Properties

Label 2175.2.a.m
Level $2175$
Weight $2$
Character orbit 2175.a
Self dual yes
Analytic conductor $17.367$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} - q^{3} + (\beta + 2) q^{4} + \beta q^{6} + (2 \beta - 2) q^{7} + ( - \beta - 4) q^{8} + q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{2} - q^{3} + (\beta + 2) q^{4} + \beta q^{6} + (2 \beta - 2) q^{7} + ( - \beta - 4) q^{8} + q^{9} + ( - \beta - 3) q^{11} + ( - \beta - 2) q^{12} + 2 q^{13} - 8 q^{14} + 3 \beta q^{16} + ( - 2 \beta + 4) q^{17} - \beta q^{18} + ( - 2 \beta + 2) q^{19} + ( - 2 \beta + 2) q^{21} + (4 \beta + 4) q^{22} + (\beta - 5) q^{23} + (\beta + 4) q^{24} - 2 \beta q^{26} - q^{27} + (4 \beta + 4) q^{28} + q^{29} + 4 q^{31} + ( - \beta - 4) q^{32} + (\beta + 3) q^{33} + ( - 2 \beta + 8) q^{34} + (\beta + 2) q^{36} + ( - 3 \beta - 3) q^{37} + 8 q^{38} - 2 q^{39} + (3 \beta + 3) q^{41} + 8 q^{42} + (3 \beta - 3) q^{43} + ( - 6 \beta - 10) q^{44} + (4 \beta - 4) q^{46} + ( - 2 \beta + 10) q^{47} - 3 \beta q^{48} + ( - 4 \beta + 13) q^{49} + (2 \beta - 4) q^{51} + (2 \beta + 4) q^{52} + (\beta + 5) q^{53} + \beta q^{54} - 8 \beta q^{56} + (2 \beta - 2) q^{57} - \beta q^{58} + 12 q^{59} + (2 \beta + 4) q^{61} - 4 \beta q^{62} + (2 \beta - 2) q^{63} + ( - \beta + 4) q^{64} + ( - 4 \beta - 4) q^{66} + ( - 6 \beta + 2) q^{67} - 2 \beta q^{68} + ( - \beta + 5) q^{69} + ( - 2 \beta - 6) q^{71} + ( - \beta - 4) q^{72} + (3 \beta + 3) q^{73} + (6 \beta + 12) q^{74} + ( - 4 \beta - 4) q^{76} + ( - 6 \beta - 2) q^{77} + 2 \beta q^{78} - 12 q^{79} + q^{81} + ( - 6 \beta - 12) q^{82} + ( - \beta + 1) q^{83} + ( - 4 \beta - 4) q^{84} - 12 q^{86} - q^{87} + (8 \beta + 16) q^{88} + ( - 4 \beta + 6) q^{89} + (4 \beta - 4) q^{91} + ( - 2 \beta - 6) q^{92} - 4 q^{93} + ( - 8 \beta + 8) q^{94} + (\beta + 4) q^{96} + ( - 3 \beta + 1) q^{97} + ( - 9 \beta + 16) q^{98} + ( - \beta - 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 2 q^{3} + 5 q^{4} + q^{6} - 2 q^{7} - 9 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} - 2 q^{3} + 5 q^{4} + q^{6} - 2 q^{7} - 9 q^{8} + 2 q^{9} - 7 q^{11} - 5 q^{12} + 4 q^{13} - 16 q^{14} + 3 q^{16} + 6 q^{17} - q^{18} + 2 q^{19} + 2 q^{21} + 12 q^{22} - 9 q^{23} + 9 q^{24} - 2 q^{26} - 2 q^{27} + 12 q^{28} + 2 q^{29} + 8 q^{31} - 9 q^{32} + 7 q^{33} + 14 q^{34} + 5 q^{36} - 9 q^{37} + 16 q^{38} - 4 q^{39} + 9 q^{41} + 16 q^{42} - 3 q^{43} - 26 q^{44} - 4 q^{46} + 18 q^{47} - 3 q^{48} + 22 q^{49} - 6 q^{51} + 10 q^{52} + 11 q^{53} + q^{54} - 8 q^{56} - 2 q^{57} - q^{58} + 24 q^{59} + 10 q^{61} - 4 q^{62} - 2 q^{63} + 7 q^{64} - 12 q^{66} - 2 q^{67} - 2 q^{68} + 9 q^{69} - 14 q^{71} - 9 q^{72} + 9 q^{73} + 30 q^{74} - 12 q^{76} - 10 q^{77} + 2 q^{78} - 24 q^{79} + 2 q^{81} - 30 q^{82} + q^{83} - 12 q^{84} - 24 q^{86} - 2 q^{87} + 40 q^{88} + 8 q^{89} - 4 q^{91} - 14 q^{92} - 8 q^{93} + 8 q^{94} + 9 q^{96} - q^{97} + 23 q^{98} - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
−2.56155 −1.00000 4.56155 0 2.56155 3.12311 −6.56155 1.00000 0
1.2 1.56155 −1.00000 0.438447 0 −1.56155 −5.12311 −2.43845 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2175.2.a.m 2
3.b odd 2 1 6525.2.a.bc 2
5.b even 2 1 435.2.a.h 2
5.c odd 4 2 2175.2.c.h 4
15.d odd 2 1 1305.2.a.i 2
20.d odd 2 1 6960.2.a.bx 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.2.a.h 2 5.b even 2 1
1305.2.a.i 2 15.d odd 2 1
2175.2.a.m 2 1.a even 1 1 trivial
2175.2.c.h 4 5.c odd 4 2
6525.2.a.bc 2 3.b odd 2 1
6960.2.a.bx 2 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2175))\):

\( T_{2}^{2} + T_{2} - 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$11$ \( T^{2} + 7T + 8 \) Copy content Toggle raw display
$13$ \( (T - 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$19$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$23$ \( T^{2} + 9T + 16 \) Copy content Toggle raw display
$29$ \( (T - 1)^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 9T - 18 \) Copy content Toggle raw display
$41$ \( T^{2} - 9T - 18 \) Copy content Toggle raw display
$43$ \( T^{2} + 3T - 36 \) Copy content Toggle raw display
$47$ \( T^{2} - 18T + 64 \) Copy content Toggle raw display
$53$ \( T^{2} - 11T + 26 \) Copy content Toggle raw display
$59$ \( (T - 12)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 10T + 8 \) Copy content Toggle raw display
$67$ \( T^{2} + 2T - 152 \) Copy content Toggle raw display
$71$ \( T^{2} + 14T + 32 \) Copy content Toggle raw display
$73$ \( T^{2} - 9T - 18 \) Copy content Toggle raw display
$79$ \( (T + 12)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$89$ \( T^{2} - 8T - 52 \) Copy content Toggle raw display
$97$ \( T^{2} + T - 38 \) Copy content Toggle raw display
show more
show less