Properties

Label 2175.2.a.u.1.1
Level $2175$
Weight $2$
Character 2175.1
Self dual yes
Analytic conductor $17.367$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2175,2,Mod(1,2175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2175.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,3,5,0,-1,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.469.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.39138\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.39138 q^{2} +1.00000 q^{3} +3.71871 q^{4} -2.39138 q^{6} +1.32733 q^{7} -4.11009 q^{8} +1.00000 q^{9} +3.00000 q^{11} +3.71871 q^{12} -6.11009 q^{13} -3.17415 q^{14} +2.39138 q^{16} -0.672673 q^{17} -2.39138 q^{18} -5.43742 q^{19} +1.32733 q^{21} -7.17415 q^{22} +7.89286 q^{23} -4.11009 q^{24} +14.6116 q^{26} +1.00000 q^{27} +4.93594 q^{28} -1.00000 q^{29} +2.50147 q^{32} +3.00000 q^{33} +1.60862 q^{34} +3.71871 q^{36} +3.89286 q^{37} +13.0029 q^{38} -6.11009 q^{39} +4.32733 q^{41} -3.17415 q^{42} +8.45544 q^{43} +11.1561 q^{44} -18.8748 q^{46} -4.76475 q^{47} +2.39138 q^{48} -5.23820 q^{49} -0.672673 q^{51} -22.7217 q^{52} +13.3303 q^{53} -2.39138 q^{54} -5.45544 q^{56} -5.43742 q^{57} +2.39138 q^{58} +3.21724 q^{59} +7.43742 q^{61} +1.32733 q^{63} -10.7647 q^{64} -7.17415 q^{66} +1.10714 q^{67} -2.50147 q^{68} +7.89286 q^{69} +12.3483 q^{71} -4.11009 q^{72} -9.20217 q^{73} -9.30931 q^{74} -20.2202 q^{76} +3.98198 q^{77} +14.6116 q^{78} +11.6576 q^{79} +1.00000 q^{81} -10.3483 q^{82} +0.889908 q^{83} +4.93594 q^{84} -20.2202 q^{86} -1.00000 q^{87} -12.3303 q^{88} -2.33028 q^{89} -8.11009 q^{91} +29.3512 q^{92} +11.3943 q^{94} +2.50147 q^{96} +12.6756 q^{97} +12.5265 q^{98} +3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} + 5 q^{4} - q^{6} + 4 q^{7} + 3 q^{9} + 9 q^{11} + 5 q^{12} - 6 q^{13} + 9 q^{14} + q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + 4 q^{21} - 3 q^{22} - q^{23} + 13 q^{26} + 3 q^{27}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.39138 −1.69096 −0.845481 0.534005i \(-0.820686\pi\)
−0.845481 + 0.534005i \(0.820686\pi\)
\(3\) 1.00000 0.577350
\(4\) 3.71871 1.85935
\(5\) 0 0
\(6\) −2.39138 −0.976278
\(7\) 1.32733 0.501683 0.250841 0.968028i \(-0.419293\pi\)
0.250841 + 0.968028i \(0.419293\pi\)
\(8\) −4.11009 −1.45314
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 3.71871 1.07350
\(13\) −6.11009 −1.69463 −0.847317 0.531087i \(-0.821784\pi\)
−0.847317 + 0.531087i \(0.821784\pi\)
\(14\) −3.17415 −0.848327
\(15\) 0 0
\(16\) 2.39138 0.597846
\(17\) −0.672673 −0.163147 −0.0815735 0.996667i \(-0.525995\pi\)
−0.0815735 + 0.996667i \(0.525995\pi\)
\(18\) −2.39138 −0.563654
\(19\) −5.43742 −1.24743 −0.623715 0.781652i \(-0.714377\pi\)
−0.623715 + 0.781652i \(0.714377\pi\)
\(20\) 0 0
\(21\) 1.32733 0.289647
\(22\) −7.17415 −1.52953
\(23\) 7.89286 1.64577 0.822887 0.568205i \(-0.192362\pi\)
0.822887 + 0.568205i \(0.192362\pi\)
\(24\) −4.11009 −0.838969
\(25\) 0 0
\(26\) 14.6116 2.86556
\(27\) 1.00000 0.192450
\(28\) 4.93594 0.932806
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 2.50147 0.442202
\(33\) 3.00000 0.522233
\(34\) 1.60862 0.275876
\(35\) 0 0
\(36\) 3.71871 0.619785
\(37\) 3.89286 0.639982 0.319991 0.947421i \(-0.396320\pi\)
0.319991 + 0.947421i \(0.396320\pi\)
\(38\) 13.0029 2.10936
\(39\) −6.11009 −0.978398
\(40\) 0 0
\(41\) 4.32733 0.675815 0.337907 0.941179i \(-0.390281\pi\)
0.337907 + 0.941179i \(0.390281\pi\)
\(42\) −3.17415 −0.489782
\(43\) 8.45544 1.28944 0.644721 0.764418i \(-0.276974\pi\)
0.644721 + 0.764418i \(0.276974\pi\)
\(44\) 11.1561 1.68185
\(45\) 0 0
\(46\) −18.8748 −2.78294
\(47\) −4.76475 −0.695010 −0.347505 0.937678i \(-0.612971\pi\)
−0.347505 + 0.937678i \(0.612971\pi\)
\(48\) 2.39138 0.345166
\(49\) −5.23820 −0.748315
\(50\) 0 0
\(51\) −0.672673 −0.0941930
\(52\) −22.7217 −3.15093
\(53\) 13.3303 1.83105 0.915527 0.402256i \(-0.131774\pi\)
0.915527 + 0.402256i \(0.131774\pi\)
\(54\) −2.39138 −0.325426
\(55\) 0 0
\(56\) −5.45544 −0.729013
\(57\) −5.43742 −0.720204
\(58\) 2.39138 0.314004
\(59\) 3.21724 0.418848 0.209424 0.977825i \(-0.432841\pi\)
0.209424 + 0.977825i \(0.432841\pi\)
\(60\) 0 0
\(61\) 7.43742 0.952264 0.476132 0.879374i \(-0.342038\pi\)
0.476132 + 0.879374i \(0.342038\pi\)
\(62\) 0 0
\(63\) 1.32733 0.167228
\(64\) −10.7647 −1.34559
\(65\) 0 0
\(66\) −7.17415 −0.883076
\(67\) 1.10714 0.135259 0.0676295 0.997711i \(-0.478456\pi\)
0.0676295 + 0.997711i \(0.478456\pi\)
\(68\) −2.50147 −0.303348
\(69\) 7.89286 0.950188
\(70\) 0 0
\(71\) 12.3483 1.46547 0.732736 0.680513i \(-0.238243\pi\)
0.732736 + 0.680513i \(0.238243\pi\)
\(72\) −4.11009 −0.484379
\(73\) −9.20217 −1.07703 −0.538516 0.842615i \(-0.681015\pi\)
