Properties

Label 2175.2.a.bd.1.7
Level $2175$
Weight $2$
Character 2175.1
Self dual yes
Analytic conductor $17.367$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 12x^{6} + 23x^{5} + 36x^{4} - 62x^{3} - 15x^{2} + 14x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(2.57789\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.57789 q^{2} +1.00000 q^{3} +4.64553 q^{4} +2.57789 q^{6} +4.69867 q^{7} +6.81989 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+2.57789 q^{2} +1.00000 q^{3} +4.64553 q^{4} +2.57789 q^{6} +4.69867 q^{7} +6.81989 q^{8} +1.00000 q^{9} -3.11503 q^{11} +4.64553 q^{12} -5.07945 q^{13} +12.1127 q^{14} +8.28989 q^{16} +1.40020 q^{17} +2.57789 q^{18} -3.76514 q^{19} +4.69867 q^{21} -8.03022 q^{22} +5.71483 q^{23} +6.81989 q^{24} -13.0943 q^{26} +1.00000 q^{27} +21.8278 q^{28} +1.00000 q^{29} -2.23218 q^{31} +7.73067 q^{32} -3.11503 q^{33} +3.60957 q^{34} +4.64553 q^{36} +5.79088 q^{37} -9.70614 q^{38} -5.07945 q^{39} -10.6968 q^{41} +12.1127 q^{42} -8.89527 q^{43} -14.4710 q^{44} +14.7322 q^{46} +3.62785 q^{47} +8.28989 q^{48} +15.0775 q^{49} +1.40020 q^{51} -23.5967 q^{52} -0.948260 q^{53} +2.57789 q^{54} +32.0445 q^{56} -3.76514 q^{57} +2.57789 q^{58} -8.53886 q^{59} -6.21467 q^{61} -5.75432 q^{62} +4.69867 q^{63} +3.34905 q^{64} -8.03022 q^{66} -13.9099 q^{67} +6.50468 q^{68} +5.71483 q^{69} +5.88726 q^{71} +6.81989 q^{72} +7.08398 q^{73} +14.9283 q^{74} -17.4911 q^{76} -14.6365 q^{77} -13.0943 q^{78} +7.31672 q^{79} +1.00000 q^{81} -27.5751 q^{82} +13.6579 q^{83} +21.8278 q^{84} -22.9311 q^{86} +1.00000 q^{87} -21.2442 q^{88} -7.98017 q^{89} -23.8667 q^{91} +26.5484 q^{92} -2.23218 q^{93} +9.35221 q^{94} +7.73067 q^{96} -13.8343 q^{97} +38.8683 q^{98} -3.11503 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 8 q^{3} + 12 q^{4} + 2 q^{6} - 2 q^{7} + 3 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} + 8 q^{3} + 12 q^{4} + 2 q^{6} - 2 q^{7} + 3 q^{8} + 8 q^{9} + 6 q^{11} + 12 q^{12} - 6 q^{13} + 9 q^{14} + 32 q^{16} + 12 q^{17} + 2 q^{18} - 2 q^{21} - 3 q^{22} + 14 q^{23} + 3 q^{24} + 18 q^{26} + 8 q^{27} - 14 q^{28} + 8 q^{29} + 8 q^{31} - 2 q^{32} + 6 q^{33} - 13 q^{34} + 12 q^{36} - 4 q^{37} + 26 q^{38} - 6 q^{39} + 2 q^{41} + 9 q^{42} - 2 q^{43} - 15 q^{44} + 24 q^{46} + 12 q^{47} + 32 q^{48} + 38 q^{49} + 12 q^{51} - 49 q^{52} + 4 q^{53} + 2 q^{54} + 58 q^{56} + 2 q^{58} + 18 q^{59} + 12 q^{61} - 4 q^{62} - 2 q^{63} + 21 q^{64} - 3 q^{66} - 26 q^{67} + 81 q^{68} + 14 q^{69} + 24 q^{71} + 3 q^{72} + 14 q^{73} - 22 q^{74} - 26 q^{77} + 18 q^{78} + 10 q^{79} + 8 q^{81} - 48 q^{82} + 40 q^{83} - 14 q^{84} + 8 q^{86} + 8 q^{87} + 10 q^{88} + 34 q^{89} + 26 q^{91} - 18 q^{92} + 8 q^{93} - 43 q^{94} - 2 q^{96} - 30 q^{97} + 29 q^{98} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.57789 1.82285 0.911423 0.411471i \(-0.134985\pi\)
0.911423 + 0.411471i \(0.134985\pi\)
\(3\) 1.00000 0.577350
\(4\) 4.64553 2.32277
\(5\) 0 0
\(6\) 2.57789 1.05242
\(7\) 4.69867 1.77593 0.887966 0.459909i \(-0.152118\pi\)
0.887966 + 0.459909i \(0.152118\pi\)
\(8\) 6.81989 2.41120
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.11503 −0.939218 −0.469609 0.882875i \(-0.655605\pi\)
−0.469609 + 0.882875i \(0.655605\pi\)
\(12\) 4.64553 1.34105
\(13\) −5.07945 −1.40879 −0.704393 0.709810i \(-0.748781\pi\)
−0.704393 + 0.709810i \(0.748781\pi\)
\(14\) 12.1127 3.23725
\(15\) 0 0
\(16\) 8.28989 2.07247
\(17\) 1.40020 0.339599 0.169799 0.985479i \(-0.445688\pi\)
0.169799 + 0.985479i \(0.445688\pi\)
\(18\) 2.57789 0.607615
\(19\) −3.76514 −0.863783 −0.431892 0.901925i \(-0.642154\pi\)
−0.431892 + 0.901925i \(0.642154\pi\)
\(20\) 0 0
\(21\) 4.69867 1.02533
\(22\) −8.03022 −1.71205
\(23\) 5.71483 1.19162 0.595812 0.803124i \(-0.296830\pi\)
0.595812 + 0.803124i \(0.296830\pi\)
\(24\) 6.81989 1.39211
\(25\) 0 0
\(26\) −13.0943 −2.56800
\(27\) 1.00000 0.192450
\(28\) 21.8278 4.12507
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −2.23218 −0.400911 −0.200456 0.979703i \(-0.564242\pi\)
−0.200456 + 0.979703i \(0.564242\pi\)
\(32\) 7.73067 1.36660
\(33\) −3.11503 −0.542258
\(34\) 3.60957 0.619036
\(35\) 0 0
\(36\) 4.64553 0.774255
\(37\) 5.79088 0.952015 0.476008 0.879441i \(-0.342083\pi\)
0.476008 + 0.879441i \(0.342083\pi\)
\(38\) −9.70614 −1.57454
\(39\) −5.07945 −0.813363
\(40\) 0 0
\(41\) −10.6968 −1.67055 −0.835276 0.549830i \(-0.814692\pi\)
−0.835276 + 0.549830i \(0.814692\pi\)
\(42\) 12.1127 1.86903
\(43\) −8.89527 −1.35652 −0.678258 0.734824i \(-0.737265\pi\)
−0.678258 + 0.734824i \(0.737265\pi\)
\(44\) −14.4710 −2.18158
\(45\) 0 0
\(46\) 14.7322 2.17215
\(47\) 3.62785 0.529176 0.264588 0.964362i \(-0.414764\pi\)
0.264588 + 0.964362i \(0.414764\pi\)
\(48\) 8.28989 1.19654
\(49\) 15.0775 2.15393
\(50\) 0 0
\(51\) 1.40020 0.196067
\(52\) −23.5967 −3.27228
