Properties

Label 2175.2.a.c.1.1
Level $2175$
Weight $2$
Character 2175.1
Self dual yes
Analytic conductor $17.367$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2175,2,Mod(1,2175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2175.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,-1,-1,0,1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2175.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} -1.00000 q^{4} +1.00000 q^{6} +2.00000 q^{7} +3.00000 q^{8} +1.00000 q^{9} +1.00000 q^{12} -4.00000 q^{13} -2.00000 q^{14} -1.00000 q^{16} -2.00000 q^{17} -1.00000 q^{18} -2.00000 q^{21} -2.00000 q^{23} -3.00000 q^{24} +4.00000 q^{26} -1.00000 q^{27} -2.00000 q^{28} +1.00000 q^{29} +4.00000 q^{31} -5.00000 q^{32} +2.00000 q^{34} -1.00000 q^{36} -2.00000 q^{37} +4.00000 q^{39} +10.0000 q^{41} +2.00000 q^{42} +2.00000 q^{46} -12.0000 q^{47} +1.00000 q^{48} -3.00000 q^{49} +2.00000 q^{51} +4.00000 q^{52} +12.0000 q^{53} +1.00000 q^{54} +6.00000 q^{56} -1.00000 q^{58} +4.00000 q^{59} +2.00000 q^{61} -4.00000 q^{62} +2.00000 q^{63} +7.00000 q^{64} -2.00000 q^{67} +2.00000 q^{68} +2.00000 q^{69} -8.00000 q^{71} +3.00000 q^{72} -14.0000 q^{73} +2.00000 q^{74} -4.00000 q^{78} +8.00000 q^{79} +1.00000 q^{81} -10.0000 q^{82} +6.00000 q^{83} +2.00000 q^{84} -1.00000 q^{87} +10.0000 q^{89} -8.00000 q^{91} +2.00000 q^{92} -4.00000 q^{93} +12.0000 q^{94} +5.00000 q^{96} -10.0000 q^{97} +3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 3.00000 1.06066
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.00000 0.288675
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) −1.00000 −0.235702
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) −3.00000 −0.612372
\(25\) 0 0
\(26\) 4.00000 0.784465
\(27\) −1.00000 −0.192450
\(28\) −2.00000 −0.377964
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −5.00000 −0.883883
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 2.00000 0.308607
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 2.00000 0.294884
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 1.00000 0.144338
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 4.00000 0.554700
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 6.00000 0.801784
\(57\) 0 0
\(58\) −1.00000 −0.131306
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −4.00000 −0.508001
\(63\) 2.00000 0.251976
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) 2.00000 0.242536
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 3.00000 0.353553
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) −4.00000 −0.452911
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −10.0000 −1.10432
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 2.00000 0.218218
\(85\) 0 0
\(86\) 0 0
\(87\) −1.00000 −0.107211
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) 2.00000 0.208514
\(93\) −4.00000 −0.414781
\(94\) 12.0000 1.23771
\(95\) 0 0
\(96\) 5.00000 0.510310
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) 0 0
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) −2.00000 −0.198030
\(103\) 2.00000 0.197066 0.0985329 0.995134i \(-0.468585\pi\)
0.0985329 + 0.995134i \(0.468585\pi\)
\(104\) −12.0000 −1.17670
\(105\) 0 0
\(106\) −12.0000 −1.16554
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 1.00000 0.0962250
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) −2.00000 −0.188982
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.00000 −0.0928477
\(117\) −4.00000 −0.369800
\(118\) −4.00000 −0.368230
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) −2.00000 −0.181071
\(123\) −10.0000 −0.901670
\(124\) −4.00000 −0.359211
\(125\) 0 0