−0.538516 + 0.842615i \(0.681015\pi\)
\(74\) −9.30931 −1.08219
\(75\) 0 0
\(76\) −20.2202 −2.31941
\(77\) 3.98198 0.453789
\(78\) 14.6116 1.65443
\(79\) 11.6576 1.31158 0.655791 0.754942i \(-0.272335\pi\)
0.655791 + 0.754942i \(0.272335\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −10.3483 −1.14278
\(83\) 0.889908 0.0976801 0.0488400 0.998807i \(-0.484448\pi\)
0.0488400 + 0.998807i \(0.484448\pi\)
\(84\) 4.93594 0.538556
\(85\) 0 0
\(86\) −20.2202 −2.18040
\(87\) −1.00000 −0.107211
\(88\) −12.3303 −1.31441
\(89\) −2.33028 −0.247009 −0.123504 0.992344i \(-0.539413\pi\)
−0.123504 + 0.992344i \(0.539413\pi\)
\(90\) 0 0
\(91\) −8.11009 −0.850169
\(92\) 29.3512 3.06008
\(93\) 0 0
\(94\) 11.3943 1.17524
\(95\) 0 0
\(96\) 2.50147 0.255306
\(97\) 12.6756 1.28701 0.643507 0.765440i \(-0.277479\pi\)
0.643507 + 0.765440i \(0.277479\pi\)
\(98\) 12.5265 1.26537
\(99\) 3.00000 0.301511
\(100\) 0 0
\(101\) 3.56258 0.354490 0.177245 0.984167i \(-0.443281\pi\)
0.177245 + 0.984167i \(0.443281\pi\)
\(102\) 1.60862 0.159277
\(103\) 12.9109 1.27215 0.636073 0.771629i \(-0.280558\pi\)
0.636073 + 0.771629i \(0.280558\pi\)
\(104\) 25.1130 2.46254
\(105\) 0 0
\(106\) −31.8778 −3.09624
\(107\) −4.22018 −0.407981 −0.203990 0.978973i \(-0.565391\pi\)
−0.203990 + 0.978973i \(0.565391\pi\)
\(108\) 3.71871 0.357833
\(109\) −11.8748 −1.13740 −0.568702 0.822544i \(-0.692554\pi\)
−0.568702 + 0.822544i \(0.692554\pi\)
\(110\) 0 0
\(111\) 3.89286 0.369494
\(112\) 3.17415 0.299929
\(113\) −14.2382 −1.33942 −0.669709 0.742624i \(-0.733581\pi\)
−0.669709 + 0.742624i \(0.733581\pi\)
\(114\) 13.0029 1.21784
\(115\) 0 0
\(116\) −3.71871 −0.345274
\(117\) −6.11009 −0.564878
\(118\) −7.69364 −0.708257
\(119\) −0.892857 −0.0818481
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) −17.7857 −1.61024
\(123\) 4.32733 0.390182
\(124\) 0 0
\(125\) 0 0
\(126\) −3.17415 −0.282776
\(127\) 7.20217 0.639089 0.319544 0.947571i \(-0.396470\pi\)
0.319544 + 0.947571i \(0.396470\pi\)
\(128\) 20.7397 1.83315
\(129\) 8.45544 0.744460
\(130\) 0 0
\(131\) 14.2382 1.24400 0.621999 0.783018i \(-0.286321\pi\)
0.621999 + 0.783018i \(0.286321\pi\)
\(132\) 11.1561 0.971016
\(133\) −7.21724 −0.625814
\(134\) −2.64760 −0.228718
\(135\) 0 0
\(136\) 2.76475 0.237075
\(137\) −15.0950 −1.28965 −0.644827 0.764328i \(-0.723071\pi\)
−0.644827 + 0.764328i \(0.723071\pi\)
\(138\) −18.8748 −1.60673
\(139\) −6.43742 −0.546015 −0.273007 0.962012i \(-0.588018\pi\)
−0.273007 + 0.962012i \(0.588018\pi\)
\(140\) 0 0
\(141\) −4.76475 −0.401264
\(142\) −29.5295 −2.47806
\(143\) −18.3303 −1.53285
\(144\) 2.39138 0.199282
\(145\) 0 0
\(146\) 22.0059 1.82122
\(147\) −5.23820 −0.432040
\(148\) 14.4764 1.18995
\(149\) 1.21724 0.0997198 0.0498599 0.998756i \(-0.484123\pi\)
0.0498599 + 0.998756i \(0.484123\pi\)
\(150\) 0 0
\(151\) −2.32733 −0.189395 −0.0946976 0.995506i \(-0.530188\pi\)
−0.0946976 + 0.995506i \(0.530188\pi\)
\(152\) 22.3483 1.81269
\(153\) −0.672673 −0.0543824
\(154\) −9.52244 −0.767340
\(155\) 0 0
\(156\) −22.7217 −1.81919
\(157\) −9.43742 −0.753188 −0.376594 0.926378i \(-0.622905\pi\)
−0.376594 + 0.926378i \(0.622905\pi\)
\(158\) −27.8778 −2.21784
\(159\) 13.3303 1.05716
\(160\) 0 0
\(161\) 10.4764 0.825656
\(162\) −2.39138 −0.187885
\(163\) 21.3303 1.67072 0.835358 0.549706i \(-0.185260\pi\)
0.835358 + 0.549706i \(0.185260\pi\)
\(164\) 16.0921 1.25658
\(165\) 0 0
\(166\) −2.12811 −0.165173
\(167\) −5.30931 −0.410847 −0.205423 0.978673i \(-0.565857\pi\)
−0.205423 + 0.978673i \(0.565857\pi\)
\(168\) −5.45544 −0.420896
\(169\) 24.3332 1.87179
\(170\) 0 0
\(171\) −5.43742 −0.415810
\(172\) 31.4433 2.39753
\(173\) −22.7677 −1.73100 −0.865498 0.500913i \(-0.832998\pi\)
−0.865498 + 0.500913i \(0.832998\pi\)
\(174\) 2.39138 0.181290
\(175\) 0 0
\(176\) 7.17415 0.540772
\(177\) 3.21724 0.241822
\(178\) 5.57258 0.417683
\(179\) 17.6576 1.31979 0.659896 0.751357i \(-0.270600\pi\)
0.659896 + 0.751357i \(0.270600\pi\)
\(180\) 0 0
\(181\) 10.5655 0.785330 0.392665 0.919682i \(-0.371553\pi\)
0.392665 + 0.919682i \(0.371553\pi\)
\(182\) 19.3943 1.43760
\(183\) 7.43742 0.549790
\(184\) −32.4404 −2.39154
\(185\) 0 0
\(186\) 0 0
\(187\) −2.01802 −0.147572
\(188\) −17.7187 −1.29227
\(189\) 1.32733 0.0965489
\(190\) 0 0
\(191\) −3.23820 −0.234308 −0.117154 0.993114i \(-0.537377\pi\)
−0.117154 + 0.993114i \(0.537377\pi\)
\(192\) −10.7647 −0.776879
\(193\) 3.30931 0.238209 0.119105 0.992882i \(-0.461998\pi\)
0.119105 + 0.992882i \(0.461998\pi\)
\(194\) −30.3123 −2.17629
\(195\) 0 0
\(196\) −19.4794 −1.39138
\(197\) 1.89286 0.134860 0.0674302 0.997724i \(-0.478520\pi\)
0.0674302 + 0.997724i \(0.478520\pi\)
\(198\) −7.17415 −0.509844