\(53\) −0.948260 −0.130254 −0.0651268 0.997877i \(-0.520745\pi\)
−0.0651268 + 0.997877i \(0.520745\pi\)
\(54\) 2.57789 0.350807
\(55\) 0 0
\(56\) 32.0445 4.28212
\(57\) −3.76514 −0.498706
\(58\) 2.57789 0.338494
\(59\) −8.53886 −1.11166 −0.555832 0.831294i \(-0.687600\pi\)
−0.555832 + 0.831294i \(0.687600\pi\)
\(60\) 0 0
\(61\) −6.21467 −0.795707 −0.397853 0.917449i \(-0.630245\pi\)
−0.397853 + 0.917449i \(0.630245\pi\)
\(62\) −5.75432 −0.730799
\(63\) 4.69867 0.591977
\(64\) 3.34905 0.418631
\(65\) 0 0
\(66\) −8.03022 −0.988452
\(67\) −13.9099 −1.69937 −0.849685 0.527291i \(-0.823208\pi\)
−0.849685 + 0.527291i \(0.823208\pi\)
\(68\) 6.50468 0.788808
\(69\) 5.71483 0.687985
\(70\) 0 0
\(71\) 5.88726 0.698690 0.349345 0.936994i \(-0.386404\pi\)
0.349345 + 0.936994i \(0.386404\pi\)
\(72\) 6.81989 0.803732
\(73\) 7.08398 0.829117 0.414559 0.910023i \(-0.363936\pi\)
0.414559 + 0.910023i \(0.363936\pi\)
\(74\) 14.9283 1.73538
\(75\) 0 0
\(76\) −17.4911 −2.00637
\(77\) −14.6365 −1.66799
\(78\) −13.0943 −1.48263
\(79\) 7.31672 0.823195 0.411598 0.911366i \(-0.364971\pi\)
0.411598 + 0.911366i \(0.364971\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −27.5751 −3.04516
\(83\) 13.6579 1.49915 0.749577 0.661917i \(-0.230257\pi\)
0.749577 + 0.661917i \(0.230257\pi\)
\(84\) 21.8278 2.38161
\(85\) 0 0
\(86\) −22.9311 −2.47272
\(87\) 1.00000 0.107211
\(88\) −21.2442 −2.26464
\(89\) −7.98017 −0.845897 −0.422948 0.906154i \(-0.639005\pi\)
−0.422948 + 0.906154i \(0.639005\pi\)
\(90\) 0 0
\(91\) −23.8667 −2.50191
\(92\) 26.5484 2.76786
\(93\) −2.23218 −0.231466
\(94\) 9.35221 0.964607
\(95\) 0 0
\(96\) 7.73067 0.789008
\(97\) −13.8343 −1.40466 −0.702329 0.711853i \(-0.747856\pi\)
−0.702329 + 0.711853i \(0.747856\pi\)
\(98\) 38.8683 3.92629
\(99\) −3.11503 −0.313073
\(100\) 0 0
\(101\) 12.7461 1.26829 0.634144 0.773215i \(-0.281353\pi\)
0.634144 + 0.773215i \(0.281353\pi\)
\(102\) 3.60957 0.357401
\(103\) 8.20406 0.808370 0.404185 0.914677i \(-0.367555\pi\)
0.404185 + 0.914677i \(0.367555\pi\)
\(104\) −34.6413 −3.39686
\(105\) 0 0
\(106\) −2.44451 −0.237432
\(107\) 3.28873 0.317933 0.158967 0.987284i \(-0.449184\pi\)
0.158967 + 0.987284i \(0.449184\pi\)
\(108\) 4.64553 0.447016
\(109\) −0.246732 −0.0236326 −0.0118163 0.999930i \(-0.503761\pi\)
−0.0118163 + 0.999930i \(0.503761\pi\)
\(110\) 0 0
\(111\) 5.79088 0.549646
\(112\) 38.9515 3.68057
\(113\) 14.4273 1.35721 0.678603 0.734505i \(-0.262586\pi\)
0.678603 + 0.734505i \(0.262586\pi\)
\(114\) −9.70614 −0.909063
\(115\) 0 0
\(116\) 4.64553 0.431327
\(117\) −5.07945 −0.469595
\(118\) −22.0123 −2.02639
\(119\) 6.57909 0.603104
\(120\) 0 0
\(121\) −1.29657 −0.117870
\(122\) −16.0207 −1.45045
\(123\) −10.6968 −0.964494
\(124\) −10.3697 −0.931223
\(125\) 0 0
\(126\) 12.1127 1.07908
\(127\) 21.1707 1.87860 0.939299 0.343101i \(-0.111477\pi\)
0.939299 + 0.343101i \(0.111477\pi\)
\(128\) −6.82785 −0.603503
\(129\) −8.89527 −0.783185
\(130\) 0 0
\(131\) −8.18994 −0.715559 −0.357779 0.933806i \(-0.616466\pi\)
−0.357779 + 0.933806i \(0.616466\pi\)
\(132\) −14.4710 −1.25954
\(133\) −17.6912 −1.53402
\(134\) −35.8583 −3.09769
\(135\) 0 0
\(136\) 9.54923 0.818840
\(137\) −17.4054 −1.48704 −0.743520 0.668714i \(-0.766845\pi\)
−0.743520 + 0.668714i \(0.766845\pi\)
\(138\) 14.7322 1.25409
\(139\) −6.81900 −0.578380 −0.289190 0.957272i \(-0.593386\pi\)
−0.289190 + 0.957272i \(0.593386\pi\)
\(140\) 0 0
\(141\) 3.62785 0.305520
\(142\) 15.1767 1.27360
\(143\) 15.8226 1.32316
\(144\) 8.28989 0.690825
\(145\) 0 0
\(146\) 18.2617 1.51135
\(147\) 15.0775 1.24357
\(148\) 26.9017 2.21131
\(149\) 23.7335 1.94432 0.972162 0.234311i \(-0.0752833\pi\)
0.972162 + 0.234311i \(0.0752833\pi\)
\(150\) 0 0
\(151\) −17.3095 −1.40863 −0.704315 0.709888i \(-0.748746\pi\)
−0.704315 + 0.709888i \(0.748746\pi\)
\(152\) −25.6779 −2.08275
\(153\) 1.40020 0.113200
\(154\) −37.7314 −3.04048
\(155\) 0 0
\(156\) −23.5967 −1.88925
\(157\) −10.0537 −0.802375 −0.401188 0.915996i \(-0.631402\pi\)
−0.401188 + 0.915996i \(0.631402\pi\)
\(158\) 18.8617 1.50056
\(159\) −0.948260 −0.0752019
\(160\) 0 0
\(161\) 26.8521 2.11624
\(162\) 2.57789 0.202538
\(163\) −12.2602 −0.960291 −0.480145 0.877189i \(-0.659416\pi\)
−0.480145 + 0.877189i \(0.659416\pi\)
\(164\) −49.6921 −3.88030
\(165\) 0 0
\(166\) 35.2087 2.73273
\(167\) 13.5990 1.05232 0.526160 0.850386i \(-0.323631\pi\)
0.526160 + 0.850386i \(0.323631\pi\)
\(168\) 32.0445 2.47228
\(169\) 12.8008 0.984677
\(170\) 0 0
\(171\) −3.76514 −0.287928
\(172\) −41.3233 −3.15087
\(173\) −8.35226 −0.635011 −0.317505 0.948256i \(-0.602845\pi\)
−0.317505 + 0.948256i \(0.602845\pi\)
\(174\) 2.57789 0.195430
\(175\) 0 0
\(176\) −25.8233 −1.94650
\(177\) −8.53886 −0.641820
\(178\) −20.5720 −1.54194
\(179\) 26.5865 1.98717 0.993583 0.113109i \(-0.0360810\pi\)
0.993583 + 0.113109i \(0.0360810\pi\)