\(126\) −2.00000 −0.178174
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 3.00000 0.265165
\(129\) 0 0
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) 14.0000 1.19610 0.598050 0.801459i \(-0.295942\pi\)
0.598050 + 0.801459i \(0.295942\pi\)
\(138\) −2.00000 −0.170251
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 12.0000 1.01058
\(142\) 8.00000 0.671345
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) 14.0000 1.15865
\(147\) 3.00000 0.247436
\(148\) 2.00000 0.164399
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) −24.0000 −1.95309 −0.976546 0.215308i \(-0.930924\pi\)
−0.976546 + 0.215308i \(0.930924\pi\)
\(152\) 0 0
\(153\) −2.00000 −0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) −4.00000 −0.320256
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) −8.00000 −0.636446
\(159\) −12.0000 −0.951662
\(160\) 0 0
\(161\) −4.00000 −0.315244
\(162\) −1.00000 −0.0785674
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) −6.00000 −0.465690
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) −6.00000 −0.462910
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 1.00000 0.0758098
\(175\) 0 0
\(176\) 0 0
\(177\) −4.00000 −0.300658
\(178\) −10.0000 −0.749532
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 8.00000 0.592999
\(183\) −2.00000 −0.147844
\(184\) −6.00000 −0.442326
\(185\) 0 0
\(186\) 4.00000 0.293294
\(187\) 0 0
\(188\) 12.0000 0.875190
\(189\) −2.00000 −0.145479
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) −7.00000 −0.505181
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) 8.00000 0.569976 0.284988 0.958531i \(-0.408010\pi\)
0.284988 + 0.958531i \(0.408010\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 2.00000 0.141069
\(202\) −2.00000 −0.140720
\(203\) 2.00000 0.140372
\(204\) −2.00000 −0.140028
\(205\) 0 0
\(206\) −2.00000 −0.139347
\(207\) −2.00000 −0.139010
\(208\) 4.00000 0.277350
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) −12.0000 −0.824163
\(213\) 8.00000 0.548151
\(214\) 6.00000 0.410152
\(215\) 0 0
\(216\) −3.00000 −0.204124
\(217\) 8.00000 0.543075
\(218\) 14.0000 0.948200
\(219\) 14.0000 0.946032
\(220\) 0 0
\(221\) 8.00000 0.538138
\(222\) −2.00000 −0.134231
\(223\) 18.0000 1.20537 0.602685 0.797980i \(-0.294098\pi\)
0.602685 + 0.797980i \(0.294098\pi\)
\(224\) −10.0000 −0.668153
\(225\) 0 0
\(226\) 14.0000 0.931266
\(227\) 6.00000 0.398234 0.199117 0.979976i \(-0.436193\pi\)
0.199117 + 0.979976i \(0.436193\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.00000 0.196960
\(233\) −20.0000 −1.31024 −0.655122 0.755523i \(-0.727383\pi\)
−0.655122 + 0.755523i \(0.727383\pi\)
\(234\) 4.00000 0.261488
\(235\) 0 0
\(236\) −4.00000 −0.260378
\(237\) −8.00000 −0.519656
\(238\) 4.00000 0.259281
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 30.0000 1.93247 0.966235 0.257663i \(-0.0829523\pi\)
0.966235 + 0.257663i \(0.0829523\pi\)
\(242\) 11.0000 0.707107
\(243\) −1.00000 −0.0641500
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) 10.0000 0.637577
\(247\) 0 0
\(248\) 12.0000 0.762001
\(249\) −6.00000 −0.380235
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) −2.00000 −0.125988
\(253\) 0 0
\(254\) 12.0000 0.752947
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −8.00000 −0.499026 −0.249513 0.968371i \(-0.580271\pi\)
−0.249513 + 0.968371i \(0.580271\pi\)
\(258\) 0 0
\(259\) −4.00000 −0.248548
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) 12.0000 0.741362
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −10.0000 −0.611990
\(268\) 2.00000 0.122169
\(269\) 26.0000 1.58525 0.792624 0.609711i \(-0.208714\pi\)
