Properties

Label 2175.2.a.bd.1.8
Level $2175$
Weight $2$
Character 2175.1
Self dual yes
Analytic conductor $17.367$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 12x^{6} + 23x^{5} + 36x^{4} - 62x^{3} - 15x^{2} + 14x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(2.59587\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.59587 q^{2} +1.00000 q^{3} +4.73855 q^{4} +2.59587 q^{6} -3.93826 q^{7} +7.10893 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+2.59587 q^{2} +1.00000 q^{3} +4.73855 q^{4} +2.59587 q^{6} -3.93826 q^{7} +7.10893 q^{8} +1.00000 q^{9} +2.24645 q^{11} +4.73855 q^{12} +2.09464 q^{13} -10.2232 q^{14} +8.97678 q^{16} +6.95310 q^{17} +2.59587 q^{18} +4.29591 q^{19} -3.93826 q^{21} +5.83149 q^{22} -5.19955 q^{23} +7.10893 q^{24} +5.43743 q^{26} +1.00000 q^{27} -18.6617 q^{28} +1.00000 q^{29} +2.25035 q^{31} +9.08471 q^{32} +2.24645 q^{33} +18.0494 q^{34} +4.73855 q^{36} -10.5280 q^{37} +11.1516 q^{38} +2.09464 q^{39} -2.66629 q^{41} -10.2232 q^{42} +6.03681 q^{43} +10.6449 q^{44} -13.4974 q^{46} -7.74829 q^{47} +8.97678 q^{48} +8.50991 q^{49} +6.95310 q^{51} +9.92559 q^{52} -1.41309 q^{53} +2.59587 q^{54} -27.9968 q^{56} +4.29591 q^{57} +2.59587 q^{58} +5.76800 q^{59} -10.9192 q^{61} +5.84162 q^{62} -3.93826 q^{63} +5.62918 q^{64} +5.83149 q^{66} -11.7471 q^{67} +32.9476 q^{68} -5.19955 q^{69} -4.55691 q^{71} +7.10893 q^{72} +12.3564 q^{73} -27.3294 q^{74} +20.3564 q^{76} -8.84710 q^{77} +5.43743 q^{78} +14.4098 q^{79} +1.00000 q^{81} -6.92135 q^{82} -3.81272 q^{83} -18.6617 q^{84} +15.6708 q^{86} +1.00000 q^{87} +15.9699 q^{88} -2.07340 q^{89} -8.24926 q^{91} -24.6383 q^{92} +2.25035 q^{93} -20.1136 q^{94} +9.08471 q^{96} +12.0068 q^{97} +22.0906 q^{98} +2.24645 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 8 q^{3} + 12 q^{4} + 2 q^{6} - 2 q^{7} + 3 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} + 8 q^{3} + 12 q^{4} + 2 q^{6} - 2 q^{7} + 3 q^{8} + 8 q^{9} + 6 q^{11} + 12 q^{12} - 6 q^{13} + 9 q^{14} + 32 q^{16} + 12 q^{17} + 2 q^{18} - 2 q^{21} - 3 q^{22} + 14 q^{23} + 3 q^{24} + 18 q^{26} + 8 q^{27} - 14 q^{28} + 8 q^{29} + 8 q^{31} - 2 q^{32} + 6 q^{33} - 13 q^{34} + 12 q^{36} - 4 q^{37} + 26 q^{38} - 6 q^{39} + 2 q^{41} + 9 q^{42} - 2 q^{43} - 15 q^{44} + 24 q^{46} + 12 q^{47} + 32 q^{48} + 38 q^{49} + 12 q^{51} - 49 q^{52} + 4 q^{53} + 2 q^{54} + 58 q^{56} + 2 q^{58} + 18 q^{59} + 12 q^{61} - 4 q^{62} - 2 q^{63} + 21 q^{64} - 3 q^{66} - 26 q^{67} + 81 q^{68} + 14 q^{69} + 24 q^{71} + 3 q^{72} + 14 q^{73} - 22 q^{74} - 26 q^{77} + 18 q^{78} + 10 q^{79} + 8 q^{81} - 48 q^{82} + 40 q^{83} - 14 q^{84} + 8 q^{86} + 8 q^{87} + 10 q^{88} + 34 q^{89} + 26 q^{91} - 18 q^{92} + 8 q^{93} - 43 q^{94} - 2 q^{96} - 30 q^{97} + 29 q^{98} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.59587 1.83556 0.917779 0.397090i \(-0.129980\pi\)
0.917779 + 0.397090i \(0.129980\pi\)
\(3\) 1.00000 0.577350
\(4\) 4.73855 2.36928
\(5\) 0 0
\(6\) 2.59587 1.05976
\(7\) −3.93826 −1.48852 −0.744262 0.667888i \(-0.767198\pi\)
−0.744262 + 0.667888i \(0.767198\pi\)
\(8\) 7.10893 2.51339
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.24645 0.677329 0.338665 0.940907i \(-0.390025\pi\)
0.338665 + 0.940907i \(0.390025\pi\)
\(12\) 4.73855 1.36790
\(13\) 2.09464 0.580950 0.290475 0.956883i \(-0.406187\pi\)
0.290475 + 0.956883i \(0.406187\pi\)
\(14\) −10.2232 −2.73227
\(15\) 0 0
\(16\) 8.97678 2.24420
\(17\) 6.95310 1.68637 0.843187 0.537620i \(-0.180676\pi\)
0.843187 + 0.537620i \(0.180676\pi\)
\(18\) 2.59587 0.611853
\(19\) 4.29591 0.985549 0.492774 0.870157i \(-0.335983\pi\)
0.492774 + 0.870157i \(0.335983\pi\)
\(20\) 0 0
\(21\) −3.93826 −0.859399
\(22\) 5.83149 1.24328
\(23\) −5.19955 −1.08418 −0.542090 0.840320i \(-0.682367\pi\)
−0.542090 + 0.840320i \(0.682367\pi\)
\(24\) 7.10893 1.45111
\(25\) 0 0
\(26\) 5.43743 1.06637
\(27\) 1.00000 0.192450
\(28\) −18.6617 −3.52672
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 2.25035 0.404175 0.202087 0.979367i \(-0.435227\pi\)
0.202087 + 0.979367i \(0.435227\pi\)
\(32\) 9.08471 1.60596
\(33\) 2.24645 0.391056
\(34\) 18.0494 3.09544
\(35\) 0 0
\(36\) 4.73855 0.789759
\(37\) −10.5280 −1.73079 −0.865397 0.501086i \(-0.832934\pi\)
−0.865397 + 0.501086i \(0.832934\pi\)
\(38\) 11.1516 1.80903
\(39\) 2.09464 0.335412
\(40\) 0 0
\(41\) −2.66629 −0.416405 −0.208202 0.978086i \(-0.566761\pi\)
−0.208202 + 0.978086i \(0.566761\pi\)
\(42\) −10.2232 −1.57748
\(43\) 6.03681 0.920605 0.460302 0.887762i \(-0.347741\pi\)
0.460302 + 0.887762i \(0.347741\pi\)
\(44\) 10.6449 1.60478
\(45\) 0 0
\(46\) −13.4974 −1.99008
\(47\) −7.74829 −1.13020 −0.565102 0.825021i \(-0.691163\pi\)
−0.565102 + 0.825021i \(0.691163\pi\)
\(48\) 8.97678 1.29569
\(49\) 8.50991 1.21570
\(50\) 0 0
\(51\) 6.95310 0.973629
\(52\) 9.92559 1.37643