\(199\) −5.56258 −0.394321 −0.197160 0.980371i \(-0.563172\pi\)
−0.197160 + 0.980371i \(0.563172\pi\)
\(200\) 0 0
\(201\) 1.10714 0.0780919
\(202\) −8.51949 −0.599429
\(203\) −1.32733 −0.0931601
\(204\) −2.50147 −0.175138
\(205\) 0 0
\(206\) −30.8748 −2.15115
\(207\) 7.89286 0.548591
\(208\) −14.6116 −1.01313
\(209\) −16.3123 −1.12834
\(210\) 0 0
\(211\) 15.7497 1.08425 0.542126 0.840297i \(-0.317619\pi\)
0.542126 + 0.840297i \(0.317619\pi\)
\(212\) 49.5714 3.40458
\(213\) 12.3483 0.846091
\(214\) 10.0921 0.689880
\(215\) 0 0
\(216\) −4.11009 −0.279656
\(217\) 0 0
\(218\) 28.3973 1.92331
\(219\) −9.20217 −0.621825
\(220\) 0 0
\(221\) 4.11009 0.276475
\(222\) −9.30931 −0.624800
\(223\) 2.01802 0.135136 0.0675682 0.997715i \(-0.478476\pi\)
0.0675682 + 0.997715i \(0.478476\pi\)
\(224\) 3.32028 0.221845
\(225\) 0 0
\(226\) 34.0490 2.26490
\(227\) 20.6756 1.37229 0.686145 0.727465i \(-0.259302\pi\)
0.686145 + 0.727465i \(0.259302\pi\)
\(228\) −20.2202 −1.33911
\(229\) 14.2562 0.942078 0.471039 0.882113i \(-0.343879\pi\)
0.471039 + 0.882113i \(0.343879\pi\)
\(230\) 0 0
\(231\) 3.98198 0.261995
\(232\) 4.11009 0.269841
\(233\) −20.7677 −1.36054 −0.680268 0.732963i \(-0.738137\pi\)
−0.680268 + 0.732963i \(0.738137\pi\)
\(234\) 14.6116 0.955188
\(235\) 0 0
\(236\) 11.9640 0.778788
\(237\) 11.6576 0.757243
\(238\) 2.13516 0.138402
\(239\) 3.30931 0.214061 0.107031 0.994256i \(-0.465866\pi\)
0.107031 + 0.994256i \(0.465866\pi\)
\(240\) 0 0
\(241\) −8.78571 −0.565938 −0.282969 0.959129i \(-0.591319\pi\)
−0.282969 + 0.959129i \(0.591319\pi\)
\(242\) 4.78276 0.307448
\(243\) 1.00000 0.0641500
\(244\) 27.6576 1.77060
\(245\) 0 0
\(246\) −10.3483 −0.659783
\(247\) 33.2231 2.11394
\(248\) 0 0
\(249\) 0.889908 0.0563956
\(250\) 0 0
\(251\) 23.8037 1.50248 0.751239 0.660030i \(-0.229457\pi\)
0.751239 + 0.660030i \(0.229457\pi\)
\(252\) 4.93594 0.310935
\(253\) 23.6786 1.48866
\(254\) −17.2231 −1.08068
\(255\) 0 0
\(256\) −28.0670 −1.75419
\(257\) 27.3303 1.70482 0.852408 0.522877i \(-0.175141\pi\)
0.852408 + 0.522877i \(0.175141\pi\)
\(258\) −20.2202 −1.25885
\(259\) 5.16710 0.321068
\(260\) 0 0
\(261\) −1.00000 −0.0618984
\(262\) −34.0490 −2.10355
\(263\) 21.7497 1.34114 0.670571 0.741845i \(-0.266049\pi\)
0.670571 + 0.741845i \(0.266049\pi\)
\(264\) −12.3303 −0.758876
\(265\) 0 0
\(266\) 17.2592 1.05823
\(267\) −2.33028 −0.142611
\(268\) 4.11714 0.251495
\(269\) 10.3303 0.629848 0.314924 0.949117i \(-0.398021\pi\)
0.314924 + 0.949117i \(0.398021\pi\)
\(270\) 0 0
\(271\) −6.25622 −0.380038 −0.190019 0.981780i \(-0.560855\pi\)
−0.190019 + 0.981780i \(0.560855\pi\)
\(272\) −1.60862 −0.0975368
\(273\) −8.11009 −0.490845
\(274\) 36.0980 2.18076
\(275\) 0 0
\(276\) 29.3512 1.76674
\(277\) −31.6815 −1.90356 −0.951779 0.306784i \(-0.900747\pi\)
−0.951779 + 0.306784i \(0.900747\pi\)
\(278\) 15.3943 0.923291
\(279\) 0 0
\(280\) 0 0
\(281\) 27.9138 1.66520 0.832600 0.553875i \(-0.186852\pi\)
0.832600 + 0.553875i \(0.186852\pi\)
\(282\) 11.3943 0.678523
\(283\) −23.5295 −1.39868 −0.699342 0.714788i \(-0.746523\pi\)
−0.699342 + 0.714788i \(0.746523\pi\)
\(284\) 45.9197 2.72483
\(285\) 0 0
\(286\) 43.8347 2.59200
\(287\) 5.74378 0.339045
\(288\) 2.50147 0.147401
\(289\) −16.5475 −0.973383
\(290\) 0 0
\(291\) 12.6756 0.743058
\(292\) −34.2202 −2.00258
\(293\) 6.23820 0.364440 0.182220 0.983258i \(-0.441672\pi\)
0.182220 + 0.983258i \(0.441672\pi\)
\(294\) 12.5265 0.730563
\(295\) 0 0
\(296\) −16.0000 −0.929981
\(297\) 3.00000 0.174078
\(298\) −2.91087 −0.168622
\(299\) −48.2261 −2.78899
\(300\) 0 0
\(301\) 11.2231 0.646891
\(302\) 5.56553 0.320260
\(303\) 3.56258 0.204665
\(304\) −13.0029 −0.745770
\(305\) 0 0
\(306\) 1.60862 0.0919585
\(307\) −3.45249 −0.197044 −0.0985220 0.995135i \(-0.531411\pi\)
−0.0985220 + 0.995135i \(0.531411\pi\)
\(308\) 14.8078 0.843755
\(309\) 12.9109 0.734474
\(310\) 0 0
\(311\) 11.0000 0.623753 0.311876 0.950123i \(-0.399043\pi\)
0.311876 + 0.950123i \(0.399043\pi\)
\(312\) 25.1130 1.42175
\(313\) 32.9908 1.86475 0.932376 0.361490i \(-0.117732\pi\)
0.932376 + 0.361490i \(0.117732\pi\)
\(314\) 22.5685 1.27361
\(315\) 0 0
\(316\) 43.3512 2.43870
\(317\) −4.63664 −0.260419 −0.130210 0.991486i \(-0.541565\pi\)
−0.130210 + 0.991486i \(0.541565\pi\)
\(318\) −31.8778 −1.78762
\(319\) −3.00000 −0.167968
\(320\) 0 0
\(321\) −4.22018 −0.235548
\(322\) −25.0531 −1.39615
\(323\) 3.65760 0.203515
\(324\) 3.71871 0.206595
\(325\) 0 0
\(326\) −51.0088 −2.82512
\(327\) −11.8748 −0.656680
\(328\) −17.7857 −0.982052
\(329\) −6.32438 −0.348674
\(330\) 0 0
\(331\) −22.2261 −1.22166 −0.610828 0.791763i \(-0.709163\pi\)
−0.610828 + 0.791763i \(0.709163\pi\)