\(180\) 0 0
\(181\) 3.72547 0.276912 0.138456 0.990369i \(-0.455786\pi\)
0.138456 + 0.990369i \(0.455786\pi\)
\(182\) −61.5257 −4.56059
\(183\) −6.21467 −0.459401
\(184\) 38.9745 2.87324
\(185\) 0 0
\(186\) −5.75432 −0.421927
\(187\) −4.36167 −0.318957
\(188\) 16.8533 1.22915
\(189\) 4.69867 0.341778
\(190\) 0 0
\(191\) 6.76433 0.489450 0.244725 0.969593i \(-0.421302\pi\)
0.244725 + 0.969593i \(0.421302\pi\)
\(192\) 3.34905 0.241697
\(193\) −0.140715 −0.0101289 −0.00506444 0.999987i \(-0.501612\pi\)
−0.00506444 + 0.999987i \(0.501612\pi\)
\(194\) −35.6633 −2.56047
\(195\) 0 0
\(196\) 70.0431 5.00308
\(197\) 1.48273 0.105640 0.0528200 0.998604i \(-0.483179\pi\)
0.0528200 + 0.998604i \(0.483179\pi\)
\(198\) −8.03022 −0.570683
\(199\) 25.8626 1.83335 0.916677 0.399628i \(-0.130861\pi\)
0.916677 + 0.399628i \(0.130861\pi\)
\(200\) 0 0
\(201\) −13.9099 −0.981132
\(202\) 32.8582 2.31189
\(203\) 4.69867 0.329782
\(204\) 6.50468 0.455419
\(205\) 0 0
\(206\) 21.1492 1.47353
\(207\) 5.71483 0.397208
\(208\) −42.1081 −2.91967
\(209\) 11.7285 0.811281
\(210\) 0 0
\(211\) 23.3428 1.60698 0.803491 0.595317i \(-0.202974\pi\)
0.803491 + 0.595317i \(0.202974\pi\)
\(212\) −4.40517 −0.302548
\(213\) 5.88726 0.403389
\(214\) 8.47799 0.579543
\(215\) 0 0
\(216\) 6.81989 0.464035
\(217\) −10.4883 −0.711991
\(218\) −0.636049 −0.0430787
\(219\) 7.08398 0.478691
\(220\) 0 0
\(221\) −7.11225 −0.478422
\(222\) 14.9283 1.00192
\(223\) −22.4256 −1.50173 −0.750865 0.660455i \(-0.770363\pi\)
−0.750865 + 0.660455i \(0.770363\pi\)
\(224\) 36.3239 2.42699
\(225\) 0 0
\(226\) 37.1920 2.47398
\(227\) 4.07327 0.270353 0.135176 0.990822i \(-0.456840\pi\)
0.135176 + 0.990822i \(0.456840\pi\)
\(228\) −17.4911 −1.15838
\(229\) −15.7170 −1.03861 −0.519303 0.854590i \(-0.673808\pi\)
−0.519303 + 0.854590i \(0.673808\pi\)
\(230\) 0 0
\(231\) −14.6365 −0.963012
\(232\) 6.81989 0.447748
\(233\) −16.4568 −1.07812 −0.539059 0.842268i \(-0.681220\pi\)
−0.539059 + 0.842268i \(0.681220\pi\)
\(234\) −13.0943 −0.856000
\(235\) 0 0
\(236\) −39.6675 −2.58214
\(237\) 7.31672 0.475272
\(238\) 16.9602 1.09937
\(239\) 3.18702 0.206151 0.103075 0.994674i \(-0.467132\pi\)
0.103075 + 0.994674i \(0.467132\pi\)
\(240\) 0 0
\(241\) 11.1482 0.718118 0.359059 0.933315i \(-0.383098\pi\)
0.359059 + 0.933315i \(0.383098\pi\)
\(242\) −3.34243 −0.214859
\(243\) 1.00000 0.0641500
\(244\) −28.8704 −1.84824
\(245\) 0 0
\(246\) −27.5751 −1.75812
\(247\) 19.1249 1.21689
\(248\) −15.2232 −0.966676
\(249\) 13.6579 0.865537
\(250\) 0 0
\(251\) −3.23388 −0.204121 −0.102060 0.994778i \(-0.532543\pi\)
−0.102060 + 0.994778i \(0.532543\pi\)
\(252\) 21.8278 1.37502
\(253\) −17.8019 −1.11919
\(254\) 54.5758 3.42439
\(255\) 0 0
\(256\) −24.2996 −1.51872
\(257\) −3.96761 −0.247493 −0.123746 0.992314i \(-0.539491\pi\)
−0.123746 + 0.992314i \(0.539491\pi\)
\(258\) −22.9311 −1.42763
\(259\) 27.2095 1.69071
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) −21.1128 −1.30435
\(263\) −16.6865 −1.02893 −0.514467 0.857510i \(-0.672010\pi\)
−0.514467 + 0.857510i \(0.672010\pi\)
\(264\) −21.2442 −1.30749
\(265\) 0 0
\(266\) −45.6060 −2.79628
\(267\) −7.98017 −0.488379
\(268\) −64.6191 −3.94724
\(269\) 7.94329 0.484311 0.242155 0.970237i \(-0.422146\pi\)
0.242155 + 0.970237i \(0.422146\pi\)
\(270\) 0 0
\(271\) −17.3087 −1.05143 −0.525714 0.850662i \(-0.676202\pi\)
−0.525714 + 0.850662i \(0.676202\pi\)
\(272\) 11.6075 0.703810
\(273\) −23.8667 −1.44448
\(274\) −44.8691 −2.71064
\(275\) 0 0
\(276\) 26.5484 1.59803
\(277\) −10.2791 −0.617612 −0.308806 0.951125i \(-0.599929\pi\)
−0.308806 + 0.951125i \(0.599929\pi\)
\(278\) −17.5786 −1.05430
\(279\) −2.23218 −0.133637
\(280\) 0 0
\(281\) 4.57869 0.273142 0.136571 0.990630i \(-0.456392\pi\)
0.136571 + 0.990630i \(0.456392\pi\)
\(282\) 9.35221 0.556916
\(283\) −19.2431 −1.14388 −0.571941 0.820294i \(-0.693810\pi\)
−0.571941 + 0.820294i \(0.693810\pi\)
\(284\) 27.3495 1.62289
\(285\) 0 0
\(286\) 40.7891 2.41191
\(287\) −50.2606 −2.96679
\(288\) 7.73067 0.455534
\(289\) −15.0394 −0.884673
\(290\) 0 0
\(291\) −13.8343 −0.810979
\(292\) 32.9089 1.92584
\(293\) −14.6045 −0.853203 −0.426602 0.904440i \(-0.640289\pi\)
−0.426602 + 0.904440i \(0.640289\pi\)
\(294\) 38.8683 2.26684
\(295\) 0 0
\(296\) 39.4932 2.29550
\(297\) −3.11503 −0.180753
\(298\) 61.1824 3.54420
\(299\) −29.0282 −1.67874
\(300\) 0 0
\(301\) −41.7960 −2.40908
\(302\) −44.6221 −2.56771
\(303\) 12.7461 0.732246
\(304\) −31.2127 −1.79017
\(305\) 0 0
\(306\) 3.60957 0.206345
\(307\) −12.3324 −0.703850 −0.351925 0.936028i \(-0.614473\pi\)
−0.351925 + 0.936028i \(0.614473\pi\)
\(308\) −67.9944 −3.87434
\(309\) 8.20406 0.466713
\(310\) 0 0
\(311\) 12.3084 0.697943 0.348971 0.937133i \(-0.386531\pi\)
0.348971 + 0.937133i \(0.386531\pi\)
\(312\) −34.6413 −1.96118