\(53\) −1.41309 −0.194103 −0.0970513 0.995279i \(-0.530941\pi\)
−0.0970513 + 0.995279i \(0.530941\pi\)
\(54\) 2.59587 0.353253
\(55\) 0 0
\(56\) −27.9968 −3.74124
\(57\) 4.29591 0.569007
\(58\) 2.59587 0.340855
\(59\) 5.76800 0.750929 0.375465 0.926837i \(-0.377483\pi\)
0.375465 + 0.926837i \(0.377483\pi\)
\(60\) 0 0
\(61\) −10.9192 −1.39806 −0.699030 0.715092i \(-0.746385\pi\)
−0.699030 + 0.715092i \(0.746385\pi\)
\(62\) 5.84162 0.741887
\(63\) −3.93826 −0.496174
\(64\) 5.62918 0.703647
\(65\) 0 0
\(66\) 5.83149 0.717807
\(67\) −11.7471 −1.43514 −0.717569 0.696487i \(-0.754745\pi\)
−0.717569 + 0.696487i \(0.754745\pi\)
\(68\) 32.9476 3.99549
\(69\) −5.19955 −0.625952
\(70\) 0 0
\(71\) −4.55691 −0.540806 −0.270403 0.962747i \(-0.587157\pi\)
−0.270403 + 0.962747i \(0.587157\pi\)
\(72\) 7.10893 0.837796
\(73\) 12.3564 1.44621 0.723103 0.690740i \(-0.242715\pi\)
0.723103 + 0.690740i \(0.242715\pi\)
\(74\) −27.3294 −3.17698
\(75\) 0 0
\(76\) 20.3564 2.33504
\(77\) −8.84710 −1.00822
\(78\) 5.43743 0.615668
\(79\) 14.4098 1.62122 0.810612 0.585584i \(-0.199135\pi\)
0.810612 + 0.585584i \(0.199135\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −6.92135 −0.764335
\(83\) −3.81272 −0.418501 −0.209250 0.977862i \(-0.567102\pi\)
−0.209250 + 0.977862i \(0.567102\pi\)
\(84\) −18.6617 −2.03615
\(85\) 0 0
\(86\) 15.6708 1.68982
\(87\) 1.00000 0.107211
\(88\) 15.9699 1.70239
\(89\) −2.07340 −0.219780 −0.109890 0.993944i \(-0.535050\pi\)
−0.109890 + 0.993944i \(0.535050\pi\)
\(90\) 0 0
\(91\) −8.24926 −0.864757
\(92\) −24.6383 −2.56872
\(93\) 2.25035 0.233350
\(94\) −20.1136 −2.07456
\(95\) 0 0
\(96\) 9.08471 0.927204
\(97\) 12.0068 1.21911 0.609553 0.792745i \(-0.291349\pi\)
0.609553 + 0.792745i \(0.291349\pi\)
\(98\) 22.0906 2.23149
\(99\) 2.24645 0.225776
\(100\) 0 0
\(101\) −15.8642 −1.57855 −0.789276 0.614039i \(-0.789544\pi\)
−0.789276 + 0.614039i \(0.789544\pi\)
\(102\) 18.0494 1.78715
\(103\) −10.3119 −1.01606 −0.508031 0.861339i \(-0.669627\pi\)
−0.508031 + 0.861339i \(0.669627\pi\)
\(104\) 14.8907 1.46015
\(105\) 0 0
\(106\) −3.66820 −0.356287
\(107\) 4.47645 0.432755 0.216378 0.976310i \(-0.430576\pi\)
0.216378 + 0.976310i \(0.430576\pi\)
\(108\) 4.73855 0.455967
\(109\) 13.4783 1.29098 0.645492 0.763767i \(-0.276652\pi\)
0.645492 + 0.763767i \(0.276652\pi\)
\(110\) 0 0
\(111\) −10.5280 −0.999275
\(112\) −35.3529 −3.34054
\(113\) −11.4525 −1.07736 −0.538679 0.842511i \(-0.681077\pi\)
−0.538679 + 0.842511i \(0.681077\pi\)
\(114\) 11.1516 1.04445
\(115\) 0 0
\(116\) 4.73855 0.439964
\(117\) 2.09464 0.193650
\(118\) 14.9730 1.37838
\(119\) −27.3831 −2.51021
\(120\) 0 0
\(121\) −5.95347 −0.541225
\(122\) −28.3449 −2.56622
\(123\) −2.66629 −0.240411
\(124\) 10.6634 0.957602
\(125\) 0 0
\(126\) −10.2232 −0.910757
\(127\) −3.23499 −0.287059 −0.143529 0.989646i \(-0.545845\pi\)
−0.143529 + 0.989646i \(0.545845\pi\)
\(128\) −3.55679 −0.314378
\(129\) 6.03681 0.531511
\(130\) 0 0
\(131\) −13.3567 −1.16698 −0.583489 0.812121i \(-0.698313\pi\)
−0.583489 + 0.812121i \(0.698313\pi\)
\(132\) 10.6449 0.926521
\(133\) −16.9184 −1.46701
\(134\) −30.4940 −2.63428
\(135\) 0 0
\(136\) 49.4291 4.23851
\(137\) 4.35642 0.372194 0.186097 0.982531i \(-0.440416\pi\)
0.186097 + 0.982531i \(0.440416\pi\)
\(138\) −13.4974 −1.14897
\(139\) −18.4171 −1.56212 −0.781061 0.624455i \(-0.785321\pi\)
−0.781061 + 0.624455i \(0.785321\pi\)
\(140\) 0 0
\(141\) −7.74829 −0.652523
\(142\) −11.8292 −0.992681
\(143\) 4.70551 0.393495
\(144\) 8.97678 0.748065
\(145\) 0 0
\(146\) 32.0756 2.65460
\(147\) 8.50991 0.701885
\(148\) −49.8876 −4.10073
\(149\) 17.6427 1.44535 0.722674 0.691189i \(-0.242913\pi\)
0.722674 + 0.691189i \(0.242913\pi\)
\(150\) 0 0
\(151\) 4.02381 0.327453 0.163726 0.986506i \(-0.447649\pi\)
0.163726 + 0.986506i \(0.447649\pi\)
\(152\) 30.5393 2.47707
\(153\) 6.95310 0.562125
\(154\) −22.9659 −1.85065
\(155\) 0 0
\(156\) 9.92559 0.794683
\(157\) −7.70119 −0.614622 −0.307311 0.951609i \(-0.599429\pi\)
−0.307311 + 0.951609i \(0.599429\pi\)
\(158\) 37.4059 2.97585
\(159\) −1.41309 −0.112065
\(160\) 0 0
\(161\) 20.4772 1.61383
\(162\) 2.59587 0.203951
\(163\) −13.6829 −1.07173 −0.535866 0.844303i \(-0.680015\pi\)
−0.535866 + 0.844303i \(0.680015\pi\)
\(164\) −12.6344 −0.986578
\(165\) 0 0
\(166\) −9.89734 −0.768183
\(167\) −24.9607 −1.93151 −0.965757 0.259449i \(-0.916459\pi\)
−0.965757 + 0.259449i \(0.916459\pi\)
\(168\) −27.9968 −2.16000
\(169\) −8.61246 −0.662497
\(170\) 0 0
\(171\) 4.29591 0.328516
\(172\) 28.6057 2.18117
\(173\) 19.9187 1.51439 0.757194 0.653191i \(-0.226570\pi\)
0.757194 + 0.653191i \(0.226570\pi\)
\(174\) 2.59587 0.196793
\(175\) 0 0
\(176\) 20.1659 1.52006
\(177\) 5.76800 0.433549
\(178\) −5.38227 −0.403418
\(179\) 10.8816 0.813329 0.406664 0.913578i \(-0.366692\pi\)
0.406664 + 0.913578i \(0.366692\pi\)