0.792624 + 0.609711i \(0.208714\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) 2.00000 0.121268
\(273\) 8.00000 0.484182
\(274\) −14.0000 −0.845771
\(275\) 0 0
\(276\) −2.00000 −0.120386
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) 4.00000 0.239904
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) −12.0000 −0.714590
\(283\) 10.0000 0.594438 0.297219 0.954809i \(-0.403941\pi\)
0.297219 + 0.954809i \(0.403941\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) 0 0
\(287\) 20.0000 1.18056
\(288\) −5.00000 −0.294628
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 10.0000 0.586210
\(292\) 14.0000 0.819288
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) −3.00000 −0.174964
\(295\) 0 0
\(296\) −6.00000 −0.348743
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 8.00000 0.462652
\(300\) 0 0
\(301\) 0 0
\(302\) 24.0000 1.38104
\(303\) −2.00000 −0.114897
\(304\) 0 0
\(305\) 0 0
\(306\) 2.00000 0.114332
\(307\) 8.00000 0.456584 0.228292 0.973593i \(-0.426686\pi\)
0.228292 + 0.973593i \(0.426686\pi\)
\(308\) 0 0
\(309\) −2.00000 −0.113776
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 12.0000 0.679366
\(313\) −28.0000 −1.58265 −0.791327 0.611393i \(-0.790609\pi\)
−0.791327 + 0.611393i \(0.790609\pi\)
\(314\) 22.0000 1.24153
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 12.0000 0.672927
\(319\) 0 0
\(320\) 0 0
\(321\) 6.00000 0.334887
\(322\) 4.00000 0.222911
\(323\) 0 0
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) 14.0000 0.774202
\(328\) 30.0000 1.65647
\(329\) −24.0000 −1.32316
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) −6.00000 −0.329293
\(333\) −2.00000 −0.109599
\(334\) 2.00000 0.109435
\(335\) 0 0
\(336\) 2.00000 0.109109
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) −3.00000 −0.163178
\(339\) 14.0000 0.760376
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.00000 0.322097 0.161048 0.986947i \(-0.448512\pi\)
0.161048 + 0.986947i \(0.448512\pi\)
\(348\) 1.00000 0.0536056
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) 4.00000 0.213504
\(352\) 0 0
\(353\) −28.0000 −1.49029 −0.745145 0.666903i \(-0.767620\pi\)
−0.745145 + 0.666903i \(0.767620\pi\)
\(354\) 4.00000 0.212598
\(355\) 0 0
\(356\) −10.0000 −0.529999
\(357\) 4.00000 0.211702
\(358\) 20.0000 1.05703
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) −2.00000 −0.105118
\(363\) 11.0000 0.577350
\(364\) 8.00000 0.419314
\(365\) 0 0
\(366\) 2.00000 0.104542
\(367\) 24.0000 1.25279 0.626395 0.779506i \(-0.284530\pi\)
0.626395 + 0.779506i \(0.284530\pi\)
\(368\) 2.00000 0.104257
\(369\) 10.0000 0.520579
\(370\) 0 0
\(371\) 24.0000 1.24602
\(372\) 4.00000 0.207390
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −36.0000 −1.85656
\(377\) −4.00000 −0.206010
\(378\) 2.00000 0.102869
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) 12.0000 0.614779
\(382\) −12.0000 −0.613973
\(383\) −18.0000 −0.919757 −0.459879 0.887982i \(-0.652107\pi\)
−0.459879 + 0.887982i \(0.652107\pi\)
\(384\) −3.00000 −0.153093
\(385\) 0 0
\(386\) 6.00000 0.305392
\(387\) 0 0
\(388\) 10.0000 0.507673
\(389\) 2.00000 0.101404 0.0507020 0.998714i \(-0.483854\pi\)
0.0507020 + 0.998714i \(0.483854\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) −9.00000 −0.454569
\(393\) 12.0000 0.605320
\(394\) −8.00000 −0.403034
\(395\) 0 0
\(396\) 0 0
\(397\) −20.0000 −1.00377 −0.501886 0.864934i \(-0.667360\pi\)
−0.501886 + 0.864934i \(0.667360\pi\)
\(398\) 16.0000 0.802008
\(399\) 0 0
\(400\) 0 0
\(401\) −34.0000 −1.69788 −0.848939 0.528490i \(-0.822758\pi\)
−0.848939 + 0.528490i \(0.822758\pi\)
\(402\) −2.00000 −0.0997509
\(403\) −16.0000 −0.797017