\(313\) −16.7306 −0.945672 −0.472836 0.881150i \(-0.656770\pi\)
−0.472836 + 0.881150i \(0.656770\pi\)
\(314\) −25.9174 −1.46261
\(315\) 0 0
\(316\) 33.9901 1.91209
\(317\) 10.9429 0.614617 0.307308 0.951610i \(-0.400572\pi\)
0.307308 + 0.951610i \(0.400572\pi\)
\(318\) −2.44451 −0.137081
\(319\) −3.11503 −0.174408
\(320\) 0 0
\(321\) 3.28873 0.183559
\(322\) 69.2219 3.85759
\(323\) −5.27196 −0.293340
\(324\) 4.64553 0.258085
\(325\) 0 0
\(326\) −31.6054 −1.75046
\(327\) −0.246732 −0.0136443
\(328\) −72.9508 −4.02803
\(329\) 17.0461 0.939781
\(330\) 0 0
\(331\) −19.1431 −1.05220 −0.526099 0.850423i \(-0.676346\pi\)
−0.526099 + 0.850423i \(0.676346\pi\)
\(332\) 63.4484 3.48218
\(333\) 5.79088 0.317338
\(334\) 35.0567 1.91822
\(335\) 0 0
\(336\) 38.9515 2.12498
\(337\) 17.0294 0.927650 0.463825 0.885927i \(-0.346477\pi\)
0.463825 + 0.885927i \(0.346477\pi\)
\(338\) 32.9991 1.79491
\(339\) 14.4273 0.783583
\(340\) 0 0
\(341\) 6.95331 0.376543
\(342\) −9.70614 −0.524848
\(343\) 37.9537 2.04931
\(344\) −60.6648 −3.27083
\(345\) 0 0
\(346\) −21.5312 −1.15753
\(347\) 17.2564 0.926373 0.463186 0.886261i \(-0.346706\pi\)
0.463186 + 0.886261i \(0.346706\pi\)
\(348\) 4.64553 0.249027
\(349\) 13.3969 0.717118 0.358559 0.933507i \(-0.383268\pi\)
0.358559 + 0.933507i \(0.383268\pi\)
\(350\) 0 0
\(351\) −5.07945 −0.271121
\(352\) −24.0813 −1.28354
\(353\) −2.04594 −0.108894 −0.0544472 0.998517i \(-0.517340\pi\)
−0.0544472 + 0.998517i \(0.517340\pi\)
\(354\) −22.0123 −1.16994
\(355\) 0 0
\(356\) −37.0721 −1.96482
\(357\) 6.57909 0.348202
\(358\) 68.5370 3.62229
\(359\) −25.2336 −1.33178 −0.665889 0.746051i \(-0.731947\pi\)
−0.665889 + 0.746051i \(0.731947\pi\)
\(360\) 0 0
\(361\) −4.82368 −0.253878
\(362\) 9.60387 0.504768
\(363\) −1.29657 −0.0680525
\(364\) −110.873 −5.81134
\(365\) 0 0
\(366\) −16.0207 −0.837418
\(367\) 9.13285 0.476731 0.238366 0.971176i \(-0.423388\pi\)
0.238366 + 0.971176i \(0.423388\pi\)
\(368\) 47.3753 2.46961
\(369\) −10.6968 −0.556851
\(370\) 0 0
\(371\) −4.45557 −0.231321
\(372\) −10.3697 −0.537642
\(373\) −5.41148 −0.280196 −0.140098 0.990138i \(-0.544742\pi\)
−0.140098 + 0.990138i \(0.544742\pi\)
\(374\) −11.2439 −0.581410
\(375\) 0 0
\(376\) 24.7416 1.27595
\(377\) −5.07945 −0.261605
\(378\) 12.1127 0.623009
\(379\) 19.8284 1.01852 0.509258 0.860614i \(-0.329920\pi\)
0.509258 + 0.860614i \(0.329920\pi\)
\(380\) 0 0
\(381\) 21.1707 1.08461
\(382\) 17.4377 0.892191
\(383\) −14.8919 −0.760941 −0.380470 0.924793i \(-0.624238\pi\)
−0.380470 + 0.924793i \(0.624238\pi\)
\(384\) −6.82785 −0.348432
\(385\) 0 0
\(386\) −0.362748 −0.0184634
\(387\) −8.89527 −0.452172
\(388\) −64.2675 −3.26269
\(389\) −15.7680 −0.799470 −0.399735 0.916631i \(-0.630898\pi\)
−0.399735 + 0.916631i \(0.630898\pi\)
\(390\) 0 0
\(391\) 8.00192 0.404674
\(392\) 102.827 5.19356
\(393\) −8.18994 −0.413128
\(394\) 3.82232 0.192566
\(395\) 0 0
\(396\) −14.4710 −0.727194
\(397\) 26.5318 1.33159 0.665796 0.746134i \(-0.268092\pi\)
0.665796 + 0.746134i \(0.268092\pi\)
\(398\) 66.6711 3.34192
\(399\) −17.6912 −0.885667
\(400\) 0 0
\(401\) 9.71205 0.484997 0.242498 0.970152i \(-0.422033\pi\)
0.242498 + 0.970152i \(0.422033\pi\)
\(402\) −35.8583 −1.78845
\(403\) 11.3382 0.564798
\(404\) 59.2126 2.94593
\(405\) 0 0
\(406\) 12.1127 0.601142
\(407\) −18.0388 −0.894150
\(408\) 9.54923 0.472757
\(409\) −17.4468 −0.862691 −0.431346 0.902187i \(-0.641961\pi\)
−0.431346 + 0.902187i \(0.641961\pi\)
\(410\) 0 0
\(411\) −17.4054 −0.858543
\(412\) 38.1122 1.87765
\(413\) −40.1213 −1.97424
\(414\) 14.7322 0.724049
\(415\) 0 0
\(416\) −39.2675 −1.92525
\(417\) −6.81900 −0.333928
\(418\) 30.2349 1.47884
\(419\) 26.0588 1.27306 0.636529 0.771253i \(-0.280370\pi\)
0.636529 + 0.771253i \(0.280370\pi\)
\(420\) 0 0
\(421\) 2.66465 0.129867 0.0649337 0.997890i \(-0.479316\pi\)
0.0649337 + 0.997890i \(0.479316\pi\)
\(422\) 60.1751 2.92928
\(423\) 3.62785 0.176392
\(424\) −6.46704 −0.314067
\(425\) 0 0
\(426\) 15.1767 0.735315
\(427\) −29.2007 −1.41312
\(428\) 15.2779 0.738485
\(429\) 15.8226 0.763925
\(430\) 0 0
\(431\) −0.150532 −0.00725086 −0.00362543 0.999993i \(-0.501154\pi\)
−0.00362543 + 0.999993i \(0.501154\pi\)
\(432\) 8.28989 0.398848
\(433\) 33.2461 1.59770 0.798852 0.601527i \(-0.205441\pi\)
0.798852 + 0.601527i \(0.205441\pi\)
\(434\) −27.0377 −1.29785
\(435\) 0 0
\(436\) −1.14620 −0.0548931
\(437\) −21.5172 −1.02931
\(438\) 18.2617 0.872580
\(439\) 18.1320 0.865391 0.432695 0.901540i \(-0.357563\pi\)
0.432695 + 0.901540i \(0.357563\pi\)
\(440\) 0 0
\(441\) 15.0775 0.717978
\(442\) −18.3346 −0.872089
\(443\) −34.8312 −1.65488 −0.827440 0.561554i \(-0.810204\pi\)
−0.827440 + 0.561554i \(0.810204\pi\)
\(444\) 26.9017 1.27670
\(445\) 0 0
\(446\) −57.8108 −2.73742
\(447\) 23.7335 1.12256
\(448\) 15.7361 0.743460
\(449\) 36.1516 1.70610 0.853049 0.521830i \(-0.174751\pi\)