\(332\) 3.30931 0.181622
\(333\) 3.89286 0.213327
\(334\) 12.6966 0.694726
\(335\) 0 0
\(336\) 3.17415 0.173164
\(337\) 27.5655 1.50159 0.750795 0.660535i \(-0.229671\pi\)
0.750795 + 0.660535i \(0.229671\pi\)
\(338\) −58.1900 −3.16512
\(339\) −14.2382 −0.773313
\(340\) 0 0
\(341\) 0 0
\(342\) 13.0029 0.703119
\(343\) −16.2441 −0.877099
\(344\) −34.7526 −1.87374
\(345\) 0 0
\(346\) 54.4463 2.92705
\(347\) 22.3273 1.19859 0.599297 0.800527i \(-0.295447\pi\)
0.599297 + 0.800527i \(0.295447\pi\)
\(348\) −3.71871 −0.199344
\(349\) −20.5115 −1.09795 −0.548977 0.835837i \(-0.684983\pi\)
−0.548977 + 0.835837i \(0.684983\pi\)
\(350\) 0 0
\(351\) −6.11009 −0.326133
\(352\) 7.50442 0.399987
\(353\) 28.8748 1.53685 0.768426 0.639938i \(-0.221040\pi\)
0.768426 + 0.639938i \(0.221040\pi\)
\(354\) −7.69364 −0.408912
\(355\) 0 0
\(356\) −8.66562 −0.459277
\(357\) −0.892857 −0.0472550
\(358\) −42.2261 −2.23172
\(359\) 2.76770 0.146073 0.0730367 0.997329i \(-0.476731\pi\)
0.0730367 + 0.997329i \(0.476731\pi\)
\(360\) 0 0
\(361\) 10.5655 0.556081
\(362\) −25.2662 −1.32796
\(363\) −2.00000 −0.104973
\(364\) −30.1591 −1.58077
\(365\) 0 0
\(366\) −17.7857 −0.929674
\(367\) −25.4584 −1.32892 −0.664458 0.747325i \(-0.731338\pi\)
−0.664458 + 0.747325i \(0.731338\pi\)
\(368\) 18.8748 0.983919
\(369\) 4.32733 0.225272
\(370\) 0 0
\(371\) 17.6936 0.918608
\(372\) 0 0
\(373\) 4.03604 0.208978 0.104489 0.994526i \(-0.466679\pi\)
0.104489 + 0.994526i \(0.466679\pi\)
\(374\) 4.82585 0.249539
\(375\) 0 0
\(376\) 19.5835 1.00994
\(377\) 6.11009 0.314686
\(378\) −3.17415 −0.163261
\(379\) 20.4043 1.04810 0.524050 0.851687i \(-0.324420\pi\)
0.524050 + 0.851687i \(0.324420\pi\)
\(380\) 0 0
\(381\) 7.20217 0.368978
\(382\) 7.74378 0.396206
\(383\) 5.80078 0.296406 0.148203 0.988957i \(-0.452651\pi\)
0.148203 + 0.988957i \(0.452651\pi\)
\(384\) 20.7397 1.05837
\(385\) 0 0
\(386\) −7.91382 −0.402803
\(387\) 8.45544 0.429814
\(388\) 47.1370 2.39302
\(389\) −32.2592 −1.63560 −0.817802 0.575499i \(-0.804808\pi\)
−0.817802 + 0.575499i \(0.804808\pi\)
\(390\) 0 0
\(391\) −5.30931 −0.268503
\(392\) 21.5295 1.08740
\(393\) 14.2382 0.718222
\(394\) −4.52654 −0.228044
\(395\) 0 0
\(396\) 11.1561 0.560617
\(397\) −22.1841 −1.11339 −0.556695 0.830717i \(-0.687931\pi\)
−0.556695 + 0.830717i \(0.687931\pi\)
\(398\) 13.3023 0.666782
\(399\) −7.21724 −0.361314
\(400\) 0 0
\(401\) −38.6045 −1.92782 −0.963909 0.266233i \(-0.914221\pi\)
−0.963909 + 0.266233i \(0.914221\pi\)
\(402\) −2.64760 −0.132050
\(403\) 0 0
\(404\) 13.2482 0.659123
\(405\) 0 0
\(406\) 3.17415 0.157530
\(407\) 11.6786 0.578885
\(408\) 2.76475 0.136875
\(409\) 28.0980 1.38936 0.694678 0.719321i \(-0.255547\pi\)
0.694678 + 0.719321i \(0.255547\pi\)
\(410\) 0 0
\(411\) −15.0950 −0.744583
\(412\) 48.0118 2.36537
\(413\) 4.27032 0.210129
\(414\) −18.8748 −0.927648
\(415\) 0 0
\(416\) −15.2842 −0.749371
\(417\) −6.43742 −0.315242
\(418\) 39.0088 1.90799
\(419\) 3.56553 0.174188 0.0870938 0.996200i \(-0.472242\pi\)
0.0870938 + 0.996200i \(0.472242\pi\)
\(420\) 0 0
\(421\) −17.6216 −0.858823 −0.429411 0.903109i \(-0.641279\pi\)
−0.429411 + 0.903109i \(0.641279\pi\)
\(422\) −37.6635 −1.83343
\(423\) −4.76475 −0.231670
\(424\) −54.7887 −2.66077
\(425\) 0 0
\(426\) −29.5295 −1.43071
\(427\) 9.87189 0.477734
\(428\) −15.6936 −0.758581
\(429\) −18.3303 −0.884994
\(430\) 0 0
\(431\) −33.7916 −1.62768 −0.813842 0.581086i \(-0.802628\pi\)
−0.813842 + 0.581086i \(0.802628\pi\)
\(432\) 2.39138 0.115055
\(433\) −23.3663 −1.12291 −0.561457 0.827506i \(-0.689759\pi\)
−0.561457 + 0.827506i \(0.689759\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −44.1591 −2.11484
\(437\) −42.9168 −2.05299
\(438\) 22.0059 1.05148
\(439\) −16.1461 −0.770613 −0.385306 0.922789i \(-0.625904\pi\)
−0.385306 + 0.922789i \(0.625904\pi\)
\(440\) 0 0
\(441\) −5.23820 −0.249438
\(442\) −9.82880 −0.467508
\(443\) −9.38337 −0.445817 −0.222909 0.974839i \(-0.571555\pi\)
−0.222909 + 0.974839i \(0.571555\pi\)
\(444\) 14.4764 0.687020
\(445\) 0 0
\(446\) −4.82585 −0.228511
\(447\) 1.21724 0.0575733
\(448\) −14.2883 −0.675061
\(449\) 17.5685 0.829108 0.414554 0.910025i \(-0.363938\pi\)
0.414554 + 0.910025i \(0.363938\pi\)
\(450\) 0 0
\(451\) 12.9820 0.611298
\(452\) −52.9477 −2.49045
\(453\) −2.32733 −0.109347
\(454\) −49.4433 −2.32049
\(455\) 0 0
\(456\) 22.3483 1.04655
\(457\) 17.4194 0.814845 0.407423 0.913240i \(-0.366428\pi\)
0.407423 + 0.913240i \(0.366428\pi\)
\(458\) −34.0921 −1.59302
\(459\) −0.672673 −0.0313977
\(460\) 0 0
\(461\) −0.113041 −0.00526484 −0.00263242 0.999997i \(-0.500838\pi\)
−0.00263242 + 0.999997i \(0.500838\pi\)
\(462\) −9.52244 −0.443024