\(404\) −2.00000 −0.0995037
\(405\) 0 0
\(406\) −2.00000 −0.0992583
\(407\) 0 0
\(408\) 6.00000 0.297044
\(409\) −22.0000 −1.08783 −0.543915 0.839140i \(-0.683059\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 0 0
\(411\) −14.0000 −0.690569
\(412\) −2.00000 −0.0985329
\(413\) 8.00000 0.393654
\(414\) 2.00000 0.0982946
\(415\) 0 0
\(416\) 20.0000 0.980581
\(417\) 4.00000 0.195881
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 12.0000 0.584151
\(423\) −12.0000 −0.583460
\(424\) 36.0000 1.74831
\(425\) 0 0
\(426\) −8.00000 −0.387601
\(427\) 4.00000 0.193574
\(428\) 6.00000 0.290021
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 1.00000 0.0481125
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) −8.00000 −0.384012
\(435\) 0 0
\(436\) 14.0000 0.670478
\(437\) 0 0
\(438\) −14.0000 −0.668946
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) −8.00000 −0.380521
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) −2.00000 −0.0949158
\(445\) 0 0
\(446\) −18.0000 −0.852325
\(447\) 6.00000 0.283790
\(448\) 14.0000 0.661438
\(449\) −34.0000 −1.60456 −0.802280 0.596948i \(-0.796380\pi\)
−0.802280 + 0.596948i \(0.796380\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 14.0000 0.658505
\(453\) 24.0000 1.12762
\(454\) −6.00000 −0.281594
\(455\) 0 0
\(456\) 0 0
\(457\) 8.00000 0.374224 0.187112 0.982339i \(-0.440087\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(458\) 22.0000 1.02799
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 26.0000 1.21094 0.605470 0.795868i \(-0.292985\pi\)
0.605470 + 0.795868i \(0.292985\pi\)
\(462\) 0 0
\(463\) 30.0000 1.39422 0.697109 0.716965i \(-0.254469\pi\)
0.697109 + 0.716965i \(0.254469\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 0 0
\(466\) 20.0000 0.926482
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 4.00000 0.184900
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) 22.0000 1.01371
\(472\) 12.0000 0.552345
\(473\) 0 0
\(474\) 8.00000 0.367452
\(475\) 0 0
\(476\) 4.00000 0.183340
\(477\) 12.0000 0.549442
\(478\) −24.0000 −1.09773
\(479\) 36.0000 1.64488 0.822441 0.568850i \(-0.192612\pi\)
0.822441 + 0.568850i \(0.192612\pi\)
\(480\) 0 0
\(481\) 8.00000 0.364769
\(482\) −30.0000 −1.36646
\(483\) 4.00000 0.182006
\(484\) 11.0000 0.500000
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) −14.0000 −0.634401 −0.317200 0.948359i \(-0.602743\pi\)
−0.317200 + 0.948359i \(0.602743\pi\)
\(488\) 6.00000 0.271607
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) −4.00000 −0.180517 −0.0902587 0.995918i \(-0.528769\pi\)
−0.0902587 + 0.995918i \(0.528769\pi\)
\(492\) 10.0000 0.450835
\(493\) −2.00000 −0.0900755
\(494\) 0 0
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −16.0000 −0.717698
\(498\) 6.00000 0.268866
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) 2.00000 0.0893534
\(502\) 0 0
\(503\) −4.00000 −0.178351 −0.0891756 0.996016i \(-0.528423\pi\)
−0.0891756 + 0.996016i \(0.528423\pi\)
\(504\) 6.00000 0.267261
\(505\) 0 0
\(506\) 0 0
\(507\) −3.00000 −0.133235
\(508\) 12.0000 0.532414
\(509\) 26.0000 1.15243 0.576215 0.817298i \(-0.304529\pi\)
0.576215 + 0.817298i \(0.304529\pi\)
\(510\) 0 0
\(511\) −28.0000 −1.23865
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) 8.00000 0.352865
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 4.00000 0.175750
\(519\) 0 0
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) −1.00000 −0.0437688
\(523\) −34.0000 −1.48672 −0.743358 0.668894i \(-0.766768\pi\)
−0.743358 + 0.668894i \(0.766768\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 16.0000 0.697633
\(527\) −8.00000 −0.348485