0.853049 + 0.521830i \(0.174751\pi\)
\(450\) 0 0
\(451\) 33.3207 1.56901
\(452\) 67.0225 3.15247
\(453\) −17.3095 −0.813273
\(454\) 10.5005 0.492811
\(455\) 0 0
\(456\) −25.6779 −1.20248
\(457\) 8.93775 0.418090 0.209045 0.977906i \(-0.432964\pi\)
0.209045 + 0.977906i \(0.432964\pi\)
\(458\) −40.5166 −1.89322
\(459\) 1.40020 0.0653558
\(460\) 0 0
\(461\) 34.6733 1.61490 0.807449 0.589937i \(-0.200848\pi\)
0.807449 + 0.589937i \(0.200848\pi\)
\(462\) −37.7314 −1.75542
\(463\) −30.9412 −1.43796 −0.718981 0.695030i \(-0.755391\pi\)
−0.718981 + 0.695030i \(0.755391\pi\)
\(464\) 8.28989 0.384849
\(465\) 0 0
\(466\) −42.4237 −1.96524
\(467\) −5.40920 −0.250308 −0.125154 0.992137i \(-0.539943\pi\)
−0.125154 + 0.992137i \(0.539943\pi\)
\(468\) −23.5967 −1.09076
\(469\) −65.3583 −3.01797
\(470\) 0 0
\(471\) −10.0537 −0.463251
\(472\) −58.2341 −2.68044
\(473\) 27.7091 1.27406
\(474\) 18.8617 0.866348
\(475\) 0 0
\(476\) 30.5634 1.40087
\(477\) −0.948260 −0.0434179
\(478\) 8.21578 0.375781
\(479\) 13.4270 0.613494 0.306747 0.951791i \(-0.400759\pi\)
0.306747 + 0.951791i \(0.400759\pi\)
\(480\) 0 0
\(481\) −29.4145 −1.34119
\(482\) 28.7389 1.30902
\(483\) 26.8521 1.22181
\(484\) −6.02327 −0.273785
\(485\) 0 0
\(486\) 2.57789 0.116936
\(487\) 24.8746 1.12718 0.563589 0.826055i \(-0.309420\pi\)
0.563589 + 0.826055i \(0.309420\pi\)
\(488\) −42.3834 −1.91861
\(489\) −12.2602 −0.554424
\(490\) 0 0
\(491\) 20.6717 0.932902 0.466451 0.884547i \(-0.345532\pi\)
0.466451 + 0.884547i \(0.345532\pi\)
\(492\) −49.6921 −2.24029
\(493\) 1.40020 0.0630619
\(494\) 49.3018 2.21819
\(495\) 0 0
\(496\) −18.5045 −0.830878
\(497\) 27.6623 1.24083
\(498\) 35.2087 1.57774
\(499\) 21.2182 0.949856 0.474928 0.880025i \(-0.342474\pi\)
0.474928 + 0.880025i \(0.342474\pi\)
\(500\) 0 0
\(501\) 13.5990 0.607557
\(502\) −8.33660 −0.372081
\(503\) 35.9602 1.60339 0.801693 0.597736i \(-0.203933\pi\)
0.801693 + 0.597736i \(0.203933\pi\)
\(504\) 32.0445 1.42737
\(505\) 0 0
\(506\) −45.8913 −2.04012
\(507\) 12.8008 0.568504
\(508\) 98.3492 4.36354
\(509\) 21.3861 0.947924 0.473962 0.880545i \(-0.342823\pi\)
0.473962 + 0.880545i \(0.342823\pi\)
\(510\) 0 0
\(511\) 33.2853 1.47246
\(512\) −48.9860 −2.16489
\(513\) −3.76514 −0.166235
\(514\) −10.2281 −0.451141
\(515\) 0 0
\(516\) −41.3233 −1.81915
\(517\) −11.3009 −0.497012
\(518\) 70.1431 3.08191
\(519\) −8.35226 −0.366624
\(520\) 0 0
\(521\) −6.56775 −0.287738 −0.143869 0.989597i \(-0.545954\pi\)
−0.143869 + 0.989597i \(0.545954\pi\)
\(522\) 2.57789 0.112831
\(523\) 21.1811 0.926184 0.463092 0.886310i \(-0.346740\pi\)
0.463092 + 0.886310i \(0.346740\pi\)
\(524\) −38.0466 −1.66207
\(525\) 0 0
\(526\) −43.0160 −1.87559
\(527\) −3.12550 −0.136149
\(528\) −25.8233 −1.12381
\(529\) 9.65929 0.419969
\(530\) 0 0
\(531\) −8.53886 −0.370555
\(532\) −82.1850 −3.56317
\(533\) 54.3336 2.35345
\(534\) −20.5720 −0.890239
\(535\) 0 0
\(536\) −94.8643 −4.09752
\(537\) 26.5865 1.14729
\(538\) 20.4769 0.882824
\(539\) −46.9670 −2.02301
\(540\) 0 0
\(541\) −9.98542 −0.429307 −0.214653 0.976690i \(-0.568862\pi\)
−0.214653 + 0.976690i \(0.568862\pi\)
\(542\) −44.6199 −1.91659
\(543\) 3.72547 0.159875
\(544\) 10.8245 0.464097
\(545\) 0 0
\(546\) −61.5257 −2.63306
\(547\) 1.01143 0.0432457 0.0216228 0.999766i \(-0.493117\pi\)
0.0216228 + 0.999766i \(0.493117\pi\)
\(548\) −80.8571 −3.45404
\(549\) −6.21467 −0.265236
\(550\) 0 0
\(551\) −3.76514 −0.160401
\(552\) 38.9745 1.65887
\(553\) 34.3789 1.46194
\(554\) −26.4985 −1.12581
\(555\) 0 0
\(556\) −31.6779 −1.34344
\(557\) −30.4618 −1.29071 −0.645353 0.763885i \(-0.723290\pi\)
−0.645353 + 0.763885i \(0.723290\pi\)
\(558\) −5.75432 −0.243600
\(559\) 45.1831 1.91104
\(560\) 0 0
\(561\) −4.36167 −0.184150
\(562\) 11.8034 0.497895
\(563\) −2.49954 −0.105343 −0.0526716 0.998612i \(-0.516774\pi\)
−0.0526716 + 0.998612i \(0.516774\pi\)
\(564\) 16.8533 0.709651
\(565\) 0 0
\(566\) −49.6066 −2.08512
\(567\) 4.69867 0.197326
\(568\) 40.1505 1.68468
\(569\) −0.611166 −0.0256214 −0.0128107 0.999918i \(-0.504078\pi\)
−0.0128107 + 0.999918i \(0.504078\pi\)
\(570\) 0 0
\(571\) −0.527376 −0.0220700 −0.0110350 0.999939i \(-0.503513\pi\)
−0.0110350 + 0.999939i \(0.503513\pi\)
\(572\) 73.5046 3.07338
\(573\) 6.76433 0.282584
\(574\) −129.566 −5.40800
\(575\) 0 0
\(576\) 3.34905 0.139544
\(577\) −24.3938 −1.01553 −0.507764 0.861496i \(-0.669528\pi\)
−0.507764 + 0.861496i \(0.669528\pi\)
\(578\) −38.7700 −1.61262
\(579\) −0.140715 −0.00584791
\(580\) 0 0
\(581\) 64.1742 2.66239
\(582\) −35.6633 −1.47829
\(583\) 2.95386 0.122336
\(584\) 48.3120 1.99917
\(585\) 0 0
\(586\) −37.6488 −1.55526
\(587\) −28.4529 −1.17438 −0.587188 0.809450i \(-0.699765\pi\)
−0.587188 + 0.809450i \(0.699765\pi\)
\(588\) 70.0431 2.88853
\(589\) 8.40448 0.346301
\(590\) 0 0
\(591\) 1.48273 0.0609913
