Properties

Label 2175.2.a.u
Level $2175$
Weight $2$
Character orbit 2175.a
Self dual yes
Analytic conductor $17.367$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2175,2,Mod(1,2175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2175.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,3,5,0,-1,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.469.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + q^{3} + (\beta_{2} + 2) q^{4} - \beta_1 q^{6} + (\beta_{2} - \beta_1 + 2) q^{7} + ( - \beta_{2} - \beta_1) q^{8} + q^{9} + 3 q^{11} + (\beta_{2} + 2) q^{12} + ( - \beta_{2} - \beta_1 - 2) q^{13}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} + 5 q^{4} - q^{6} + 4 q^{7} + 3 q^{9} + 9 q^{11} + 5 q^{12} - 6 q^{13} + 9 q^{14} + q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + 4 q^{21} - 3 q^{22} - q^{23} + 13 q^{26} + 3 q^{27}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 5x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.39138
0.772866
−2.16425
−2.39138 1.00000 3.71871 0 −2.39138 1.32733 −4.11009 1.00000 0
1.2 −0.772866 1.00000 −1.40268 0 −0.772866 −2.17554 2.62981 1.00000 0
1.3 2.16425 1.00000 2.68397 0 2.16425 4.84822 1.48028 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2175.2.a.u 3
3.b odd 2 1 6525.2.a.bf 3
5.b even 2 1 435.2.a.i 3
5.c odd 4 2 2175.2.c.m 6
15.d odd 2 1 1305.2.a.q 3
20.d odd 2 1 6960.2.a.cl 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.2.a.i 3 5.b even 2 1
1305.2.a.q 3 15.d odd 2 1
2175.2.a.u 3 1.a even 1 1 trivial
2175.2.c.m 6 5.c odd 4 2
6525.2.a.bf 3 3.b odd 2 1
6960.2.a.cl 3 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2175))\):

\( T_{2}^{3} + T_{2}^{2} - 5T_{2} - 4 \) Copy content Toggle raw display
\( T_{7}^{3} - 4T_{7}^{2} - 7T_{7} + 14 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 5T - 4 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 4 T^{2} + \cdots + 14 \) Copy content Toggle raw display
$11$ \( (T - 3)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 6T^{2} - T - 2 \) Copy content Toggle raw display
$17$ \( T^{3} + 2 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$19$ \( T^{3} + 4 T^{2} + \cdots - 88 \) Copy content Toggle raw display
$23$ \( T^{3} + T^{2} + \cdots - 112 \) Copy content Toggle raw display
$29$ \( (T + 1)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} \) Copy content Toggle raw display
$37$ \( T^{3} + 13T^{2} - 256 \) Copy content Toggle raw display
$41$ \( T^{3} - 13 T^{2} + \cdots - 28 \) Copy content Toggle raw display
$43$ \( T^{3} - 13 T^{2} + \cdots + 308 \) Copy content Toggle raw display
$47$ \( T^{3} + 2 T^{2} + \cdots - 266 \) Copy content Toggle raw display
$53$ \( T^{3} - 3 T^{2} + \cdots - 316 \) Copy content Toggle raw display
$59$ \( T^{3} - 22 T^{2} + \cdots - 256 \) Copy content Toggle raw display
$61$ \( T^{3} - 10 T^{2} + \cdots + 112 \) Copy content Toggle raw display
$67$ \( T^{3} - 28 T^{2} + \cdots - 194 \) Copy content Toggle raw display
$71$ \( T^{3} - 192T + 488 \) Copy content Toggle raw display
$73$ \( T^{3} + 3 T^{2} + \cdots - 1168 \) Copy content Toggle raw display
$79$ \( T^{3} + 2 T^{2} + \cdots - 224 \) Copy content Toggle raw display
$83$ \( T^{3} - 15 T^{2} + \cdots - 44 \) Copy content Toggle raw display
$89$ \( T^{3} - 30 T^{2} + \cdots + 602 \) Copy content Toggle raw display
$97$ \( T^{3} - T^{2} + \cdots - 76 \) Copy content Toggle raw display
show more
show less