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) −40.0000 −1.73259
\(534\) 10.0000 0.432742
\(535\) 0 0
\(536\) −6.00000 −0.259161
\(537\) 20.0000 0.863064
\(538\) −26.0000 −1.12094
\(539\) 0 0
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 24.0000 1.03089
\(543\) −2.00000 −0.0858282
\(544\) 10.0000 0.428746
\(545\) 0 0
\(546\) −8.00000 −0.342368
\(547\) 46.0000 1.96682 0.983409 0.181402i \(-0.0580636\pi\)
0.983409 + 0.181402i \(0.0580636\pi\)
\(548\) −14.0000 −0.598050
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) 0 0
\(552\) 6.00000 0.255377
\(553\) 16.0000 0.680389
\(554\) −8.00000 −0.339887
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) 20.0000 0.847427 0.423714 0.905796i \(-0.360726\pi\)
0.423714 + 0.905796i \(0.360726\pi\)
\(558\) −4.00000 −0.169334
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) 28.0000 1.18006 0.590030 0.807382i \(-0.299116\pi\)
0.590030 + 0.807382i \(0.299116\pi\)
\(564\) −12.0000 −0.505291
\(565\) 0 0
\(566\) −10.0000 −0.420331
\(567\) 2.00000 0.0839921
\(568\) −24.0000 −1.00702
\(569\) 14.0000 0.586911 0.293455 0.955973i \(-0.405195\pi\)
0.293455 + 0.955973i \(0.405195\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) −12.0000 −0.501307
\(574\) −20.0000 −0.834784
\(575\) 0 0
\(576\) 7.00000 0.291667
\(577\) −6.00000 −0.249783 −0.124892 0.992170i \(-0.539858\pi\)
−0.124892 + 0.992170i \(0.539858\pi\)
\(578\) 13.0000 0.540729
\(579\) 6.00000 0.249351
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) −10.0000 −0.414513
\(583\) 0 0
\(584\) −42.0000 −1.73797
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) −42.0000 −1.73353 −0.866763 0.498721i \(-0.833803\pi\)
−0.866763 + 0.498721i \(0.833803\pi\)
\(588\) −3.00000 −0.123718
\(589\) 0 0
\(590\) 0 0
\(591\) −8.00000 −0.329076
\(592\) 2.00000 0.0821995
\(593\) −36.0000 −1.47834 −0.739171 0.673517i \(-0.764783\pi\)
−0.739171 + 0.673517i \(0.764783\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 16.0000 0.654836
\(598\) −8.00000 −0.327144
\(599\) −36.0000 −1.47092 −0.735460 0.677568i \(-0.763034\pi\)
−0.735460 + 0.677568i \(0.763034\pi\)
\(600\) 0 0
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) −2.00000 −0.0814463
\(604\) 24.0000 0.976546
\(605\) 0 0
\(606\) 2.00000 0.0812444
\(607\) 28.0000 1.13648 0.568242 0.822861i \(-0.307624\pi\)
0.568242 + 0.822861i \(0.307624\pi\)
\(608\) 0 0
\(609\) −2.00000 −0.0810441
\(610\) 0 0
\(611\) 48.0000 1.94187
\(612\) 2.00000 0.0808452
\(613\) −40.0000 −1.61558 −0.807792 0.589467i \(-0.799338\pi\)
−0.807792 + 0.589467i \(0.799338\pi\)
\(614\) −8.00000 −0.322854
\(615\) 0 0
\(616\) 0 0
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 2.00000 0.0804518
\(619\) 36.0000 1.44696 0.723481 0.690344i \(-0.242541\pi\)
0.723481 + 0.690344i \(0.242541\pi\)
\(620\) 0 0
\(621\) 2.00000 0.0802572
\(622\) −8.00000 −0.320771
\(623\) 20.0000 0.801283
\(624\) −4.00000 −0.160128
\(625\) 0 0
\(626\) 28.0000 1.11911
\(627\) 0 0
\(628\) 22.0000 0.877896
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 24.0000 0.954669
\(633\) 12.0000 0.476957
\(634\) −6.00000 −0.238290
\(635\) 0 0
\(636\) 12.0000 0.475831
\(637\) 12.0000 0.475457
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) 0 0
\(641\) 50.0000 1.97488 0.987441 0.157991i \(-0.0505015\pi\)
0.987441 + 0.157991i \(0.0505015\pi\)
\(642\) −6.00000 −0.236801
\(643\) 10.0000 0.394362 0.197181 0.980367i \(-0.436821\pi\)
0.197181 + 0.980367i \(0.436821\pi\)
\(644\) 4.00000 0.157622
\(645\) 0 0
\(646\) 0 0
\(647\) 18.0000 0.707653 0.353827 0.935311i \(-0.384880\pi\)
0.353827 + 0.935311i \(0.384880\pi\)
\(648\) 3.00000 0.117851
\(649\) 0 0