\(592\) 48.0058 1.97303
\(593\) 2.96753 0.121862 0.0609310 0.998142i \(-0.480593\pi\)
0.0609310 + 0.998142i \(0.480593\pi\)
\(594\) −8.03022 −0.329484
\(595\) 0 0
\(596\) 110.255 4.51621
\(597\) 25.8626 1.05849
\(598\) −74.8316 −3.06009
\(599\) 21.9546 0.897040 0.448520 0.893773i \(-0.351951\pi\)
0.448520 + 0.893773i \(0.351951\pi\)
\(600\) 0 0
\(601\) −21.4446 −0.874745 −0.437372 0.899280i \(-0.644091\pi\)
−0.437372 + 0.899280i \(0.644091\pi\)
\(602\) −107.746 −4.39138
\(603\) −13.9099 −0.566457
\(604\) −80.4120 −3.27192
\(605\) 0 0
\(606\) 32.8582 1.33477
\(607\) 48.0114 1.94872 0.974361 0.224988i \(-0.0722344\pi\)
0.974361 + 0.224988i \(0.0722344\pi\)
\(608\) −29.1071 −1.18045
\(609\) 4.69867 0.190400
\(610\) 0 0
\(611\) −18.4275 −0.745496
\(612\) 6.50468 0.262936
\(613\) 37.9093 1.53114 0.765571 0.643351i \(-0.222456\pi\)
0.765571 + 0.643351i \(0.222456\pi\)
\(614\) −31.7917 −1.28301
\(615\) 0 0
\(616\) −99.8195 −4.02184
\(617\) 8.29772 0.334054 0.167027 0.985952i \(-0.446583\pi\)
0.167027 + 0.985952i \(0.446583\pi\)
\(618\) 21.1492 0.850745
\(619\) −15.6135 −0.627559 −0.313779 0.949496i \(-0.601595\pi\)
−0.313779 + 0.949496i \(0.601595\pi\)
\(620\) 0 0
\(621\) 5.71483 0.229328
\(622\) 31.7296 1.27224
\(623\) −37.4962 −1.50225
\(624\) −42.1081 −1.68567
\(625\) 0 0
\(626\) −43.1298 −1.72381
\(627\) 11.7285 0.468393
\(628\) −46.7049 −1.86373
\(629\) 8.10841 0.323303
\(630\) 0 0
\(631\) 10.7848 0.429336 0.214668 0.976687i \(-0.431133\pi\)
0.214668 + 0.976687i \(0.431133\pi\)
\(632\) 49.8993 1.98489
\(633\) 23.3428 0.927791
\(634\) 28.2097 1.12035
\(635\) 0 0
\(636\) −4.40517 −0.174676
\(637\) −76.5856 −3.03443
\(638\) −8.03022 −0.317919
\(639\) 5.88726 0.232897
\(640\) 0 0
\(641\) 16.1226 0.636805 0.318403 0.947956i \(-0.396854\pi\)
0.318403 + 0.947956i \(0.396854\pi\)
\(642\) 8.47799 0.334599
\(643\) −25.0313 −0.987137 −0.493569 0.869707i \(-0.664308\pi\)
−0.493569 + 0.869707i \(0.664308\pi\)
\(644\) 124.742 4.91554
\(645\) 0 0
\(646\) −13.5906 −0.534713
\(647\) 34.9798 1.37520 0.687599 0.726091i \(-0.258665\pi\)
0.687599 + 0.726091i \(0.258665\pi\)
\(648\) 6.81989 0.267911
\(649\) 26.5988 1.04409
\(650\) 0 0
\(651\) −10.4883 −0.411068
\(652\) −56.9550 −2.23053
\(653\) 22.0250 0.861904 0.430952 0.902375i \(-0.358178\pi\)
0.430952 + 0.902375i \(0.358178\pi\)
\(654\) −0.636049 −0.0248715
\(655\) 0 0
\(656\) −88.6750 −3.46218
\(657\) 7.08398 0.276372
\(658\) 43.9430 1.71308
\(659\) −32.9279 −1.28269 −0.641345 0.767253i \(-0.721623\pi\)
−0.641345 + 0.767253i \(0.721623\pi\)
\(660\) 0 0
\(661\) 9.78801 0.380710 0.190355 0.981715i \(-0.439036\pi\)
0.190355 + 0.981715i \(0.439036\pi\)
\(662\) −49.3488 −1.91799
\(663\) −7.11225 −0.276217
\(664\) 93.1457 3.61475
\(665\) 0 0
\(666\) 14.9283 0.578459
\(667\) 5.71483 0.221279
\(668\) 63.1745 2.44429
\(669\) −22.4256 −0.867025
\(670\) 0 0
\(671\) 19.3589 0.747342
\(672\) 36.3239 1.40122
\(673\) −25.3634 −0.977689 −0.488844 0.872371i \(-0.662581\pi\)
−0.488844 + 0.872371i \(0.662581\pi\)
\(674\) 43.8999 1.69096
\(675\) 0 0
\(676\) 59.4665 2.28717
\(677\) −19.7896 −0.760578 −0.380289 0.924868i \(-0.624175\pi\)
−0.380289 + 0.924868i \(0.624175\pi\)
\(678\) 37.1920 1.42835
\(679\) −65.0027 −2.49458
\(680\) 0 0
\(681\) 4.07327 0.156088
\(682\) 17.9249 0.686380
\(683\) 44.9656 1.72056 0.860281 0.509820i \(-0.170288\pi\)
0.860281 + 0.509820i \(0.170288\pi\)
\(684\) −17.4911 −0.668789
\(685\) 0 0
\(686\) 97.8406 3.73557
\(687\) −15.7170 −0.599640
\(688\) −73.7409 −2.81134
\(689\) 4.81664 0.183499
\(690\) 0 0
\(691\) −30.7758 −1.17077 −0.585384 0.810756i \(-0.699056\pi\)
−0.585384 + 0.810756i \(0.699056\pi\)
\(692\) −38.8007 −1.47498
\(693\) −14.6365 −0.555995
\(694\) 44.4852 1.68863
\(695\) 0 0
\(696\) 6.81989 0.258507
\(697\) −14.9776 −0.567318
\(698\) 34.5357 1.30720
\(699\) −16.4568 −0.622452
\(700\) 0 0
\(701\) −23.2459 −0.877984 −0.438992 0.898491i \(-0.644664\pi\)
−0.438992 + 0.898491i \(0.644664\pi\)
\(702\) −13.0943 −0.494212
\(703\) −21.8035 −0.822335
\(704\) −10.4324 −0.393186
\(705\) 0 0
\(706\) −5.27422 −0.198498
\(707\) 59.8899 2.25239
\(708\) −39.6675 −1.49080
\(709\) 7.86251 0.295283 0.147641 0.989041i \(-0.452832\pi\)
0.147641 + 0.989041i \(0.452832\pi\)
\(710\) 0 0
\(711\) 7.31672 0.274398
\(712\) −54.4239 −2.03962
\(713\) −12.7565 −0.477736
\(714\) 16.9602 0.634719
\(715\) 0 0
\(716\) 123.508 4.61572
\(717\) 3.18702 0.119021
\(718\) −65.0495 −2.42762
\(719\) 35.0267 1.30628 0.653138 0.757239i \(-0.273452\pi\)
0.653138 + 0.757239i \(0.273452\pi\)
\(720\) 0 0
\(721\) 38.5482 1.43561
\(722\) −12.4349 −0.462781
\(723\) 11.1482 0.414606
\(724\) 17.3068 0.643202
\(725\) 0 0
\(726\) −3.34243 −0.124049
\(727\) 22.4518 0.832691 0.416346 0.909206i \(-0.363311\pi\)
0.416346 + 0.909206i \(0.363311\pi\)
\(728\) −162.768 −6.03259