\(463\) 26.8568 1.24814 0.624071 0.781368i \(-0.285478\pi\)
0.624071 + 0.781368i \(0.285478\pi\)
\(464\) −2.39138 −0.111017
\(465\) 0 0
\(466\) 49.6635 2.30062
\(467\) −0.726727 −0.0336289 −0.0168145 0.999859i \(-0.505352\pi\)
−0.0168145 + 0.999859i \(0.505352\pi\)
\(468\) −22.7217 −1.05031
\(469\) 1.46954 0.0678571
\(470\) 0 0
\(471\) −9.43742 −0.434853
\(472\) −13.2231 −0.608644
\(473\) 25.3663 1.16634
\(474\) −27.8778 −1.28047
\(475\) 0 0
\(476\) −3.32028 −0.152185
\(477\) 13.3303 0.610351
\(478\) −7.91382 −0.361970
\(479\) −9.12516 −0.416939 −0.208470 0.978029i \(-0.566848\pi\)
−0.208470 + 0.978029i \(0.566848\pi\)
\(480\) 0 0
\(481\) −23.7857 −1.08454
\(482\) 21.0100 0.956979
\(483\) 10.4764 0.476693
\(484\) −7.43742 −0.338065
\(485\) 0 0
\(486\) −2.39138 −0.108475
\(487\) −35.5714 −1.61190 −0.805948 0.591987i \(-0.798344\pi\)
−0.805948 + 0.591987i \(0.798344\pi\)
\(488\) −30.5685 −1.38377
\(489\) 21.3303 0.964588
\(490\) 0 0
\(491\) −4.44037 −0.200391 −0.100196 0.994968i \(-0.531947\pi\)
−0.100196 + 0.994968i \(0.531947\pi\)
\(492\) 16.0921 0.725487
\(493\) 0.672673 0.0302957
\(494\) −79.4492 −3.57459
\(495\) 0 0
\(496\) 0 0
\(497\) 16.3902 0.735202
\(498\) −2.12811 −0.0953629
\(499\) −40.3663 −1.80704 −0.903522 0.428541i \(-0.859028\pi\)
−0.903522 + 0.428541i \(0.859028\pi\)
\(500\) 0 0
\(501\) −5.30931 −0.237202
\(502\) −56.9238 −2.54063
\(503\) −23.7117 −1.05725 −0.528625 0.848855i \(-0.677292\pi\)
−0.528625 + 0.848855i \(0.677292\pi\)
\(504\) −5.45544 −0.243004
\(505\) 0 0
\(506\) −56.6245 −2.51727
\(507\) 24.3332 1.08068
\(508\) 26.7828 1.18829
\(509\) −0.568478 −0.0251974 −0.0125987 0.999921i \(-0.504010\pi\)
−0.0125987 + 0.999921i \(0.504010\pi\)
\(510\) 0 0
\(511\) −12.2143 −0.540328
\(512\) 25.6396 1.13312
\(513\) −5.43742 −0.240068
\(514\) −65.3571 −2.88278
\(515\) 0 0
\(516\) 31.4433 1.38421
\(517\) −14.2942 −0.628660
\(518\) −12.3565 −0.542913
\(519\) −22.7677 −0.999391
\(520\) 0 0
\(521\) 21.6576 0.948837 0.474418 0.880299i \(-0.342658\pi\)
0.474418 + 0.880299i \(0.342658\pi\)
\(522\) 2.39138 0.104668
\(523\) −14.0180 −0.612965 −0.306483 0.951876i \(-0.599152\pi\)
−0.306483 + 0.951876i \(0.599152\pi\)
\(524\) 52.9477 2.31303
\(525\) 0 0
\(526\) −52.0118 −2.26782
\(527\) 0 0
\(528\) 7.17415 0.312215
\(529\) 39.2972 1.70857
\(530\) 0 0
\(531\) 3.21724 0.139616
\(532\) −26.8388 −1.16361
\(533\) −26.4404 −1.14526
\(534\) 5.57258 0.241149
\(535\) 0 0
\(536\) −4.55046 −0.196550
\(537\) 17.6576 0.761982
\(538\) −24.7036 −1.06505
\(539\) −15.7146 −0.676876
\(540\) 0 0
\(541\) 20.8748 0.897479 0.448740 0.893663i \(-0.351873\pi\)
0.448740 + 0.893663i \(0.351873\pi\)
\(542\) 14.9610 0.642631
\(543\) 10.5655 0.453410
\(544\) −1.68267 −0.0721440
\(545\) 0 0
\(546\) 19.3943 0.830001
\(547\) −4.45249 −0.190375 −0.0951873 0.995459i \(-0.530345\pi\)
−0.0951873 + 0.995459i \(0.530345\pi\)
\(548\) −56.1340 −2.39793
\(549\) 7.43742 0.317421
\(550\) 0 0
\(551\) 5.43742 0.231642
\(552\) −32.4404 −1.38075
\(553\) 15.4735 0.657998
\(554\) 75.7626 3.21885
\(555\) 0 0
\(556\) −23.9389 −1.01524
\(557\) −34.4253 −1.45865 −0.729323 0.684169i \(-0.760165\pi\)
−0.729323 + 0.684169i \(0.760165\pi\)
\(558\) 0 0
\(559\) −51.6635 −2.18513
\(560\) 0 0
\(561\) −2.01802 −0.0852008
\(562\) −66.7526 −2.81579
\(563\) −19.6756 −0.829229 −0.414614 0.909997i \(-0.636083\pi\)
−0.414614 + 0.909997i \(0.636083\pi\)
\(564\) −17.7187 −0.746092
\(565\) 0 0
\(566\) 56.2680 2.36512
\(567\) 1.32733 0.0557425
\(568\) −50.7526 −2.12953
\(569\) 26.2942 1.10231 0.551156 0.834402i \(-0.314187\pi\)
0.551156 + 0.834402i \(0.314187\pi\)
\(570\) 0 0
\(571\) 37.0600 1.55091 0.775455 0.631402i \(-0.217520\pi\)
0.775455 + 0.631402i \(0.217520\pi\)
\(572\) −68.1650 −2.85012
\(573\) −3.23820 −0.135278
\(574\) −13.7356 −0.573312
\(575\) 0 0
\(576\) −10.7647 −0.448531
\(577\) 14.2202 0.591994 0.295997 0.955189i \(-0.404348\pi\)
0.295997 + 0.955189i \(0.404348\pi\)
\(578\) 39.5714 1.64595
\(579\) 3.30931 0.137530
\(580\) 0 0
\(581\) 1.18120 0.0490044
\(582\) −30.3123 −1.25648
\(583\) 39.9908 1.65625
\(584\) 37.8217 1.56508
\(585\) 0 0
\(586\) −14.9179 −0.616254
\(587\) −32.0980 −1.32483 −0.662413 0.749139i \(-0.730467\pi\)
−0.662413 + 0.749139i \(0.730467\pi\)
\(588\) −19.4794 −0.803315
\(589\) 0 0
\(590\) 0 0
\(591\) 1.89286 0.0778617
\(592\) 9.30931 0.382610
\(593\) 27.1871 1.11644 0.558220 0.829693i \(-0.311484\pi\)
0.558220 + 0.829693i \(0.311484\pi\)
\(594\) −7.17415 −0.294359
\(595\) 0 0
\(596\) 4.52654 0.185414
\(597\) −5.56258 −0.227661
\(598\) 115.327 4.71607
\(599\) 31.8037 1.29947 0.649733 0.760163i \(-0.274881\pi\)
0.649733 + 0.760163i \(0.274881\pi\)
\(600\) 0 0
\(601\) −13.3453 −0.544368 −0.272184 0.962245i \(-0.587746\pi\)