\(650\) 0 0
\(651\) −8.00000 −0.313545
\(652\) −4.00000 −0.156652
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) −14.0000 −0.547443
\(655\) 0 0
\(656\) −10.0000 −0.390434
\(657\) −14.0000 −0.546192
\(658\) 24.0000 0.935617
\(659\) 28.0000 1.09073 0.545363 0.838200i \(-0.316392\pi\)
0.545363 + 0.838200i \(0.316392\pi\)
\(660\) 0 0
\(661\) 26.0000 1.01128 0.505641 0.862744i \(-0.331256\pi\)
0.505641 + 0.862744i \(0.331256\pi\)
\(662\) −8.00000 −0.310929
\(663\) −8.00000 −0.310694
\(664\) 18.0000 0.698535
\(665\) 0 0
\(666\) 2.00000 0.0774984
\(667\) −2.00000 −0.0774403
\(668\) 2.00000 0.0773823
\(669\) −18.0000 −0.695920
\(670\) 0 0
\(671\) 0 0
\(672\) 10.0000 0.385758
\(673\) 12.0000 0.462566 0.231283 0.972887i \(-0.425708\pi\)
0.231283 + 0.972887i \(0.425708\pi\)
\(674\) 2.00000 0.0770371
\(675\) 0 0
\(676\) −3.00000 −0.115385
\(677\) −14.0000 −0.538064 −0.269032 0.963131i \(-0.586704\pi\)
−0.269032 + 0.963131i \(0.586704\pi\)
\(678\) −14.0000 −0.537667
\(679\) −20.0000 −0.767530
\(680\) 0 0
\(681\) −6.00000 −0.229920
\(682\) 0 0
\(683\) 18.0000 0.688751 0.344375 0.938832i \(-0.388091\pi\)
0.344375 + 0.938832i \(0.388091\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 20.0000 0.763604
\(687\) 22.0000 0.839352
\(688\) 0 0
\(689\) −48.0000 −1.82865
\(690\) 0 0
\(691\) −44.0000 −1.67384 −0.836919 0.547326i \(-0.815646\pi\)
−0.836919 + 0.547326i \(0.815646\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −6.00000 −0.227757
\(695\) 0 0
\(696\) −3.00000 −0.113715
\(697\) −20.0000 −0.757554
\(698\) 2.00000 0.0757011
\(699\) 20.0000 0.756469
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) −4.00000 −0.150970
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 28.0000 1.05379
\(707\) 4.00000 0.150435
\(708\) 4.00000 0.150329
\(709\) −6.00000 −0.225335 −0.112667 0.993633i \(-0.535939\pi\)
−0.112667 + 0.993633i \(0.535939\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) 30.0000 1.12430
\(713\) −8.00000 −0.299602
\(714\) −4.00000 −0.149696
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) −24.0000 −0.896296
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 4.00000 0.148968
\(722\) 19.0000 0.707107
\(723\) −30.0000 −1.11571
\(724\) −2.00000 −0.0743294
\(725\) 0 0
\(726\) −11.0000 −0.408248
\(727\) 40.0000 1.48352 0.741759 0.670667i \(-0.233992\pi\)
0.741759 + 0.670667i \(0.233992\pi\)
\(728\) −24.0000 −0.889499
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 2.00000 0.0739221
\(733\) 50.0000 1.84679 0.923396 0.383849i \(-0.125402\pi\)
0.923396 + 0.383849i \(0.125402\pi\)
\(734\) −24.0000 −0.885856
\(735\) 0 0
\(736\) 10.0000 0.368605
\(737\) 0 0
\(738\) −10.0000 −0.368105
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −24.0000 −0.881068
\(743\) −20.0000 −0.733729 −0.366864 0.930274i \(-0.619569\pi\)
−0.366864 + 0.930274i \(0.619569\pi\)
\(744\) −12.0000 −0.439941
\(745\) 0 0
\(746\) 4.00000 0.146450
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) −20.0000 −0.729810 −0.364905 0.931045i \(-0.618899\pi\)
−0.364905 + 0.931045i \(0.618899\pi\)
\(752\) 12.0000 0.437595
\(753\) 0 0
\(754\) 4.00000 0.145671
\(755\) 0 0
\(756\) 2.00000 0.0727393
\(757\) −42.0000 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(758\) −20.0000 −0.726433
\(759\) 0 0
\(760\) 0 0
\(761\) −42.0000 −1.52250 −0.761249 0.648459i \(-0.775414\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) −12.0000 −0.434714
\(763\) −28.0000 −1.01367
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) 18.0000 0.650366
\(767\) −16.0000 −0.577727
\(768\) 17.0000 0.613435
\(769\) 38.0000 1.37032 0.685158 0.728395i \(-0.259733\pi\)