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.4552 −0.460671
\(732\) −28.8704 −1.06708
\(733\) −15.0028 −0.554140 −0.277070 0.960850i \(-0.589363\pi\)
−0.277070 + 0.960850i \(0.589363\pi\)
\(734\) 23.5435 0.869007
\(735\) 0 0
\(736\) 44.1795 1.62848
\(737\) 43.3299 1.59608
\(738\) −27.5751 −1.01505
\(739\) −33.4801 −1.23159 −0.615793 0.787908i \(-0.711164\pi\)
−0.615793 + 0.787908i \(0.711164\pi\)
\(740\) 0 0
\(741\) 19.1249 0.702569
\(742\) −11.4860 −0.421663
\(743\) 6.75081 0.247663 0.123832 0.992303i \(-0.460482\pi\)
0.123832 + 0.992303i \(0.460482\pi\)
\(744\) −15.2232 −0.558111
\(745\) 0 0
\(746\) −13.9502 −0.510754
\(747\) 13.6579 0.499718
\(748\) −20.2623 −0.740863
\(749\) 15.4527 0.564628
\(750\) 0 0
\(751\) 28.0482 1.02349 0.511747 0.859136i \(-0.328999\pi\)
0.511747 + 0.859136i \(0.328999\pi\)
\(752\) 30.0745 1.09670
\(753\) −3.23388 −0.117849
\(754\) −13.0943 −0.476865
\(755\) 0 0
\(756\) 21.8278 0.793871
\(757\) 33.1698 1.20558 0.602789 0.797901i \(-0.294056\pi\)
0.602789 + 0.797901i \(0.294056\pi\)
\(758\) 51.1155 1.85660
\(759\) −17.8019 −0.646167
\(760\) 0 0
\(761\) −12.0982 −0.438560 −0.219280 0.975662i \(-0.570371\pi\)
−0.219280 + 0.975662i \(0.570371\pi\)
\(762\) 54.5758 1.97707
\(763\) −1.15931 −0.0419700
\(764\) 31.4239 1.13688
\(765\) 0 0
\(766\) −38.3897 −1.38708
\(767\) 43.3727 1.56610
\(768\) −24.2996 −0.876835
\(769\) −42.5811 −1.53551 −0.767756 0.640742i \(-0.778627\pi\)
−0.767756 + 0.640742i \(0.778627\pi\)
\(770\) 0 0
\(771\) −3.96761 −0.142890
\(772\) −0.653695 −0.0235270
\(773\) 6.87342 0.247220 0.123610 0.992331i \(-0.460553\pi\)
0.123610 + 0.992331i \(0.460553\pi\)
\(774\) −22.9311 −0.824240
\(775\) 0 0
\(776\) −94.3483 −3.38691
\(777\) 27.2095 0.976134
\(778\) −40.6482 −1.45731
\(779\) 40.2748 1.44300
\(780\) 0 0
\(781\) −18.3390 −0.656222
\(782\) 20.6281 0.737659
\(783\) 1.00000 0.0357371
\(784\) 124.991 4.46397
\(785\) 0 0
\(786\) −21.1128 −0.753068
\(787\) −4.51935 −0.161097 −0.0805487 0.996751i \(-0.525667\pi\)
−0.0805487 + 0.996751i \(0.525667\pi\)
\(788\) 6.88806 0.245377
\(789\) −16.6865 −0.594056
\(790\) 0 0
\(791\) 67.7892 2.41031
\(792\) −21.2442 −0.754879
\(793\) 31.5671 1.12098
\(794\) 68.3961 2.42729
\(795\) 0 0
\(796\) 120.146 4.25845
\(797\) 13.9670 0.494736 0.247368 0.968922i \(-0.420434\pi\)
0.247368 + 0.968922i \(0.420434\pi\)
\(798\) −45.6060 −1.61443
\(799\) 5.07972 0.179708
\(800\) 0 0
\(801\) −7.98017 −0.281966
\(802\) 25.0366 0.884074
\(803\) −22.0668 −0.778722
\(804\) −64.6191 −2.27894
\(805\) 0 0
\(806\) 29.2288 1.02954
\(807\) 7.94329 0.279617
\(808\) 86.9273 3.05809
\(809\) 8.18148 0.287646 0.143823 0.989603i \(-0.454060\pi\)
0.143823 + 0.989603i \(0.454060\pi\)
\(810\) 0 0
\(811\) −44.4011 −1.55913 −0.779566 0.626320i \(-0.784560\pi\)
−0.779566 + 0.626320i \(0.784560\pi\)
\(812\) 21.8278 0.766007
\(813\) −17.3087 −0.607042
\(814\) −46.5021 −1.62990
\(815\) 0 0
\(816\) 11.6075 0.406345
\(817\) 33.4920 1.17174
\(818\) −44.9761 −1.57255
\(819\) −23.8667 −0.833969
\(820\) 0 0
\(821\) 8.73119 0.304721 0.152360 0.988325i \(-0.451313\pi\)
0.152360 + 0.988325i \(0.451313\pi\)
\(822\) −44.8691 −1.56499
\(823\) −39.1844 −1.36588 −0.682942 0.730473i \(-0.739300\pi\)
−0.682942 + 0.730473i \(0.739300\pi\)
\(824\) 55.9508 1.94914
\(825\) 0 0
\(826\) −103.428 −3.59873
\(827\) 6.33428 0.220264 0.110132 0.993917i \(-0.464873\pi\)
0.110132 + 0.993917i \(0.464873\pi\)
\(828\) 26.5484 0.922621
\(829\) 1.36706 0.0474798 0.0237399 0.999718i \(-0.492443\pi\)
0.0237399 + 0.999718i \(0.492443\pi\)
\(830\) 0 0
\(831\) −10.2791 −0.356579
\(832\) −17.0113 −0.589762
\(833\) 21.1116 0.731473
\(834\) −17.5786 −0.608699
\(835\) 0 0
\(836\) 54.4853 1.88441
\(837\) −2.23218 −0.0771554
\(838\) 67.1769 2.32059
\(839\) −55.7902 −1.92609 −0.963046 0.269339i \(-0.913195\pi\)
−0.963046 + 0.269339i \(0.913195\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 6.86919 0.236728
\(843\) 4.57869 0.157698
\(844\) 108.439 3.73264
\(845\) 0 0
\(846\) 9.35221 0.321536
\(847\) −6.09218 −0.209330
\(848\) −7.86098 −0.269947
\(849\) −19.2431 −0.660421
\(850\) 0 0
\(851\) 33.0939 1.13444
\(852\) 27.3495 0.936977
\(853\) 6.42812 0.220095 0.110047 0.993926i \(-0.464900\pi\)
0.110047 + 0.993926i \(0.464900\pi\)
\(854\) −75.2762 −2.57590
\(855\) 0 0
\(856\) 22.4288 0.766600
\(857\) 35.0274 1.19651 0.598257 0.801304i \(-0.295860\pi\)
0.598257 + 0.801304i \(0.295860\pi\)
\(858\) 40.7891 1.39252
\(859\) 18.4412 0.629207 0.314603 0.949223i \(-0.398128\pi\)
0.314603 + 0.949223i \(0.398128\pi\)
\(860\) 0 0
\(861\) −50.2606 −1.71288
\(862\) −0.388055 −0.0132172
\(863\) 7.23911 0.246422 0.123211 0.992380i \(-0.460681\pi\)
0.123211 + 0.992380i \(0.460681\pi\)
\(864\) 7.73067 0.263003
\(865\) 0 0
\(866\) 85.7048 2.91237
\(867\) −15.0394 −0.510766
\(868\) −48.7237 −1.65379
\(869\) −22.7918 −0.773160
