\) −54.1343 −1.79849
\(907\) −17.7096 −0.588037 −0.294018 0.955800i \(-0.594993\pi\)
−0.294018 + 0.955800i \(0.594993\pi\)
\(908\) −88.6004 −2.94031
\(909\) 6.41474 0.212763
\(910\) 0 0
\(911\) −6.63407 −0.219796 −0.109898 0.993943i \(-0.535052\pi\)
−0.109898 + 0.993943i \(0.535052\pi\)
\(912\) 53.3996 1.76824
\(913\) 59.0710 1.95497
\(914\) 68.3845 2.26196
\(915\) 0 0
\(916\) −25.3871 −0.838813
\(917\) −3.07032 −0.101391
\(918\) 10.6960 0.353019
\(919\) 4.71782 0.155626 0.0778132 0.996968i \(-0.475206\pi\)
0.0778132 + 0.996968i \(0.475206\pi\)
\(920\) 0 0
\(921\) −21.8533 −0.720091
\(922\) −17.6572 −0.581510
\(923\) 11.4339 0.376353
\(924\) 3.82798 0.125931
\(925\) 0 0
\(926\) −54.8127 −1.80126
\(927\) 7.08642 0.232748
\(928\) −3.78527 −0.124257
\(929\) 43.4668 1.42610 0.713049 0.701114i \(-0.247314\pi\)
0.713049 + 0.701114i \(0.247314\pi\)
\(930\) 0 0
\(931\) 60.0876 1.96929
\(932\) −61.3690 −2.01021
\(933\) −28.8838 −0.945613
\(934\) 77.5437 2.53731
\(935\) 0 0
\(936\) 10.7942 0.352821
\(937\) −50.9680 −1.66505 −0.832526 0.553986i \(-0.813106\pi\)
−0.832526 + 0.553986i \(0.813106\pi\)
\(938\) −3.55324 −0.116017
\(939\) 8.24232 0.268978
\(940\) 0 0
\(941\) 11.0790 0.361165 0.180583 0.983560i \(-0.442202\pi\)
0.180583 + 0.983560i \(0.442202\pi\)
\(942\) −28.0038 −0.912412
\(943\) 31.5254 1.02661
\(944\) 47.4651 1.54486
\(945\) 0 0
\(946\) 101.282 3.29298
\(947\) −58.5923 −1.90399 −0.951997 0.306107i \(-0.900974\pi\)
−0.951997 + 0.306107i \(0.900974\pi\)
\(948\) −19.7630 −0.641871
\(949\) −12.3184 −0.399872
\(950\) 0 0
\(951\) −7.15829 −0.232124
\(952\) 4.34842 0.140933
\(953\) −22.9017 −0.741859 −0.370929 0.928661i \(-0.620961\pi\)
−0.370929 + 0.928661i \(0.620961\pi\)
\(954\) 13.6102 0.440647
\(955\) 0 0
\(956\) −27.7720 −0.898211
\(957\) −5.08250 −0.164294
\(958\) 15.8510 0.512123
\(959\) −0.198404 −0.00640680
\(960\) 0 0
\(961\) −20.6197 −0.665151
\(962\) −9.10321 −0.293499
\(963\) −0.925187 −0.0298137
\(964\) −44.2019 −1.42365
\(965\) 0 0
\(966\) 1.38113 0.0444370
\(967\) 49.6623 1.59703 0.798516 0.601973i \(-0.205619\pi\)
0.798516 + 0.601973i \(0.205619\pi\)
\(968\) −87.6437 −2.81698
\(969\) 36.6043 1.17590
\(970\) 0 0
\(971\) −6.90899 −0.221720 −0.110860 0.993836i \(-0.535361\pi\)
−0.110860 + 0.993836i \(0.535361\pi\)
\(972\) −4.34577 −0.139391
\(973\) −0.708271 −0.0227061
\(974\) −76.4305 −2.44899
\(975\) 0 0
\(976\) 17.1092 0.547653
\(977\) 8.17310 0.261481 0.130740 0.991417i \(-0.458265\pi\)
0.130740 + 0.991417i \(0.458265\pi\)
\(978\) 30.7781 0.984176
\(979\) −83.8158 −2.67876
\(980\) 0 0
\(981\) 4.11700 0.131446
\(982\) −44.7949 −1.42946
\(983\) 24.1451 0.770108 0.385054 0.922894i \(-0.374183\pi\)
0.385054 + 0.922894i \(0.374183\pi\)
\(984\) −58.8875 −1.87726
\(985\) 0 0
\(986\) −10.6960 −0.340629
\(987\) 1.50242 0.0478226
\(988\) 68.4362 2.17724
\(989\) 25.0253 0.795760
\(990\) 0 0
\(991\) −51.7396 −1.64356 −0.821781 0.569803i \(-0.807020\pi\)
−0.821781 + 0.569803i \(0.807020\pi\)
\(992\) −12.1956 −0.387210
\(993\) 24.6936 0.783628
\(994\) −2.73275 −0.0866775
\(995\) 0 0
\(996\) −50.5085 −1.60042
\(997\) 9.07880 0.287528 0.143764 0.989612i \(-0.454079\pi\)
0.143764 + 0.989612i \(0.454079\pi\)
\(998\) −0.660625 −0.0209117
\(999\) 1.97828 0.0625900
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.a.w.1.1 5
3.2 odd 2 6525.2.a.bs.1.5 5
5.2 odd 4 435.2.c.e.349.1 10
5.3 odd 4 435.2.c.e.349.10 yes 10
5.4 even 2 2175.2.a.z.1.5 5
15.2 even 4 1305.2.c.j.784.10 10
15.8 even 4 1305.2.c.j.784.1 10
15.14 odd 2 6525.2.a.bl.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.c.e.349.1 10 5.2 odd 4
435.2.c.e.349.10 yes 10 5.3 odd 4
1305.2.c.j.784.1 10 15.8 even 4
1305.2.c.j.784.10 10 15.2 even 4
2175.2.a.w.1.1 5 1.1 even 1 trivial
2175.2.a.z.1.5 5 5.4 even 2
6525.2.a.bl.1.1 5 15.14 odd 2
6525.2.a.bs.1.5 5 3.2 odd 2