\(180\) 0 0
\(181\) −13.9372 −1.03594 −0.517972 0.855398i \(-0.673313\pi\)
−0.517972 + 0.855398i \(0.673313\pi\)
\(182\) −21.4140 −1.58731
\(183\) −10.9192 −0.807171
\(184\) −36.9632 −2.72497
\(185\) 0 0
\(186\) 5.84162 0.428329
\(187\) 15.6198 1.14223
\(188\) −36.7157 −2.67777
\(189\) −3.93826 −0.286466
\(190\) 0 0
\(191\) 13.3458 0.965670 0.482835 0.875711i \(-0.339607\pi\)
0.482835 + 0.875711i \(0.339607\pi\)
\(192\) 5.62918 0.406251
\(193\) 15.6337 1.12534 0.562668 0.826683i \(-0.309775\pi\)
0.562668 + 0.826683i \(0.309775\pi\)
\(194\) 31.1681 2.23774
\(195\) 0 0
\(196\) 40.3247 2.88033
\(197\) −20.1140 −1.43306 −0.716530 0.697556i \(-0.754271\pi\)
−0.716530 + 0.697556i \(0.754271\pi\)
\(198\) 5.83149 0.414426
\(199\) −9.27232 −0.657297 −0.328649 0.944452i \(-0.606593\pi\)
−0.328649 + 0.944452i \(0.606593\pi\)
\(200\) 0 0
\(201\) −11.7471 −0.828578
\(202\) −41.1816 −2.89752
\(203\) −3.93826 −0.276412
\(204\) 32.9476 2.30680
\(205\) 0 0
\(206\) −26.7684 −1.86504
\(207\) −5.19955 −0.361394
\(208\) 18.8032 1.30376
\(209\) 9.65053 0.667541
\(210\) 0 0
\(211\) −0.228998 −0.0157649 −0.00788245 0.999969i \(-0.502509\pi\)
−0.00788245 + 0.999969i \(0.502509\pi\)
\(212\) −6.69600 −0.459883
\(213\) −4.55691 −0.312235
\(214\) 11.6203 0.794348
\(215\) 0 0
\(216\) 7.10893 0.483702
\(217\) −8.86247 −0.601624
\(218\) 34.9879 2.36968
\(219\) 12.3564 0.834968
\(220\) 0 0
\(221\) 14.5643 0.979699
\(222\) −27.3294 −1.83423
\(223\) −25.1117 −1.68160 −0.840802 0.541342i \(-0.817916\pi\)
−0.840802 + 0.541342i \(0.817916\pi\)
\(224\) −35.7780 −2.39052
\(225\) 0 0
\(226\) −29.7292 −1.97756
\(227\) −4.98706 −0.331003 −0.165501 0.986210i \(-0.552924\pi\)
−0.165501 + 0.986210i \(0.552924\pi\)
\(228\) 20.3564 1.34813
\(229\) 1.60591 0.106122 0.0530608 0.998591i \(-0.483102\pi\)
0.0530608 + 0.998591i \(0.483102\pi\)
\(230\) 0 0
\(231\) −8.84710 −0.582096
\(232\) 7.10893 0.466724
\(233\) 6.65588 0.436041 0.218021 0.975944i \(-0.430040\pi\)
0.218021 + 0.975944i \(0.430040\pi\)
\(234\) 5.43743 0.355456
\(235\) 0 0
\(236\) 27.3320 1.77916
\(237\) 14.4098 0.936014
\(238\) −71.0831 −4.60763
\(239\) 2.87227 0.185792 0.0928959 0.995676i \(-0.470388\pi\)
0.0928959 + 0.995676i \(0.470388\pi\)
\(240\) 0 0
\(241\) 15.2768 0.984068 0.492034 0.870576i \(-0.336254\pi\)
0.492034 + 0.870576i \(0.336254\pi\)
\(242\) −15.4545 −0.993450
\(243\) 1.00000 0.0641500
\(244\) −51.7412 −3.31239
\(245\) 0 0
\(246\) −6.92135 −0.441289
\(247\) 8.99840 0.572554
\(248\) 15.9976 1.01585
\(249\) −3.81272 −0.241621
\(250\) 0 0
\(251\) 10.8782 0.686627 0.343314 0.939221i \(-0.388451\pi\)
0.343314 + 0.939221i \(0.388451\pi\)
\(252\) −18.6617 −1.17557
\(253\) −11.6805 −0.734348
\(254\) −8.39761 −0.526913
\(255\) 0 0
\(256\) −20.4913 −1.28071
\(257\) −18.0748 −1.12748 −0.563739 0.825953i \(-0.690637\pi\)
−0.563739 + 0.825953i \(0.690637\pi\)
\(258\) 15.6708 0.975621
\(259\) 41.4621 2.57633
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) −34.6722 −2.14206
\(263\) −18.4454 −1.13739 −0.568697 0.822547i \(-0.692552\pi\)
−0.568697 + 0.822547i \(0.692552\pi\)
\(264\) 15.9699 0.982876
\(265\) 0 0
\(266\) −43.9180 −2.69279
\(267\) −2.07340 −0.126890
\(268\) −55.6643 −3.40024
\(269\) 11.6702 0.711544 0.355772 0.934573i \(-0.384218\pi\)
0.355772 + 0.934573i \(0.384218\pi\)
\(270\) 0 0
\(271\) 20.2501 1.23011 0.615054 0.788485i \(-0.289134\pi\)
0.615054 + 0.788485i \(0.289134\pi\)
\(272\) 62.4165 3.78455
\(273\) −8.24926 −0.499268
\(274\) 11.3087 0.683184
\(275\) 0 0
\(276\) −24.6383 −1.48305
\(277\) 3.66952 0.220480 0.110240 0.993905i \(-0.464838\pi\)
0.110240 + 0.993905i \(0.464838\pi\)
\(278\) −47.8085 −2.86737
\(279\) 2.25035 0.134725
\(280\) 0 0
\(281\) 22.8056 1.36047 0.680233 0.732996i \(-0.261879\pi\)
0.680233 + 0.732996i \(0.261879\pi\)
\(282\) −20.1136 −1.19775
\(283\) −2.38657 −0.141867 −0.0709335 0.997481i \(-0.522598\pi\)
−0.0709335 + 0.997481i \(0.522598\pi\)
\(284\) −21.5932 −1.28132
\(285\) 0 0
\(286\) 12.2149 0.722282
\(287\) 10.5006 0.619828
\(288\) 9.08471 0.535321
\(289\) 31.3456 1.84386
\(290\) 0 0
\(291\) 12.0068 0.703852
\(292\) 58.5514 3.42646
\(293\) 19.4843 1.13828 0.569142 0.822239i \(-0.307275\pi\)
0.569142 + 0.822239i \(0.307275\pi\)
\(294\) 22.0906 1.28835
\(295\) 0 0
\(296\) −74.8430 −4.35016
\(297\) 2.24645 0.130352
\(298\) 45.7982 2.65302
\(299\) −10.8912 −0.629855
\(300\) 0 0
\(301\) −23.7745 −1.37034
\(302\) 10.4453 0.601059
\(303\) −15.8642 −0.911377
\(304\) 38.5634 2.21176
\(305\) 0 0
\(306\) 18.0494 1.03181
\(307\) −0.527333 −0.0300965 −0.0150482 0.999887i \(-0.504790\pi\)
−0.0150482 + 0.999887i \(0.504790\pi\)
\(308\) −41.9225 −2.38875
\(309\) −10.3119 −0.586624
\(310\) 0 0
\(311\) −7.89624 −0.447755 −0.223877 0.974617i \(-0.571871\pi\)
−0.223877 + 0.974617i \(0.571871\pi\)
\(312\) 14.8907 0.843019