\(870\) 0 0
\(871\) 70.6549 2.39405
\(872\) −1.68269 −0.0569830
\(873\) −13.8343 −0.468219
\(874\) −55.4689 −1.87626
\(875\) 0 0
\(876\) 32.9089 1.11189
\(877\) 24.6324 0.831777 0.415889 0.909416i \(-0.363471\pi\)
0.415889 + 0.909416i \(0.363471\pi\)
\(878\) 46.7422 1.57747
\(879\) −14.6045 −0.492597
\(880\) 0 0
\(881\) 26.2145 0.883190 0.441595 0.897214i \(-0.354413\pi\)
0.441595 + 0.897214i \(0.354413\pi\)
\(882\) 38.8683 1.30876
\(883\) 10.7656 0.362290 0.181145 0.983456i \(-0.442020\pi\)
0.181145 + 0.983456i \(0.442020\pi\)
\(884\) −33.0402 −1.11126
\(885\) 0 0
\(886\) −89.7911 −3.01659
\(887\) −6.27796 −0.210793 −0.105397 0.994430i \(-0.533611\pi\)
−0.105397 + 0.994430i \(0.533611\pi\)
\(888\) 39.4932 1.32531
\(889\) 99.4743 3.33626
\(890\) 0 0
\(891\) −3.11503 −0.104358
\(892\) −104.179 −3.48817
\(893\) −13.6594 −0.457094
\(894\) 61.1824 2.04625
\(895\) 0 0
\(896\) −32.0818 −1.07178
\(897\) −29.0282 −0.969223
\(898\) 93.1949 3.10995
\(899\) −2.23218 −0.0744474
\(900\) 0 0
\(901\) −1.32776 −0.0442340
\(902\) 85.8973 2.86007
\(903\) −41.7960 −1.39088
\(904\) 98.3927 3.27249
\(905\) 0 0
\(906\) −44.6221 −1.48247
\(907\) −21.7954 −0.723704 −0.361852 0.932235i \(-0.617855\pi\)
−0.361852 + 0.932235i \(0.617855\pi\)
\(908\) 18.9225 0.627966
\(909\) 12.7461 0.422763
\(910\) 0 0
\(911\) −5.56422 −0.184351 −0.0921753 0.995743i \(-0.529382\pi\)
−0.0921753 + 0.995743i \(0.529382\pi\)
\(912\) −31.2127 −1.03355
\(913\) −42.5449 −1.40803
\(914\) 23.0406 0.762114
\(915\) 0 0
\(916\) −73.0136 −2.41244
\(917\) −38.4819 −1.27078
\(918\) 3.60957 0.119134
\(919\) −7.76705 −0.256211 −0.128106 0.991761i \(-0.540890\pi\)
−0.128106 + 0.991761i \(0.540890\pi\)
\(920\) 0 0
\(921\) −12.3324 −0.406368
\(922\) 89.3841 2.94371
\(923\) −29.9041 −0.984304
\(924\) −67.9944 −2.23685
\(925\) 0 0
\(926\) −79.7632 −2.62118
\(927\) 8.20406 0.269457
\(928\) 7.73067 0.253772
\(929\) −11.3588 −0.372672 −0.186336 0.982486i \(-0.559661\pi\)
−0.186336 + 0.982486i \(0.559661\pi\)
\(930\) 0 0
\(931\) −56.7691 −1.86053
\(932\) −76.4503 −2.50421
\(933\) 12.3084 0.402957
\(934\) −13.9443 −0.456273
\(935\) 0 0
\(936\) −34.6413 −1.13229
\(937\) −32.7813 −1.07092 −0.535460 0.844561i \(-0.679862\pi\)
−0.535460 + 0.844561i \(0.679862\pi\)
\(938\) −168.487 −5.50128
\(939\) −16.7306 −0.545984
\(940\) 0 0
\(941\) −13.3074 −0.433808 −0.216904 0.976193i \(-0.569596\pi\)
−0.216904 + 0.976193i \(0.569596\pi\)
\(942\) −25.9174 −0.844436
\(943\) −61.1302 −1.99067
\(944\) −70.7862 −2.30390
\(945\) 0 0
\(946\) 71.4310 2.32242
\(947\) −31.9463 −1.03811 −0.519057 0.854740i \(-0.673717\pi\)
−0.519057 + 0.854740i \(0.673717\pi\)
\(948\) 33.9901 1.10395
\(949\) −35.9827 −1.16805
\(950\) 0 0
\(951\) 10.9429 0.354849
\(952\) 44.8687 1.45420
\(953\) 53.5304 1.73402 0.867009 0.498292i \(-0.166039\pi\)
0.867009 + 0.498292i \(0.166039\pi\)
\(954\) −2.44451 −0.0791440
\(955\) 0 0
\(956\) 14.8054 0.478840
\(957\) −3.11503 −0.100695
\(958\) 34.6133 1.11831
\(959\) −81.7821 −2.64088
\(960\) 0 0
\(961\) −26.0174 −0.839270
\(962\) −75.8274 −2.44477
\(963\) 3.28873 0.105978
\(964\) 51.7893 1.66802
\(965\) 0 0
\(966\) 69.2219 2.22718
\(967\) −16.9490 −0.545044 −0.272522 0.962150i \(-0.587858\pi\)
−0.272522 + 0.962150i \(0.587858\pi\)
\(968\) −8.84250 −0.284209
\(969\) −5.27196 −0.169360
\(970\) 0 0
\(971\) −28.5476 −0.916135 −0.458067 0.888917i \(-0.651458\pi\)
−0.458067 + 0.888917i \(0.651458\pi\)
\(972\) 4.64553 0.149005
\(973\) −32.0402 −1.02716
\(974\) 64.1242 2.05467
\(975\) 0 0
\(976\) −51.5189 −1.64908
\(977\) 30.8519 0.987040 0.493520 0.869734i \(-0.335710\pi\)
0.493520 + 0.869734i \(0.335710\pi\)
\(978\) −31.6054 −1.01063
\(979\) 24.8585 0.794481
\(980\) 0 0
\(981\) −0.246732 −0.00787755
\(982\) 53.2895 1.70054
\(983\) −25.9915 −0.829000 −0.414500 0.910049i \(-0.636044\pi\)
−0.414500 + 0.910049i \(0.636044\pi\)
\(984\) −72.9508 −2.32559
\(985\) 0 0
\(986\) 3.60957 0.114952
\(987\) 17.0461 0.542583
\(988\) 88.8451 2.82654
\(989\) −50.8350 −1.61646
\(990\) 0 0
\(991\) −3.17860 −0.100972 −0.0504858 0.998725i \(-0.516077\pi\)
−0.0504858 + 0.998725i \(0.516077\pi\)
\(992\) −17.2562 −0.547886
\(993\) −19.1431 −0.607487
\(994\) 71.3105 2.26183
\(995\) 0 0
\(996\) 63.4484 2.01044
\(997\) −31.6331 −1.00183 −0.500916 0.865496i \(-0.667003\pi\)
−0.500916 + 0.865496i \(0.667003\pi\)
\(998\) 54.6982 1.73144
\(999\) 5.79088 0.183215
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.a.bd.1.7 yes 8
3.2 odd 2 6525.2.a.by.1.2 8
5.2 odd 4 2175.2.c.p.349.14 16
5.3 odd 4 2175.2.c.p.349.3 16
5.4 even 2 2175.2.a.bc.1.2 8
15.14 odd 2 6525.2.a.bz.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.bc.1.2 8 5.4 even 2
2175.2.a.bd.1.7 yes 8 1.1 even 1 trivial
2175.2.c.p.349.3 16 5.3 odd 4
2175.2.c.p.349.14 16 5.2 odd 4
6525.2.a.by.1.2 8 3.2 odd 2
6525.2.a.bz.1.7 8 15.14 odd 2