−0.272184 + 0.962245i \(0.587746\pi\)
\(602\) −26.8388 −1.09387
\(603\) 1.10714 0.0450864
\(604\) −8.65465 −0.352153
\(605\) 0 0
\(606\) −8.51949 −0.346081
\(607\) 37.6635 1.52871 0.764357 0.644793i \(-0.223056\pi\)
0.764357 + 0.644793i \(0.223056\pi\)
\(608\) −13.6016 −0.551616
\(609\) −1.32733 −0.0537860
\(610\) 0 0
\(611\) 29.1130 1.17779
\(612\) −2.50147 −0.101116
\(613\) −38.3663 −1.54960 −0.774800 0.632206i \(-0.782150\pi\)
−0.774800 + 0.632206i \(0.782150\pi\)
\(614\) 8.25622 0.333194
\(615\) 0 0
\(616\) −16.3663 −0.659418
\(617\) 34.6245 1.39393 0.696965 0.717105i \(-0.254533\pi\)
0.696965 + 0.717105i \(0.254533\pi\)
\(618\) −30.8748 −1.24197
\(619\) 0.00589781 0.000237053 0 0.000118526 1.00000i \(-0.499962\pi\)
0.000118526 1.00000i \(0.499962\pi\)
\(620\) 0 0
\(621\) 7.89286 0.316729
\(622\) −26.3052 −1.05474
\(623\) −3.09304 −0.123920
\(624\) −14.6116 −0.584931
\(625\) 0 0
\(626\) −78.8937 −3.15323
\(627\) −16.3123 −0.651449
\(628\) −35.0950 −1.40044
\(629\) −2.61862 −0.104411
\(630\) 0 0
\(631\) 42.3001 1.68394 0.841971 0.539523i \(-0.181395\pi\)
0.841971 + 0.539523i \(0.181395\pi\)
\(632\) −47.9138 −1.90591
\(633\) 15.7497 0.625993
\(634\) 11.0880 0.440360
\(635\) 0 0
\(636\) 49.5714 1.96563
\(637\) 32.0059 1.26812
\(638\) 7.17415 0.284027
\(639\) 12.3483 0.488491
\(640\) 0 0
\(641\) 14.7297 0.581787 0.290894 0.956755i \(-0.406047\pi\)
0.290894 + 0.956755i \(0.406047\pi\)
\(642\) 10.0921 0.398302
\(643\) −37.9820 −1.49786 −0.748932 0.662647i \(-0.769433\pi\)
−0.748932 + 0.662647i \(0.769433\pi\)
\(644\) 38.9587 1.53519
\(645\) 0 0
\(646\) −8.74673 −0.344135
\(647\) −31.5144 −1.23896 −0.619480 0.785012i \(-0.712656\pi\)
−0.619480 + 0.785012i \(0.712656\pi\)
\(648\) −4.11009 −0.161460
\(649\) 9.65171 0.378863
\(650\) 0 0
\(651\) 0 0
\(652\) 79.3211 3.10645
\(653\) 38.8929 1.52200 0.760998 0.648755i \(-0.224710\pi\)
0.760998 + 0.648755i \(0.224710\pi\)
\(654\) 28.3973 1.11042
\(655\) 0 0
\(656\) 10.3483 0.404033
\(657\) −9.20217 −0.359011
\(658\) 15.1240 0.589595
\(659\) −32.2792 −1.25742 −0.628709 0.777641i \(-0.716416\pi\)
−0.628709 + 0.777641i \(0.716416\pi\)
\(660\) 0 0
\(661\) −29.8447 −1.16082 −0.580412 0.814323i \(-0.697109\pi\)
−0.580412 + 0.814323i \(0.697109\pi\)
\(662\) 53.1511 2.06577
\(663\) 4.11009 0.159623
\(664\) −3.65760 −0.141943
\(665\) 0 0
\(666\) −9.30931 −0.360728
\(667\) −7.89286 −0.305613
\(668\) −19.7438 −0.763910
\(669\) 2.01802 0.0780211
\(670\) 0 0
\(671\) 22.3123 0.861355
\(672\) 3.32028 0.128082
\(673\) −10.5505 −0.406690 −0.203345 0.979107i \(-0.565181\pi\)
−0.203345 + 0.979107i \(0.565181\pi\)
\(674\) −65.9197 −2.53913
\(675\) 0 0
\(676\) 90.4882 3.48032
\(677\) −40.0600 −1.53963 −0.769815 0.638268i \(-0.779651\pi\)
−0.769815 + 0.638268i \(0.779651\pi\)
\(678\) 34.0490 1.30764
\(679\) 16.8247 0.645673
\(680\) 0 0
\(681\) 20.6756 0.792292
\(682\) 0 0
\(683\) −24.2913 −0.929480 −0.464740 0.885447i \(-0.653852\pi\)
−0.464740 + 0.885447i \(0.653852\pi\)
\(684\) −20.2202 −0.773138
\(685\) 0 0
\(686\) 38.8459 1.48314
\(687\) 14.2562 0.543909
\(688\) 20.2202 0.770887
\(689\) −81.4492 −3.10297
\(690\) 0 0
\(691\) −43.9017 −1.67010 −0.835050 0.550174i \(-0.814561\pi\)
−0.835050 + 0.550174i \(0.814561\pi\)
\(692\) −84.6665 −3.21854
\(693\) 3.98198 0.151263
\(694\) −53.3932 −2.02678
\(695\) 0 0
\(696\) 4.11009 0.155793
\(697\) −2.91087 −0.110257
\(698\) 49.0508 1.85660
\(699\) −20.7677 −0.785506
\(700\) 0 0
\(701\) −39.9197 −1.50775 −0.753874 0.657020i \(-0.771817\pi\)
−0.753874 + 0.657020i \(0.771817\pi\)
\(702\) 14.6116 0.551478
\(703\) −21.1671 −0.798332
\(704\) −32.2942 −1.21713
\(705\) 0 0
\(706\) −69.0508 −2.59876
\(707\) 4.72871 0.177841
\(708\) 11.9640 0.449633
\(709\) 11.4885 0.431461 0.215730 0.976453i \(-0.430787\pi\)
0.215730 + 0.976453i \(0.430787\pi\)
\(710\) 0 0
\(711\) 11.6576 0.437194
\(712\) 9.57765 0.358938
\(713\) 0 0
\(714\) 2.13516 0.0799064
\(715\) 0 0
\(716\) 65.6635 2.45396
\(717\) 3.30931 0.123588
\(718\) −6.61862 −0.247005
\(719\) −1.00295 −0.0374037 −0.0187018 0.999825i \(-0.505953\pi\)
−0.0187018 + 0.999825i \(0.505953\pi\)
\(720\) 0 0
\(721\) 17.1370 0.638214
\(722\) −25.2662 −0.940311
\(723\) −8.78571 −0.326744
\(724\) 39.2901 1.46021
\(725\) 0 0
\(726\) 4.78276 0.177505
\(727\) 20.4404 0.758091 0.379046 0.925378i \(-0.376252\pi\)
0.379046 + 0.925378i \(0.376252\pi\)
\(728\) 33.3332 1.23541
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −5.68774 −0.210369
\(732\) 27.6576 1.02225
\(733\) −30.9669 −1.14379 −0.571895 0.820327i \(-0.693791\pi\)
−0.571895 + 0.820327i \(0.693791\pi\)
\(734\) 60.8807 2.24715
\(735\) 0 0
\(736\) 19.7438 0.727765
\(737\) 3.32143 0.122346