\(313\) 10.0064 0.565597 0.282799 0.959179i \(-0.408737\pi\)
0.282799 + 0.959179i \(0.408737\pi\)
\(314\) −19.9913 −1.12818
\(315\) 0 0
\(316\) 68.2814 3.84113
\(317\) 32.5401 1.82763 0.913817 0.406125i \(-0.133120\pi\)
0.913817 + 0.406125i \(0.133120\pi\)
\(318\) −3.66820 −0.205702
\(319\) 2.24645 0.125777
\(320\) 0 0
\(321\) 4.47645 0.249851
\(322\) 53.1562 2.96228
\(323\) 29.8699 1.66200
\(324\) 4.73855 0.263253
\(325\) 0 0
\(326\) −35.5192 −1.96723
\(327\) 13.4783 0.745350
\(328\) −18.9545 −1.04659
\(329\) 30.5148 1.68233
\(330\) 0 0
\(331\) 22.9411 1.26096 0.630480 0.776206i \(-0.282858\pi\)
0.630480 + 0.776206i \(0.282858\pi\)
\(332\) −18.0668 −0.991544
\(333\) −10.5280 −0.576932
\(334\) −64.7947 −3.54541
\(335\) 0 0
\(336\) −35.3529 −1.92866
\(337\) 16.0039 0.871789 0.435894 0.899998i \(-0.356432\pi\)
0.435894 + 0.899998i \(0.356432\pi\)
\(338\) −22.3569 −1.21605
\(339\) −11.4525 −0.622013
\(340\) 0 0
\(341\) 5.05529 0.273760
\(342\) 11.1516 0.603011
\(343\) −5.94642 −0.321076
\(344\) 42.9153 2.31384
\(345\) 0 0
\(346\) 51.7063 2.77975
\(347\) 22.9990 1.23465 0.617326 0.786707i \(-0.288216\pi\)
0.617326 + 0.786707i \(0.288216\pi\)
\(348\) 4.73855 0.254013
\(349\) 24.3108 1.30133 0.650664 0.759366i \(-0.274491\pi\)
0.650664 + 0.759366i \(0.274491\pi\)
\(350\) 0 0
\(351\) 2.09464 0.111804
\(352\) 20.4083 1.08777
\(353\) −29.2685 −1.55780 −0.778902 0.627146i \(-0.784223\pi\)
−0.778902 + 0.627146i \(0.784223\pi\)
\(354\) 14.9730 0.795805
\(355\) 0 0
\(356\) −9.82490 −0.520719
\(357\) −27.3831 −1.44927
\(358\) 28.2472 1.49291
\(359\) 18.5090 0.976868 0.488434 0.872601i \(-0.337568\pi\)
0.488434 + 0.872601i \(0.337568\pi\)
\(360\) 0 0
\(361\) −0.545179 −0.0286936
\(362\) −36.1792 −1.90154
\(363\) −5.95347 −0.312476
\(364\) −39.0896 −2.04885
\(365\) 0 0
\(366\) −28.3449 −1.48161
\(367\) 0.896398 0.0467916 0.0233958 0.999726i \(-0.492552\pi\)
0.0233958 + 0.999726i \(0.492552\pi\)
\(368\) −46.6752 −2.43311
\(369\) −2.66629 −0.138802
\(370\) 0 0
\(371\) 5.56511 0.288926
\(372\) 10.6634 0.552872
\(373\) 4.64559 0.240540 0.120270 0.992741i \(-0.461624\pi\)
0.120270 + 0.992741i \(0.461624\pi\)
\(374\) 40.5469 2.09663
\(375\) 0 0
\(376\) −55.0821 −2.84064
\(377\) 2.09464 0.107880
\(378\) −10.2232 −0.525826
\(379\) −32.4863 −1.66871 −0.834356 0.551226i \(-0.814160\pi\)
−0.834356 + 0.551226i \(0.814160\pi\)
\(380\) 0 0
\(381\) −3.23499 −0.165733
\(382\) 34.6441 1.77254
\(383\) 9.48311 0.484564 0.242282 0.970206i \(-0.422104\pi\)
0.242282 + 0.970206i \(0.422104\pi\)
\(384\) −3.55679 −0.181507
\(385\) 0 0
\(386\) 40.5830 2.06562
\(387\) 6.03681 0.306868
\(388\) 56.8949 2.88840
\(389\) 33.9509 1.72138 0.860689 0.509132i \(-0.170033\pi\)
0.860689 + 0.509132i \(0.170033\pi\)
\(390\) 0 0
\(391\) −36.1530 −1.82833
\(392\) 60.4964 3.05553
\(393\) −13.3567 −0.673755
\(394\) −52.2132 −2.63047
\(395\) 0 0
\(396\) 10.6449 0.534927
\(397\) −25.0892 −1.25919 −0.629596 0.776923i \(-0.716780\pi\)
−0.629596 + 0.776923i \(0.716780\pi\)
\(398\) −24.0698 −1.20651
\(399\) −16.9184 −0.846980
\(400\) 0 0
\(401\) −4.85814 −0.242604 −0.121302 0.992616i \(-0.538707\pi\)
−0.121302 + 0.992616i \(0.538707\pi\)
\(402\) −30.4940 −1.52090
\(403\) 4.71368 0.234805
\(404\) −75.1736 −3.74003
\(405\) 0 0
\(406\) −10.2232 −0.507370
\(407\) −23.6506 −1.17232
\(408\) 49.4291 2.44711
\(409\) 14.6604 0.724911 0.362456 0.932001i \(-0.381938\pi\)
0.362456 + 0.932001i \(0.381938\pi\)
\(410\) 0 0
\(411\) 4.35642 0.214886
\(412\) −48.8635 −2.40733
\(413\) −22.7159 −1.11778
\(414\) −13.4974 −0.663359
\(415\) 0 0
\(416\) 19.0292 0.932985
\(417\) −18.4171 −0.901891
\(418\) 25.0515 1.22531
\(419\) −18.4123 −0.899502 −0.449751 0.893154i \(-0.648487\pi\)
−0.449751 + 0.893154i \(0.648487\pi\)
\(420\) 0 0
\(421\) 29.1489 1.42063 0.710316 0.703883i \(-0.248552\pi\)
0.710316 + 0.703883i \(0.248552\pi\)
\(422\) −0.594451 −0.0289374
\(423\) −7.74829 −0.376735
\(424\) −10.0456 −0.487855
\(425\) 0 0
\(426\) −11.8292 −0.573125
\(427\) 43.0027 2.08105
\(428\) 21.2119 1.02532
\(429\) 4.70551 0.227184
\(430\) 0 0
\(431\) −2.05315 −0.0988966 −0.0494483 0.998777i \(-0.515746\pi\)
−0.0494483 + 0.998777i \(0.515746\pi\)
\(432\) 8.97678 0.431896
\(433\) −18.7820 −0.902603 −0.451302 0.892371i \(-0.649040\pi\)
−0.451302 + 0.892371i \(0.649040\pi\)
\(434\) −23.0058 −1.10432
\(435\) 0 0
\(436\) 63.8675 3.05870
\(437\) −22.3368 −1.06851
\(438\) 32.0756 1.53263
\(439\) −33.7889 −1.61266 −0.806329 0.591467i \(-0.798549\pi\)
−0.806329 + 0.591467i \(0.798549\pi\)
\(440\) 0 0
\(441\) 8.50991 0.405234
\(442\) 37.8070 1.79830
\(443\) 24.2962 1.15435 0.577173 0.816622i \(-0.304156\pi\)
0.577173 + 0.816622i \(0.304156\pi\)
\(444\) −49.8876 −2.36756
\(445\) 0 0
\(446\) −65.1868 −3.08668
\(447\) 17.6427 0.834472
\(448\) −22.1692 −1.04740
\(449\) −21.0976 −0.995656 −0.497828 0.867276i \(-0.665869\pi\)