0.685158 + 0.728395i \(0.259733\pi\)
\(770\) 0 0
\(771\) 8.00000 0.288113
\(772\) 6.00000 0.215945
\(773\) 30.0000 1.07903 0.539513 0.841978i \(-0.318609\pi\)
0.539513 + 0.841978i \(0.318609\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −30.0000 −1.07694
\(777\) 4.00000 0.143499
\(778\) −2.00000 −0.0717035
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −4.00000 −0.143040
\(783\) −1.00000 −0.0357371
\(784\) 3.00000 0.107143
\(785\) 0 0
\(786\) −12.0000 −0.428026
\(787\) 34.0000 1.21197 0.605985 0.795476i \(-0.292779\pi\)
0.605985 + 0.795476i \(0.292779\pi\)
\(788\) −8.00000 −0.284988
\(789\) 16.0000 0.569615
\(790\) 0 0
\(791\) −28.0000 −0.995565
\(792\) 0 0
\(793\) −8.00000 −0.284088
\(794\) 20.0000 0.709773
\(795\) 0 0
\(796\) 16.0000 0.567105
\(797\) 22.0000 0.779280 0.389640 0.920967i \(-0.372599\pi\)
0.389640 + 0.920967i \(0.372599\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) 34.0000 1.20058
\(803\) 0 0
\(804\) −2.00000 −0.0705346
\(805\) 0 0
\(806\) 16.0000 0.563576
\(807\) −26.0000 −0.915243
\(808\) 6.00000 0.211079
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) −2.00000 −0.0701862
\(813\) 24.0000 0.841717
\(814\) 0 0
\(815\) 0 0
\(816\) −2.00000 −0.0700140
\(817\) 0 0
\(818\) 22.0000 0.769212
\(819\) −8.00000 −0.279543
\(820\) 0 0
\(821\) −42.0000 −1.46581 −0.732905 0.680331i \(-0.761836\pi\)
−0.732905 + 0.680331i \(0.761836\pi\)
\(822\) 14.0000 0.488306
\(823\) 40.0000 1.39431 0.697156 0.716919i \(-0.254448\pi\)
0.697156 + 0.716919i \(0.254448\pi\)
\(824\) 6.00000 0.209020
\(825\) 0 0
\(826\) −8.00000 −0.278356
\(827\) −8.00000 −0.278187 −0.139094 0.990279i \(-0.544419\pi\)
−0.139094 + 0.990279i \(0.544419\pi\)
\(828\) 2.00000 0.0695048
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 0 0
\(831\) −8.00000 −0.277517
\(832\) −28.0000 −0.970725
\(833\) 6.00000 0.207888
\(834\) −4.00000 −0.138509
\(835\) 0 0
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) −12.0000 −0.414533
\(839\) 20.0000 0.690477 0.345238 0.938515i \(-0.387798\pi\)
0.345238 + 0.938515i \(0.387798\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 22.0000 0.758170
\(843\) 6.00000 0.206651
\(844\) 12.0000 0.413057
\(845\) 0 0
\(846\) 12.0000 0.412568
\(847\) −22.0000 −0.755929
\(848\) −12.0000 −0.412082
\(849\) −10.0000 −0.343199
\(850\) 0 0
\(851\) 4.00000 0.137118
\(852\) −8.00000 −0.274075
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) −4.00000 −0.136877
\(855\) 0 0
\(856\) −18.0000 −0.615227
\(857\) −32.0000 −1.09310 −0.546550 0.837427i \(-0.684059\pi\)
−0.546550 + 0.837427i \(0.684059\pi\)
\(858\) 0 0
\(859\) 36.0000 1.22830 0.614152 0.789188i \(-0.289498\pi\)
0.614152 + 0.789188i \(0.289498\pi\)
\(860\) 0 0
\(861\) −20.0000 −0.681598
\(862\) 0 0
\(863\) −50.0000 −1.70202 −0.851010 0.525150i \(-0.824009\pi\)
−0.851010 + 0.525150i \(0.824009\pi\)
\(864\) 5.00000 0.170103
\(865\) 0 0
\(866\) −14.0000 −0.475739
\(867\) 13.0000 0.441503
\(868\) −8.00000 −0.271538
\(869\) 0 0
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) −42.0000 −1.42230
\(873\) −10.0000 −0.338449
\(874\) 0 0
\(875\) 0 0
\(876\) −14.0000 −0.473016
\(877\) −8.00000 −0.270141 −0.135070 0.990836i \(-0.543126\pi\)
−0.135070 + 0.990836i \(0.543126\pi\)
\(878\) 16.0000 0.539974
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 3.00000 0.101015
\(883\) 38.0000 1.27880 0.639401 0.768874i \(-0.279182\pi\)
0.639401 + 0.768874i \(0.279182\pi\)
\(884\) −8.00000 −0.269069
\(885\) 0 0
\(886\) −24.0000 −0.806296
\(887\) −44.0000 −1.47738 −0.738688 0.674048i \(-0.764554\pi\)
−0.738688 + 0.674048i \(0.764554\pi\)
\(888\) 6.00000 0.201347
\(889\) −24.0000 −0.804934
\(890\) 0 0