\(738\) −10.3483 −0.380926
\(739\) 3.62157 0.133222 0.0666108 0.997779i \(-0.478781\pi\)
0.0666108 + 0.997779i \(0.478781\pi\)
\(740\) 0 0
\(741\) 33.2231 1.22048
\(742\) −42.3123 −1.55333
\(743\) 25.1691 0.923364 0.461682 0.887046i \(-0.347246\pi\)
0.461682 + 0.887046i \(0.347246\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −9.65171 −0.353374
\(747\) 0.889908 0.0325600
\(748\) −7.50442 −0.274389
\(749\) −5.60157 −0.204677
\(750\) 0 0
\(751\) −9.63760 −0.351681 −0.175841 0.984419i \(-0.556264\pi\)
−0.175841 + 0.984419i \(0.556264\pi\)
\(752\) −11.3943 −0.415509
\(753\) 23.8037 0.867456
\(754\) −14.6116 −0.532122
\(755\) 0 0
\(756\) 4.93594 0.179519
\(757\) 17.4282 0.633440 0.316720 0.948519i \(-0.397418\pi\)
0.316720 + 0.948519i \(0.397418\pi\)
\(758\) −48.7946 −1.77230
\(759\) 23.6786 0.859478
\(760\) 0 0
\(761\) 2.27622 0.0825130 0.0412565 0.999149i \(-0.486864\pi\)
0.0412565 + 0.999149i \(0.486864\pi\)
\(762\) −17.2231 −0.623928
\(763\) −15.7618 −0.570615
\(764\) −12.0419 −0.435662
\(765\) 0 0
\(766\) −13.8719 −0.501212
\(767\) −19.6576 −0.709795
\(768\) −28.0670 −1.01278
\(769\) 29.4433 1.06175 0.530877 0.847449i \(-0.321863\pi\)
0.530877 + 0.847449i \(0.321863\pi\)
\(770\) 0 0
\(771\) 27.3303 0.984276
\(772\) 12.3064 0.442916
\(773\) −14.2562 −0.512761 −0.256380 0.966576i \(-0.582530\pi\)
−0.256380 + 0.966576i \(0.582530\pi\)
\(774\) −20.2202 −0.726800
\(775\) 0 0
\(776\) −52.0980 −1.87021
\(777\) 5.16710 0.185369
\(778\) 77.1440 2.76575
\(779\) −23.5295 −0.843032
\(780\) 0 0
\(781\) 37.0449 1.32557
\(782\) 12.6966 0.454029
\(783\) −1.00000 −0.0357371
\(784\) −12.5265 −0.447377
\(785\) 0 0
\(786\) −34.0490 −1.21449
\(787\) 27.1311 0.967118 0.483559 0.875312i \(-0.339344\pi\)
0.483559 + 0.875312i \(0.339344\pi\)
\(788\) 7.03899 0.250753
\(789\) 21.7497 0.774309
\(790\) 0 0
\(791\) −18.8988 −0.671962
\(792\) −12.3303 −0.438137
\(793\) −45.4433 −1.61374
\(794\) 53.0508 1.88270
\(795\) 0 0
\(796\) −20.6856 −0.733182
\(797\) 2.00000 0.0708436 0.0354218 0.999372i \(-0.488723\pi\)
0.0354218 + 0.999372i \(0.488723\pi\)
\(798\) 17.2592 0.610968
\(799\) 3.20511 0.113389
\(800\) 0 0
\(801\) −2.33028 −0.0823363
\(802\) 92.3182 3.25987
\(803\) −27.6065 −0.974212
\(804\) 4.11714 0.145200
\(805\) 0 0
\(806\) 0 0
\(807\) 10.3303 0.363643
\(808\) −14.6425 −0.515123
\(809\) −13.5324 −0.475775 −0.237888 0.971293i \(-0.576455\pi\)
−0.237888 + 0.971293i \(0.576455\pi\)
\(810\) 0 0
\(811\) −40.4492 −1.42036 −0.710182 0.704018i \(-0.751387\pi\)
−0.710182 + 0.704018i \(0.751387\pi\)
\(812\) −4.93594 −0.173218
\(813\) −6.25622 −0.219415
\(814\) −27.9279 −0.978873
\(815\) 0 0
\(816\) −1.60862 −0.0563129
\(817\) −45.9758 −1.60849
\(818\) −67.1930 −2.34935
\(819\) −8.11009 −0.283390
\(820\) 0 0
\(821\) −21.6016 −0.753900 −0.376950 0.926234i \(-0.623027\pi\)
−0.376950 + 0.926234i \(0.623027\pi\)
\(822\) 36.0980 1.25906
\(823\) −25.6995 −0.895830 −0.447915 0.894076i \(-0.647833\pi\)
−0.447915 + 0.894076i \(0.647833\pi\)
\(824\) −53.0649 −1.84860
\(825\) 0 0
\(826\) −10.2120 −0.355320
\(827\) 19.6016 0.681613 0.340807 0.940133i \(-0.389300\pi\)
0.340807 + 0.940133i \(0.389300\pi\)
\(828\) 29.3512 1.02003
\(829\) −4.22608 −0.146778 −0.0733889 0.997303i \(-0.523381\pi\)
−0.0733889 + 0.997303i \(0.523381\pi\)
\(830\) 0 0
\(831\) −31.6815 −1.09902
\(832\) 65.7736 2.28029
\(833\) 3.52360 0.122085
\(834\) 15.3943 0.533062
\(835\) 0 0
\(836\) −60.6606 −2.09799
\(837\) 0 0
\(838\) −8.52654 −0.294545
\(839\) −2.45839 −0.0848729 −0.0424365 0.999099i \(-0.513512\pi\)
−0.0424365 + 0.999099i \(0.513512\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 42.1399 1.45224
\(843\) 27.9138 0.961403
\(844\) 58.5685 2.01601
\(845\) 0 0
\(846\) 11.3943 0.391745
\(847\) −2.65465 −0.0912150
\(848\) 31.8778 1.09469
\(849\) −23.5295 −0.807530
\(850\) 0 0
\(851\) 30.7258 1.05327
\(852\) 45.9197 1.57318
\(853\) −39.8427 −1.36419 −0.682094 0.731264i \(-0.738931\pi\)
−0.682094 + 0.731264i \(0.738931\pi\)
\(854\) −23.6075 −0.807831
\(855\) 0 0
\(856\) 17.3453 0.592852
\(857\) 16.9518 0.579064 0.289532 0.957168i \(-0.406500\pi\)
0.289532 + 0.957168i \(0.406500\pi\)
\(858\) 43.8347 1.49649
\(859\) 38.3902 1.30986 0.654929 0.755691i \(-0.272699\pi\)
0.654929 + 0.755691i \(0.272699\pi\)
\(860\) 0 0
\(861\) 5.74378 0.195747
\(862\) 80.8087 2.75235
\(863\) −49.6995 −1.69179 −0.845896 0.533348i \(-0.820934\pi\)
−0.845896 + 0.533348i \(0.820934\pi\)
\(864\) 2.50147 0.0851019
\(865\) 0 0
\(866\) 55.8778 1.89880
\(867\) −16.5475 −0.561983
\(868\) 0 0
\(869\) 34.9728 1.18637
\(870\) 0 0
\(871\) −6.76475 −0.229215
\(872\) 48.8067 1.65280
\(873\) 12.6756 0.429005
\(874\) 102.630 3.47153
\(875\) 0 0
\(876\) −34.2202 −1.15619