−0.497828 + 0.867276i \(0.665869\pi\)
\(450\) 0 0
\(451\) −5.98968 −0.282043
\(452\) −54.2682 −2.55256
\(453\) 4.02381 0.189055
\(454\) −12.9458 −0.607575
\(455\) 0 0
\(456\) 30.5393 1.43013
\(457\) 8.70983 0.407429 0.203714 0.979030i \(-0.434699\pi\)
0.203714 + 0.979030i \(0.434699\pi\)
\(458\) 4.16874 0.194793
\(459\) 6.95310 0.324543
\(460\) 0 0
\(461\) 29.5424 1.37592 0.687962 0.725746i \(-0.258505\pi\)
0.687962 + 0.725746i \(0.258505\pi\)
\(462\) −22.9659 −1.06847
\(463\) 37.3067 1.73379 0.866894 0.498493i \(-0.166113\pi\)
0.866894 + 0.498493i \(0.166113\pi\)
\(464\) 8.97678 0.416737
\(465\) 0 0
\(466\) 17.2778 0.800379
\(467\) 30.2144 1.39816 0.699079 0.715045i \(-0.253594\pi\)
0.699079 + 0.715045i \(0.253594\pi\)
\(468\) 9.92559 0.458810
\(469\) 46.2632 2.13624
\(470\) 0 0
\(471\) −7.70119 −0.354852
\(472\) 41.0043 1.88738
\(473\) 13.5614 0.623553
\(474\) 37.4059 1.71811
\(475\) 0 0
\(476\) −129.756 −5.94738
\(477\) −1.41309 −0.0647009
\(478\) 7.45605 0.341032
\(479\) 39.1511 1.78886 0.894430 0.447209i \(-0.147582\pi\)
0.894430 + 0.447209i \(0.147582\pi\)
\(480\) 0 0
\(481\) −22.0524 −1.00551
\(482\) 39.6567 1.80632
\(483\) 20.4772 0.931744
\(484\) −28.2108 −1.28231
\(485\) 0 0
\(486\) 2.59587 0.117751
\(487\) −23.9182 −1.08384 −0.541919 0.840430i \(-0.682302\pi\)
−0.541919 + 0.840430i \(0.682302\pi\)
\(488\) −77.6239 −3.51387
\(489\) −13.6829 −0.618764
\(490\) 0 0
\(491\) 4.40974 0.199009 0.0995044 0.995037i \(-0.468274\pi\)
0.0995044 + 0.995037i \(0.468274\pi\)
\(492\) −12.6344 −0.569601
\(493\) 6.95310 0.313152
\(494\) 23.3587 1.05096
\(495\) 0 0
\(496\) 20.2009 0.907047
\(497\) 17.9463 0.805002
\(498\) −9.89734 −0.443510
\(499\) −37.0446 −1.65834 −0.829171 0.558995i \(-0.811187\pi\)
−0.829171 + 0.558995i \(0.811187\pi\)
\(500\) 0 0
\(501\) −24.9607 −1.11516
\(502\) 28.2385 1.26034
\(503\) −12.6691 −0.564886 −0.282443 0.959284i \(-0.591145\pi\)
−0.282443 + 0.959284i \(0.591145\pi\)
\(504\) −27.9968 −1.24708
\(505\) 0 0
\(506\) −30.3211 −1.34794
\(507\) −8.61246 −0.382493
\(508\) −15.3292 −0.680121
\(509\) −11.7078 −0.518939 −0.259469 0.965751i \(-0.583548\pi\)
−0.259469 + 0.965751i \(0.583548\pi\)
\(510\) 0 0
\(511\) −48.6627 −2.15271
\(512\) −46.0793 −2.03644
\(513\) 4.29591 0.189669
\(514\) −46.9200 −2.06955
\(515\) 0 0
\(516\) 28.6057 1.25930
\(517\) −17.4061 −0.765520
\(518\) 107.630 4.72900
\(519\) 19.9187 0.874332
\(520\) 0 0
\(521\) 0.0559550 0.00245143 0.00122572 0.999999i \(-0.499610\pi\)
0.00122572 + 0.999999i \(0.499610\pi\)
\(522\) 2.59587 0.113618
\(523\) −0.256669 −0.0112234 −0.00561168 0.999984i \(-0.501786\pi\)
−0.00561168 + 0.999984i \(0.501786\pi\)
\(524\) −63.2913 −2.76489
\(525\) 0 0
\(526\) −47.8819 −2.08775
\(527\) 15.6469 0.681590
\(528\) 20.1659 0.877607
\(529\) 4.03530 0.175448
\(530\) 0 0
\(531\) 5.76800 0.250310
\(532\) −80.1688 −3.47576
\(533\) −5.58493 −0.241910
\(534\) −5.38227 −0.232914
\(535\) 0 0
\(536\) −83.5095 −3.60706
\(537\) 10.8816 0.469576
\(538\) 30.2943 1.30608
\(539\) 19.1171 0.823430
\(540\) 0 0
\(541\) 1.88887 0.0812090 0.0406045 0.999175i \(-0.487072\pi\)
0.0406045 + 0.999175i \(0.487072\pi\)
\(542\) 52.5668 2.25794
\(543\) −13.9372 −0.598102
\(544\) 63.1669 2.70826
\(545\) 0 0
\(546\) −21.4140 −0.916436
\(547\) −0.193341 −0.00826668 −0.00413334 0.999991i \(-0.501316\pi\)
−0.00413334 + 0.999991i \(0.501316\pi\)
\(548\) 20.6431 0.881831
\(549\) −10.9192 −0.466020
\(550\) 0 0
\(551\) 4.29591 0.183012
\(552\) −36.9632 −1.57326
\(553\) −56.7494 −2.41323
\(554\) 9.52561 0.404704
\(555\) 0 0
\(556\) −87.2706 −3.70110
\(557\) −26.4282 −1.11980 −0.559899 0.828561i \(-0.689160\pi\)
−0.559899 + 0.828561i \(0.689160\pi\)
\(558\) 5.84162 0.247296
\(559\) 12.6450 0.534825
\(560\) 0 0
\(561\) 15.6198 0.659467
\(562\) 59.2003 2.49722
\(563\) −6.18961 −0.260861 −0.130430 0.991457i \(-0.541636\pi\)
−0.130430 + 0.991457i \(0.541636\pi\)
\(564\) −36.7157 −1.54601
\(565\) 0 0
\(566\) −6.19523 −0.260405
\(567\) −3.93826 −0.165391
\(568\) −32.3948 −1.35926
\(569\) −15.9034 −0.666705 −0.333353 0.942802i \(-0.608180\pi\)
−0.333353 + 0.942802i \(0.608180\pi\)
\(570\) 0 0
\(571\) −16.8555 −0.705380 −0.352690 0.935740i \(-0.614733\pi\)
−0.352690 + 0.935740i \(0.614733\pi\)
\(572\) 22.2973 0.932297
\(573\) 13.3458 0.557530
\(574\) 27.2581 1.13773
\(575\) 0 0
\(576\) 5.62918 0.234549
\(577\) −23.1237 −0.962650 −0.481325 0.876542i \(-0.659844\pi\)
−0.481325 + 0.876542i \(0.659844\pi\)
\(578\) 81.3692 3.38451
\(579\) 15.6337 0.649713
\(580\) 0 0
\(581\) 15.0155 0.622948
\(582\) 31.1681 1.29196
\(583\) −3.17443 −0.131471
\(584\) 87.8408 3.63488
\(585\) 0 0
\(586\) 50.5787 2.08939
\(587\) −7.80902 −0.322313 −0.161156 0.986929i \(-0.551522\pi\)
−0.161156 + 0.986929i \(0.551522\pi\)
\(588\) 40.3247 1.66296
\(589\) 9.66730 0.398334
\(590\) 0 0
\(591\) −20.1140 −0.827377