\(891\) 0 0
\(892\) −18.0000 −0.602685
\(893\) 0 0
\(894\) −6.00000 −0.200670
\(895\) 0 0
\(896\) 6.00000 0.200446
\(897\) −8.00000 −0.267112
\(898\) 34.0000 1.13459
\(899\) 4.00000 0.133407
\(900\) 0 0
\(901\) −24.0000 −0.799556
\(902\) 0 0
\(903\) 0 0
\(904\) −42.0000 −1.39690
\(905\) 0 0
\(906\) −24.0000 −0.797347
\(907\) −8.00000 −0.265636 −0.132818 0.991140i \(-0.542403\pi\)
−0.132818 + 0.991140i \(0.542403\pi\)
\(908\) −6.00000 −0.199117
\(909\) 2.00000 0.0663358
\(910\) 0 0
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −8.00000 −0.264616
\(915\) 0 0
\(916\) 22.0000 0.726900
\(917\) −24.0000 −0.792550
\(918\) −2.00000 −0.0660098
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) −8.00000 −0.263609
\(922\) −26.0000 −0.856264
\(923\) 32.0000 1.05329
\(924\) 0 0
\(925\) 0 0
\(926\) −30.0000 −0.985861
\(927\) 2.00000 0.0656886
\(928\) −5.00000 −0.164133
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 20.0000 0.655122
\(933\) −8.00000 −0.261908
\(934\) 0 0
\(935\) 0 0
\(936\) −12.0000 −0.392232
\(937\) 16.0000 0.522697 0.261349 0.965244i \(-0.415833\pi\)
0.261349 + 0.965244i \(0.415833\pi\)
\(938\) 4.00000 0.130605
\(939\) 28.0000 0.913745
\(940\) 0 0
\(941\) −42.0000 −1.36916 −0.684580 0.728937i \(-0.740015\pi\)
−0.684580 + 0.728937i \(0.740015\pi\)
\(942\) −22.0000 −0.716799
\(943\) −20.0000 −0.651290
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 0 0
\(947\) −48.0000 −1.55979 −0.779895 0.625910i \(-0.784728\pi\)
−0.779895 + 0.625910i \(0.784728\pi\)
\(948\) 8.00000 0.259828
\(949\) 56.0000 1.81784
\(950\) 0 0
\(951\) −6.00000 −0.194563
\(952\) −12.0000 −0.388922
\(953\) −12.0000 −0.388718 −0.194359 0.980930i \(-0.562263\pi\)
−0.194359 + 0.980930i \(0.562263\pi\)
\(954\) −12.0000 −0.388514
\(955\) 0 0
\(956\) −24.0000 −0.776215
\(957\) 0 0
\(958\) −36.0000 −1.16311
\(959\) 28.0000 0.904167
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −8.00000 −0.257930
\(963\) −6.00000 −0.193347
\(964\) −30.0000 −0.966235
\(965\) 0 0
\(966\) −4.00000 −0.128698
\(967\) 48.0000 1.54358 0.771788 0.635880i \(-0.219363\pi\)
0.771788 + 0.635880i \(0.219363\pi\)
\(968\) −33.0000 −1.06066
\(969\) 0 0
\(970\) 0 0
\(971\) 60.0000 1.92549 0.962746 0.270408i \(-0.0871586\pi\)
0.962746 + 0.270408i \(0.0871586\pi\)
\(972\) 1.00000 0.0320750
\(973\) −8.00000 −0.256468
\(974\) 14.0000 0.448589
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) 32.0000 1.02377 0.511885 0.859054i \(-0.328947\pi\)
0.511885 + 0.859054i \(0.328947\pi\)
\(978\) 4.00000 0.127906
\(979\) 0 0
\(980\) 0 0
\(981\) −14.0000 −0.446986
\(982\) 4.00000 0.127645
\(983\) 12.0000 0.382741 0.191370 0.981518i \(-0.438707\pi\)
0.191370 + 0.981518i \(0.438707\pi\)
\(984\) −30.0000 −0.956365
\(985\) 0 0
\(986\) 2.00000 0.0636930
\(987\) 24.0000 0.763928
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) −20.0000 −0.635001
\(993\) −8.00000 −0.253872
\(994\) 16.0000 0.507489
\(995\) 0 0
\(996\) 6.00000 0.190117
\(997\) −26.0000 −0.823428 −0.411714 0.911313i \(-0.635070\pi\)
−0.411714 + 0.911313i \(0.635070\pi\)
\(998\) 4.00000 0.126618
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.a.c.1.1 1
3.2 odd 2 6525.2.a.k.1.1 1
5.2 odd 4 435.2.c.b.349.1 2
5.3 odd 4 435.2.c.b.349.2 yes 2
5.4 even 2 2175.2.a.i.1.1 1
15.2 even 4 1305.2.c.b.784.2 2
15.8 even 4 1305.2.c.b.784.1 2
15.14 odd 2 6525.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.c.b.349.1 2 5.2 odd 4
435.2.c.b.349.2 yes 2 5.3 odd 4
1305.2.c.b.784.1 2 15.8 even 4
1305.2.c.b.784.2 2 15.2 even 4
2175.2.a.c.1.1 1 1.1 even 1 trivial
2175.2.a.i.1.1 1 5.4 even 2
6525.2.a.c.1.1 1 15.14 odd 2
6525.2.a.k.1.1 1 3.2 odd 2