\(877\) 40.9168 1.38166 0.690831 0.723017i \(-0.257245\pi\)
0.690831 + 0.723017i \(0.257245\pi\)
\(878\) 38.6116 1.30308
\(879\) 6.23820 0.210409
\(880\) 0 0
\(881\) −26.9079 −0.906551 −0.453276 0.891370i \(-0.649745\pi\)
−0.453276 + 0.891370i \(0.649745\pi\)
\(882\) 12.5265 0.421791
\(883\) 6.69069 0.225160 0.112580 0.993643i \(-0.464089\pi\)
0.112580 + 0.993643i \(0.464089\pi\)
\(884\) 15.2842 0.514065
\(885\) 0 0
\(886\) 22.4392 0.753860
\(887\) 46.0859 1.54741 0.773706 0.633545i \(-0.218401\pi\)
0.773706 + 0.633545i \(0.218401\pi\)
\(888\) −16.0000 −0.536925
\(889\) 9.55963 0.320620
\(890\) 0 0
\(891\) 3.00000 0.100504
\(892\) 7.50442 0.251267
\(893\) 25.9079 0.866976
\(894\) −2.91087 −0.0973542
\(895\) 0 0
\(896\) 27.5283 0.919657
\(897\) −48.2261 −1.61022
\(898\) −42.0129 −1.40199
\(899\) 0 0
\(900\) 0 0
\(901\) −8.96691 −0.298731
\(902\) −31.0449 −1.03368
\(903\) 11.2231 0.373482
\(904\) 58.5203 1.94636
\(905\) 0 0
\(906\) 5.56553 0.184902
\(907\) 18.7117 0.621310 0.310655 0.950523i \(-0.399452\pi\)
0.310655 + 0.950523i \(0.399452\pi\)
\(908\) 76.8866 2.55157
\(909\) 3.56258 0.118163
\(910\) 0 0
\(911\) 25.2923 0.837970 0.418985 0.907993i \(-0.362386\pi\)
0.418985 + 0.907993i \(0.362386\pi\)
\(912\) −13.0029 −0.430571
\(913\) 2.66972 0.0883550
\(914\) −41.6564 −1.37787
\(915\) 0 0
\(916\) 53.0147 1.75166
\(917\) 18.8988 0.624092
\(918\) 1.60862 0.0530923
\(919\) −45.6396 −1.50551 −0.752756 0.658300i \(-0.771276\pi\)
−0.752756 + 0.658300i \(0.771276\pi\)
\(920\) 0 0
\(921\) −3.45249 −0.113763
\(922\) 0.270324 0.00890265
\(923\) −75.4492 −2.48344
\(924\) 14.8078 0.487142
\(925\) 0 0
\(926\) −64.2249 −2.11056
\(927\) 12.9109 0.424049
\(928\) −2.50147 −0.0821149
\(929\) −21.2733 −0.697953 −0.348977 0.937131i \(-0.613471\pi\)
−0.348977 + 0.937131i \(0.613471\pi\)
\(930\) 0 0
\(931\) 28.4823 0.933470
\(932\) −77.2290 −2.52972
\(933\) 11.0000 0.360124
\(934\) 1.73788 0.0568652
\(935\) 0 0
\(936\) 25.1130 0.820845
\(937\) 46.9489 1.53375 0.766877 0.641794i \(-0.221810\pi\)
0.766877 + 0.641794i \(0.221810\pi\)
\(938\) −3.51424 −0.114744
\(939\) 32.9908 1.07662
\(940\) 0 0
\(941\) −18.5986 −0.606298 −0.303149 0.952943i \(-0.598038\pi\)
−0.303149 + 0.952943i \(0.598038\pi\)
\(942\) 22.5685 0.735321
\(943\) 34.1550 1.11224
\(944\) 7.69364 0.250407
\(945\) 0 0
\(946\) −60.6606 −1.97224
\(947\) −40.0800 −1.30242 −0.651212 0.758896i \(-0.725739\pi\)
−0.651212 + 0.758896i \(0.725739\pi\)
\(948\) 43.3512 1.40798
\(949\) 56.2261 1.82518
\(950\) 0 0
\(951\) −4.63664 −0.150353
\(952\) 3.66972 0.118936
\(953\) 5.03309 0.163038 0.0815188 0.996672i \(-0.474023\pi\)
0.0815188 + 0.996672i \(0.474023\pi\)
\(954\) −31.8778 −1.03208
\(955\) 0 0
\(956\) 12.3064 0.398016
\(957\) −3.00000 −0.0969762
\(958\) 21.8217 0.705029
\(959\) −20.0360 −0.646997
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 56.8807 1.83391
\(963\) −4.22018 −0.135994
\(964\) −32.6715 −1.05228
\(965\) 0 0
\(966\) −25.0531 −0.806070
\(967\) −1.72871 −0.0555916 −0.0277958 0.999614i \(-0.508849\pi\)
−0.0277958 + 0.999614i \(0.508849\pi\)
\(968\) 8.22018 0.264207
\(969\) 3.65760 0.117499
\(970\) 0 0
\(971\) −16.1071 −0.516903 −0.258451 0.966024i \(-0.583212\pi\)
−0.258451 + 0.966024i \(0.583212\pi\)
\(972\) 3.71871 0.119278
\(973\) −8.54456 −0.273926
\(974\) 85.0649 2.72565
\(975\) 0 0
\(976\) 17.7857 0.569307
\(977\) 13.2323 0.423339 0.211669 0.977341i \(-0.432110\pi\)
0.211669 + 0.977341i \(0.432110\pi\)
\(978\) −51.0088 −1.63108
\(979\) −6.99083 −0.223428
\(980\) 0 0
\(981\) −11.8748 −0.379134
\(982\) 10.6186 0.338854
\(983\) −3.08913 −0.0985278 −0.0492639 0.998786i \(-0.515688\pi\)
−0.0492639 + 0.998786i \(0.515688\pi\)
\(984\) −17.7857 −0.566988
\(985\) 0 0
\(986\) −1.60862 −0.0512288
\(987\) −6.32438 −0.201307
\(988\) 123.547 3.93056
\(989\) 66.7376 2.12213
\(990\) 0 0
\(991\) 30.9138 0.982010 0.491005 0.871157i \(-0.336630\pi\)
0.491005 + 0.871157i \(0.336630\pi\)
\(992\) 0 0
\(993\) −22.2261 −0.705323
\(994\) −39.1953 −1.24320
\(995\) 0 0
\(996\) 3.30931 0.104859
\(997\) 25.3863 0.803993 0.401996 0.915641i \(-0.368316\pi\)
0.401996 + 0.915641i \(0.368316\pi\)
\(998\) 96.5313 3.05564
\(999\) 3.89286 0.123165
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.a.u.1.1 3
3.2 odd 2 6525.2.a.bf.1.3 3
5.2 odd 4 2175.2.c.m.349.1 6
5.3 odd 4 2175.2.c.m.349.6 6
5.4 even 2 435.2.a.i.1.3 3
15.14 odd 2 1305.2.a.q.1.1 3
20.19 odd 2 6960.2.a.cl.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.a.i.1.3 3 5.4 even 2
1305.2.a.q.1.1 3 15.14 odd 2
2175.2.a.u.1.1 3 1.1 even 1 trivial
2175.2.c.m.349.1 6 5.2 odd 4
2175.2.c.m.349.6 6 5.3 odd 4
6525.2.a.bf.1.3 3 3.2 odd 2
6960.2.a.cl.1.2 3 20.19 odd 2