\(592\) −94.5077 −3.88424
\(593\) 19.5804 0.804069 0.402034 0.915625i \(-0.368303\pi\)
0.402034 + 0.915625i \(0.368303\pi\)
\(594\) 5.83149 0.239269
\(595\) 0 0
\(596\) 83.6009 3.42443
\(597\) −9.27232 −0.379491
\(598\) −28.2722 −1.15614
\(599\) 30.2322 1.23525 0.617627 0.786471i \(-0.288094\pi\)
0.617627 + 0.786471i \(0.288094\pi\)
\(600\) 0 0
\(601\) 33.1180 1.35091 0.675457 0.737400i \(-0.263947\pi\)
0.675457 + 0.737400i \(0.263947\pi\)
\(602\) −61.7157 −2.51534
\(603\) −11.7471 −0.478380
\(604\) 19.0670 0.775826
\(605\) 0 0
\(606\) −41.1816 −1.67289
\(607\) −23.4711 −0.952661 −0.476330 0.879266i \(-0.658033\pi\)
−0.476330 + 0.879266i \(0.658033\pi\)
\(608\) 39.0271 1.58276
\(609\) −3.93826 −0.159586
\(610\) 0 0
\(611\) −16.2299 −0.656592
\(612\) 32.9476 1.33183
\(613\) 24.1560 0.975650 0.487825 0.872941i \(-0.337790\pi\)
0.487825 + 0.872941i \(0.337790\pi\)
\(614\) −1.36889 −0.0552439
\(615\) 0 0
\(616\) −62.8935 −2.53405
\(617\) −47.7509 −1.92238 −0.961189 0.275890i \(-0.911027\pi\)
−0.961189 + 0.275890i \(0.911027\pi\)
\(618\) −26.7684 −1.07678
\(619\) 0.779735 0.0313402 0.0156701 0.999877i \(-0.495012\pi\)
0.0156701 + 0.999877i \(0.495012\pi\)
\(620\) 0 0
\(621\) −5.19955 −0.208651
\(622\) −20.4976 −0.821880
\(623\) 8.16558 0.327147
\(624\) 18.8032 0.752729
\(625\) 0 0
\(626\) 25.9754 1.03819
\(627\) 9.65053 0.385405
\(628\) −36.4925 −1.45621
\(629\) −73.2023 −2.91877
\(630\) 0 0
\(631\) 17.8120 0.709083 0.354542 0.935040i \(-0.384637\pi\)
0.354542 + 0.935040i \(0.384637\pi\)
\(632\) 102.438 4.07476
\(633\) −0.228998 −0.00910187
\(634\) 84.4700 3.35473
\(635\) 0 0
\(636\) −6.69600 −0.265514
\(637\) 17.8252 0.706262
\(638\) 5.83149 0.230871
\(639\) −4.55691 −0.180269
\(640\) 0 0
\(641\) 29.7647 1.17563 0.587817 0.808994i \(-0.299987\pi\)
0.587817 + 0.808994i \(0.299987\pi\)
\(642\) 11.6203 0.458617
\(643\) −41.4049 −1.63285 −0.816426 0.577451i \(-0.804048\pi\)
−0.816426 + 0.577451i \(0.804048\pi\)
\(644\) 97.0322 3.82361
\(645\) 0 0
\(646\) 77.5384 3.05071
\(647\) 14.6074 0.574275 0.287137 0.957889i \(-0.407296\pi\)
0.287137 + 0.957889i \(0.407296\pi\)
\(648\) 7.10893 0.279265
\(649\) 12.9575 0.508627
\(650\) 0 0
\(651\) −8.86247 −0.347348
\(652\) −64.8374 −2.53923
\(653\) 30.5647 1.19609 0.598045 0.801462i \(-0.295944\pi\)
0.598045 + 0.801462i \(0.295944\pi\)
\(654\) 34.9879 1.36813
\(655\) 0 0
\(656\) −23.9347 −0.934493
\(657\) 12.3564 0.482069
\(658\) 79.2125 3.08802
\(659\) 22.1893 0.864371 0.432186 0.901785i \(-0.357743\pi\)
0.432186 + 0.901785i \(0.357743\pi\)
\(660\) 0 0
\(661\) −9.85731 −0.383405 −0.191702 0.981453i \(-0.561401\pi\)
−0.191702 + 0.981453i \(0.561401\pi\)
\(662\) 59.5523 2.31457
\(663\) 14.5643 0.565630
\(664\) −27.1044 −1.05185
\(665\) 0 0
\(666\) −27.3294 −1.05899
\(667\) −5.19955 −0.201327
\(668\) −118.277 −4.57629
\(669\) −25.1117 −0.970875
\(670\) 0 0
\(671\) −24.5294 −0.946948
\(672\) −35.7780 −1.38016
\(673\) −25.3057 −0.975463 −0.487732 0.872994i \(-0.662176\pi\)
−0.487732 + 0.872994i \(0.662176\pi\)
\(674\) 41.5441 1.60022
\(675\) 0 0
\(676\) −40.8106 −1.56964
\(677\) −3.67306 −0.141167 −0.0705836 0.997506i \(-0.522486\pi\)
−0.0705836 + 0.997506i \(0.522486\pi\)
\(678\) −29.7292 −1.14174
\(679\) −47.2860 −1.81467
\(680\) 0 0
\(681\) −4.98706 −0.191104
\(682\) 13.1229 0.502502
\(683\) 17.3807 0.665053 0.332527 0.943094i \(-0.392099\pi\)
0.332527 + 0.943094i \(0.392099\pi\)
\(684\) 20.3564 0.778346
\(685\) 0 0
\(686\) −15.4361 −0.589354
\(687\) 1.60591 0.0612694
\(688\) 54.1911 2.06602
\(689\) −2.95992 −0.112764
\(690\) 0 0
\(691\) −28.5585 −1.08642 −0.543209 0.839598i \(-0.682791\pi\)
−0.543209 + 0.839598i \(0.682791\pi\)
\(692\) 94.3856 3.58800
\(693\) −8.84710 −0.336074
\(694\) 59.7025 2.26628
\(695\) 0 0
\(696\) 7.10893 0.269463
\(697\) −18.5390 −0.702214
\(698\) 63.1078 2.38866
\(699\) 6.65588 0.251749
\(700\) 0 0
\(701\) 21.5401 0.813557 0.406779 0.913527i \(-0.366652\pi\)
0.406779 + 0.913527i \(0.366652\pi\)
\(702\) 5.43743 0.205223
\(703\) −45.2274 −1.70578
\(704\) 12.6457 0.476601
\(705\) 0 0
\(706\) −75.9772 −2.85944
\(707\) 62.4776 2.34971
\(708\) 27.3320 1.02720
\(709\) −2.29948 −0.0863587 −0.0431793 0.999067i \(-0.513749\pi\)
−0.0431793 + 0.999067i \(0.513749\pi\)
\(710\) 0 0
\(711\) 14.4098 0.540408
\(712\) −14.7396 −0.552391
\(713\) −11.7008 −0.438199
\(714\) −71.0831 −2.66022
\(715\) 0 0
\(716\) 51.5630 1.92700
\(717\) 2.87227 0.107267
\(718\) 48.0470 1.79310
\(719\) 13.6814 0.510232 0.255116 0.966910i \(-0.417886\pi\)
0.255116 + 0.966910i \(0.417886\pi\)
\(720\) 0 0
\(721\) 40.6110 1.51243
\(722\) −1.41521 −0.0526688
\(723\) 15.2768 0.568152
\(724\) −66.0422 −2.45444
\(725\) 0 0
\(726\) −15.4545 −0.573569
\(727\) 50.0451 1.85607 0.928035 0.372492i \(-0.121497\pi\)
0.928035 + 0.372492i \(0.121497\pi\)
\(728\) −58.6435 −2.17347
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 41.9745 1.55248
\(732\) −51.7412 −1.91241
\(733\) 38.7734 1.43213 0.716065 0.698034i \(-0.245942\pi\)
0.716065 + 0.698034i \(0.245942\pi\)
\(734\) 2.32694 0.0858887
\(735\) 0 0
\(736\) −47.2364 −1.74116
\(737\) −26.3893 −0.972062
\(738\) −6.92135 −0.254778
\(739\) −18.0707 −0.664742 −0.332371 0.943149i \(-0.607849\pi\)
−0.332371 + 0.943149i \(0.607849\pi\)
\(740\) 0 0
\(741\) 8.99840 0.330564
\(742\) 14.4463 0.530341
\(743\) −20.9864 −0.769917 −0.384959 0.922934i \(-0.625784\pi\)
−0.384959 + 0.922934i \(0.625784\pi\)
\(744\) 15.9976 0.586500
\(745\) 0 0
\(746\) 12.0594 0.441525
\(747\) −3.81272 −0.139500
\(748\) 74.0151 2.70626
\(749\) −17.6294 −0.644166
\(750\) 0 0
\(751\) −20.3274 −0.741758 −0.370879 0.928681i \(-0.620944\pi\)
−0.370879 + 0.928681i \(0.620944\pi\)
\(752\) −69.5547 −2.53640
\(753\) 10.8782 0.396424
\(754\) 5.43743 0.198020
\(755\) 0 0
\(756\) −18.6617 −0.678718
\(757\) 0.0654846 0.00238008 0.00119004 0.999999i \(-0.499621\pi\)
0.00119004 + 0.999999i \(0.499621\pi\)
\(758\) −84.3304 −3.06302
\(759\) −11.6805 −0.423976
\(760\) 0 0
\(761\) −28.8872 −1.04716 −0.523580 0.851976i \(-0.675404\pi\)
−0.523580 + 0.851976i \(0.675404\pi\)
\(762\) −8.39761 −0.304213
\(763\) −53.0810 −1.92166
\(764\) 63.2399 2.28794
\(765\) 0 0
\(766\) 24.6169 0.889446
\(767\) 12.0819 0.436252
\(768\) −20.4913 −0.739417
\(769\) −10.0813 −0.363541 −0.181771 0.983341i \(-0.558183\pi\)
−0.181771 + 0.983341i \(0.558183\pi\)
\(770\) 0 0
\(771\) −18.0748 −0.650949
\(772\) 74.0809 2.66623
\(773\) −20.5353 −0.738602 −0.369301 0.929310i \(-0.620403\pi\)
−0.369301 + 0.929310i \(0.620403\pi\)
\(774\) 15.6708 0.563275
\(775\) 0 0
\(776\) 85.3556 3.06409
\(777\) 41.4621 1.48744
\(778\) 88.1321 3.15969
\(779\) −11.4541 −0.410387
\(780\) 0 0
\(781\) −10.2369 −0.366304
\(782\) −93.8485 −3.35602
\(783\) 1.00000 0.0357371
\(784\) 76.3916 2.72827
\(785\) 0 0
\(786\) −34.6722 −1.23672
\(787\) −46.0601 −1.64186 −0.820932 0.571026i \(-0.806545\pi\)
−0.820932 + 0.571026i \(0.806545\pi\)
\(788\) −95.3110 −3.39531
\(789\) −18.4454 −0.656674
\(790\) 0 0
\(791\) 45.1029 1.60367
\(792\) 15.9699 0.567464
\(793\) −22.8718 −0.812203
\(794\) −65.1284 −2.31132
\(795\) 0 0
\(796\) −43.9374 −1.55732
\(797\) 37.4745 1.32742 0.663708 0.747992i \(-0.268982\pi\)
0.663708 + 0.747992i \(0.268982\pi\)
\(798\) −43.9180 −1.55468
\(799\) −53.8746 −1.90595
\(800\) 0 0
\(801\) −2.07340 −0.0732599
\(802\) −12.6111 −0.445314
\(803\) 27.7580 0.979558
\(804\) −55.6643 −1.96313
\(805\) 0 0
\(806\) 12.2361 0.430999
\(807\) 11.6702 0.410810
\(808\) −112.778 −3.96751
\(809\) 29.9284 1.05223 0.526113 0.850414i \(-0.323649\pi\)
0.526113 + 0.850414i \(0.323649\pi\)
\(810\) 0 0
\(811\) −49.1738 −1.72673 −0.863363 0.504583i \(-0.831646\pi\)
−0.863363 + 0.504583i \(0.831646\pi\)
\(812\) −18.6617 −0.654896
\(813\) 20.2501 0.710204
\(814\) −61.3940 −2.15186
\(815\) 0 0
\(816\) 62.4165 2.18501
\(817\) 25.9336 0.907301
\(818\) 38.0566 1.33062
\(819\) −8.24926 −0.288252
\(820\) 0 0
\(821\) 33.9715 1.18561 0.592807 0.805345i \(-0.298020\pi\)
0.592807 + 0.805345i \(0.298020\pi\)
\(822\) 11.3087 0.394437
\(823\) 33.8272 1.17914 0.589572 0.807716i \(-0.299297\pi\)
0.589572 + 0.807716i \(0.299297\pi\)
\(824\) −73.3067 −2.55376
\(825\) 0 0
\(826\) −58.9676 −2.05174
\(827\) 35.1083 1.22083 0.610417 0.792080i \(-0.291002\pi\)
0.610417 + 0.792080i \(0.291002\pi\)
\(828\) −24.6383 −0.856241
\(829\) 15.6701 0.544245 0.272122 0.962263i \(-0.412274\pi\)
0.272122 + 0.962263i \(0.412274\pi\)
\(830\) 0 0
\(831\) 3.66952 0.127294
\(832\) 11.7911 0.408784
\(833\) 59.1702 2.05013
\(834\) −47.8085 −1.65547
\(835\) 0 0
\(836\) 45.7296 1.58159
\(837\) 2.25035 0.0777835
\(838\) −47.7961 −1.65109
\(839\) −16.5131 −0.570095 −0.285047 0.958513i \(-0.592009\pi\)
−0.285047 + 0.958513i \(0.592009\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 75.6669 2.60765
\(843\) 22.8056 0.785466
\(844\) −1.08512 −0.0373514
\(845\) 0 0
\(846\) −20.1136 −0.691518
\(847\) 23.4463 0.805626
\(848\) −12.6850 −0.435604
\(849\) −2.38657 −0.0819069
\(850\) 0 0
\(851\) 54.7409 1.87649
\(852\) −21.5932 −0.739770
\(853\) −16.3926 −0.561271 −0.280636 0.959814i \(-0.590545\pi\)
−0.280636 + 0.959814i \(0.590545\pi\)
\(854\) 111.629 3.81988
\(855\) 0 0
\(856\) 31.8228 1.08768
\(857\) 9.83745 0.336041 0.168020 0.985784i \(-0.446263\pi\)
0.168020 + 0.985784i \(0.446263\pi\)
\(858\) 12.2149 0.417010
\(859\) 39.8257 1.35883 0.679417 0.733752i \(-0.262233\pi\)
0.679417 + 0.733752i \(0.262233\pi\)
\(860\) 0 0
\(861\) 10.5006 0.357858
\(862\) −5.32971 −0.181530
\(863\) 15.6707 0.533438 0.266719 0.963774i \(-0.414060\pi\)
0.266719 + 0.963774i \(0.414060\pi\)
\(864\) 9.08471 0.309068
\(865\) 0 0
\(866\) −48.7556 −1.65678
\(867\) 31.3456 1.06455
\(868\) −41.9953 −1.42541
\(869\) 32.3708 1.09810
\(870\) 0 0
\(871\) −24.6060 −0.833744
\(872\) 95.8162 3.24474
\(873\) 12.0068 0.406369
\(874\) −57.9834 −1.96132
\(875\) 0 0
\(876\) 58.5514 1.97827
\(877\) −21.2819 −0.718640 −0.359320 0.933214i \(-0.616991\pi\)
−0.359320 + 0.933214i \(0.616991\pi\)
\(878\) −87.7118 −2.96013
\(879\) 19.4843 0.657189
\(880\) 0 0
\(881\) 29.1037 0.980529 0.490265 0.871574i \(-0.336900\pi\)
0.490265 + 0.871574i \(0.336900\pi\)
\(882\) 22.0906 0.743830
\(883\) −4.03715 −0.135861 −0.0679305 0.997690i \(-0.521640\pi\)
−0.0679305 + 0.997690i \(0.521640\pi\)
\(884\) 69.0136 2.32118
\(885\) 0 0
\(886\) 63.0698 2.11887
\(887\) −2.85498 −0.0958608 −0.0479304 0.998851i \(-0.515263\pi\)
−0.0479304 + 0.998851i \(0.515263\pi\)
\(888\) −74.8430 −2.51157
\(889\) 12.7402 0.427293
\(890\) 0 0
\(891\) 2.24645 0.0752588
\(892\) −118.993 −3.98419
\(893\) −33.2859 −1.11387
\(894\) 45.7982 1.53172
\(895\) 0 0
\(896\) 14.0076 0.467960
\(897\) −10.8912 −0.363647
\(898\) −54.7666 −1.82758
\(899\) 2.25035 0.0750534
\(900\) 0 0
\(901\) −9.82535 −0.327330
\(902\) −15.5485 −0.517707
\(903\) −23.7745 −0.791167
\(904\) −81.4150 −2.70782
\(905\) 0 0
\(906\) 10.4453 0.347022
\(907\) −3.08757 −0.102521 −0.0512605 0.998685i \(-0.516324\pi\)
−0.0512605 + 0.998685i \(0.516324\pi\)
\(908\) −23.6314 −0.784237
\(909\) −15.8642 −0.526184
\(910\) 0 0
\(911\) 34.1306 1.13080 0.565398 0.824818i \(-0.308723\pi\)
0.565398 + 0.824818i \(0.308723\pi\)
\(912\) 38.5634 1.27696
\(913\) −8.56508 −0.283463
\(914\) 22.6096 0.747860
\(915\) 0 0
\(916\) 7.60970 0.251432
\(917\) 52.6021 1.73707
\(918\) 18.0494 0.595718
\(919\) 16.9603 0.559468 0.279734 0.960078i \(-0.409754\pi\)
0.279734 + 0.960078i \(0.409754\pi\)
\(920\) 0 0
\(921\) −0.527333 −0.0173762
\(922\) 76.6882 2.52559
\(923\) −9.54511 −0.314181
\(924\) −41.9225 −1.37915
\(925\) 0 0
\(926\) 96.8433 3.18247
\(927\) −10.3119 −0.338688
\(928\) 9.08471 0.298220
\(929\) 5.63831 0.184987 0.0924935 0.995713i \(-0.470516\pi\)
0.0924935 + 0.995713i \(0.470516\pi\)
\(930\) 0 0
\(931\) 36.5578 1.19813
\(932\) 31.5392 1.03310
\(933\) −7.89624 −0.258511
\(934\) 78.4328 2.56640
\(935\) 0 0
\(936\) 14.8907 0.486718
\(937\) 32.0790 1.04798 0.523988 0.851726i \(-0.324444\pi\)
0.523988 + 0.851726i \(0.324444\pi\)
\(938\) 120.093 3.92119
\(939\) 10.0064 0.326548
\(940\) 0 0
\(941\) 31.2028 1.01718 0.508592 0.861008i \(-0.330166\pi\)
0.508592 + 0.861008i \(0.330166\pi\)
\(942\) −19.9913 −0.651352
\(943\) 13.8635 0.451458
\(944\) 51.7781 1.68523
\(945\) 0 0
\(946\) 35.2036 1.14457
\(947\) −27.7302 −0.901110 −0.450555 0.892749i \(-0.648774\pi\)
−0.450555 + 0.892749i \(0.648774\pi\)
\(948\) 68.2814 2.21768
\(949\) 25.8822 0.840173
\(950\) 0 0
\(951\) 32.5401 1.05519
\(952\) −194.665 −6.30913
\(953\) 23.9481 0.775755 0.387877 0.921711i \(-0.373208\pi\)
0.387877 + 0.921711i \(0.373208\pi\)
\(954\) −3.66820 −0.118762
\(955\) 0 0
\(956\) 13.6104 0.440192
\(957\) 2.24645 0.0726173
\(958\) 101.631 3.28356
\(959\) −17.1567 −0.554020
\(960\) 0 0
\(961\) −25.9359 −0.836643
\(962\) −57.2453 −1.84566
\(963\) 4.47645 0.144252
\(964\) 72.3902 2.33153
\(965\) 0 0
\(966\) 53.1562 1.71027
\(967\) −43.6821 −1.40472 −0.702361 0.711821i \(-0.747871\pi\)
−0.702361 + 0.711821i \(0.747871\pi\)
\(968\) −42.3228 −1.36031
\(969\) 29.8699 0.959559
\(970\) 0 0
\(971\) 1.12406 0.0360729 0.0180365 0.999837i \(-0.494259\pi\)
0.0180365 + 0.999837i \(0.494259\pi\)
\(972\) 4.73855 0.151989
\(973\) 72.5315 2.32525
\(974\) −62.0887 −1.98945
\(975\) 0 0
\(976\) −98.0193 −3.13752
\(977\) −18.8819 −0.604086 −0.302043 0.953294i \(-0.597669\pi\)
−0.302043 + 0.953294i \(0.597669\pi\)
\(978\) −35.5192 −1.13578
\(979\) −4.65778 −0.148863
\(980\) 0 0
\(981\) 13.4783 0.430328
\(982\) 11.4471 0.365292
\(983\) −23.5807 −0.752109 −0.376054 0.926598i \(-0.622719\pi\)
−0.376054 + 0.926598i \(0.622719\pi\)
\(984\) −18.9545 −0.604247
\(985\) 0 0
\(986\) 18.0494 0.574809
\(987\) 30.5148 0.971296
\(988\) 42.6394 1.35654
\(989\) −31.3887 −0.998102
\(990\) 0 0
\(991\) −31.3818 −0.996877 −0.498438 0.866925i \(-0.666093\pi\)
−0.498438 + 0.866925i \(0.666093\pi\)
\(992\) 20.4438 0.649090
\(993\) 22.9411 0.728015
\(994\) 46.5864 1.47763
\(995\) 0 0
\(996\) −18.0668 −0.572468
\(997\) 45.3442 1.43606 0.718032 0.696010i \(-0.245043\pi\)
0.718032 + 0.696010i \(0.245043\pi\)
\(998\) −96.1629 −3.04398
\(999\) −10.5280 −0.333092
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.a.bd.1.8 yes 8
3.2 odd 2 6525.2.a.by.1.1 8
5.2 odd 4 2175.2.c.p.349.15 16
5.3 odd 4 2175.2.c.p.349.2 16
5.4 even 2 2175.2.a.bc.1.1 8
15.14 odd 2 6525.2.a.bz.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.bc.1.1 8 5.4 even 2
2175.2.a.bd.1.8 yes 8 1.1 even 1 trivial
2175.2.c.p.349.2 16 5.3 odd 4
2175.2.c.p.349.15 16 5.2 odd 4
6525.2.a.by.1.1 8 3.2 odd 2
6525.2.a.bz.1.8 8 15.14 odd 2