Properties

Label 2175.2.a.bc.1.7
Level $2175$
Weight $2$
Character 2175.1
Self dual yes
Analytic conductor $17.367$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 12x^{6} + 23x^{5} + 36x^{4} - 62x^{3} - 15x^{2} + 14x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-1.98486\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.98486 q^{2} -1.00000 q^{3} +1.93969 q^{4} -1.98486 q^{6} -2.16633 q^{7} -0.119715 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.98486 q^{2} -1.00000 q^{3} +1.93969 q^{4} -1.98486 q^{6} -2.16633 q^{7} -0.119715 q^{8} +1.00000 q^{9} +3.44851 q^{11} -1.93969 q^{12} +3.74214 q^{13} -4.29987 q^{14} -4.11699 q^{16} -4.33550 q^{17} +1.98486 q^{18} +3.90548 q^{19} +2.16633 q^{21} +6.84482 q^{22} +3.78401 q^{23} +0.119715 q^{24} +7.42765 q^{26} -1.00000 q^{27} -4.20200 q^{28} +1.00000 q^{29} +10.3323 q^{31} -7.93224 q^{32} -3.44851 q^{33} -8.60539 q^{34} +1.93969 q^{36} +7.70559 q^{37} +7.75186 q^{38} -3.74214 q^{39} +7.88284 q^{41} +4.29987 q^{42} -0.975329 q^{43} +6.68902 q^{44} +7.51075 q^{46} -12.1066 q^{47} +4.11699 q^{48} -2.30702 q^{49} +4.33550 q^{51} +7.25858 q^{52} +13.1410 q^{53} -1.98486 q^{54} +0.259342 q^{56} -3.90548 q^{57} +1.98486 q^{58} +1.47781 q^{59} -4.24195 q^{61} +20.5082 q^{62} -2.16633 q^{63} -7.51043 q^{64} -6.84482 q^{66} +6.74456 q^{67} -8.40952 q^{68} -3.78401 q^{69} +10.3646 q^{71} -0.119715 q^{72} +12.3613 q^{73} +15.2946 q^{74} +7.57541 q^{76} -7.47060 q^{77} -7.42765 q^{78} -5.02051 q^{79} +1.00000 q^{81} +15.6464 q^{82} -10.4380 q^{83} +4.20200 q^{84} -1.93590 q^{86} -1.00000 q^{87} -0.412839 q^{88} +4.35405 q^{89} -8.10671 q^{91} +7.33979 q^{92} -10.3323 q^{93} -24.0300 q^{94} +7.93224 q^{96} -3.75171 q^{97} -4.57913 q^{98} +3.44851 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 8 q^{3} + 12 q^{4} + 2 q^{6} + 2 q^{7} - 3 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} - 8 q^{3} + 12 q^{4} + 2 q^{6} + 2 q^{7} - 3 q^{8} + 8 q^{9} + 6 q^{11} - 12 q^{12} + 6 q^{13} + 9 q^{14} + 32 q^{16} - 12 q^{17} - 2 q^{18} - 2 q^{21} + 3 q^{22} - 14 q^{23} + 3 q^{24} + 18 q^{26} - 8 q^{27} + 14 q^{28} + 8 q^{29} + 8 q^{31} + 2 q^{32} - 6 q^{33} - 13 q^{34} + 12 q^{36} + 4 q^{37} - 26 q^{38} - 6 q^{39} + 2 q^{41} - 9 q^{42} + 2 q^{43} - 15 q^{44} + 24 q^{46} - 12 q^{47} - 32 q^{48} + 38 q^{49} + 12 q^{51} + 49 q^{52} - 4 q^{53} + 2 q^{54} + 58 q^{56} - 2 q^{58} + 18 q^{59} + 12 q^{61} + 4 q^{62} + 2 q^{63} + 21 q^{64} - 3 q^{66} + 26 q^{67} - 81 q^{68} + 14 q^{69} + 24 q^{71} - 3 q^{72} - 14 q^{73} - 22 q^{74} + 26 q^{77} - 18 q^{78} + 10 q^{79} + 8 q^{81} + 48 q^{82} - 40 q^{83} - 14 q^{84} + 8 q^{86} - 8 q^{87} - 10 q^{88} + 34 q^{89} + 26 q^{91} + 18 q^{92} - 8 q^{93} - 43 q^{94} - 2 q^{96} + 30 q^{97} - 29 q^{98} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.98486 1.40351 0.701755 0.712418i \(-0.252400\pi\)
0.701755 + 0.712418i \(0.252400\pi\)
\(3\) −1.00000 −0.577350
\(4\) 1.93969 0.969843
\(5\) 0 0
\(6\) −1.98486 −0.810317
\(7\) −2.16633 −0.818795 −0.409398 0.912356i \(-0.634261\pi\)
−0.409398 + 0.912356i \(0.634261\pi\)
\(8\) −0.119715 −0.0423257
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.44851 1.03976 0.519882 0.854238i \(-0.325976\pi\)
0.519882 + 0.854238i \(0.325976\pi\)
\(12\) −1.93969 −0.559939
\(13\) 3.74214 1.03788 0.518942 0.854809i \(-0.326326\pi\)
0.518942 + 0.854809i \(0.326326\pi\)
\(14\) −4.29987 −1.14919
\(15\) 0 0
\(16\) −4.11699 −1.02925
\(17\) −4.33550 −1.05151 −0.525757 0.850635i \(-0.676218\pi\)
−0.525757 + 0.850635i \(0.676218\pi\)
\(18\) 1.98486 0.467837
\(19\) 3.90548 0.895979 0.447990 0.894039i \(-0.352140\pi\)
0.447990 + 0.894039i \(0.352140\pi\)
\(20\) 0 0
\(21\) 2.16633 0.472732
\(22\) 6.84482 1.45932
\(23\) 3.78401 0.789021 0.394510 0.918891i \(-0.370914\pi\)
0.394510 + 0.918891i \(0.370914\pi\)
\(24\) 0.119715 0.0244368
\(25\) 0 0
\(26\) 7.42765 1.45668
\(27\) −1.00000 −0.192450
\(28\) −4.20200 −0.794103
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 10.3323 1.85574 0.927869 0.372907i \(-0.121639\pi\)
0.927869 + 0.372907i \(0.121639\pi\)
\(32\) −7.93224 −1.40223
\(33\) −3.44851 −0.600308
\(34\) −8.60539 −1.47581
\(35\) 0 0
\(36\) 1.93969 0.323281
\(37\) 7.70559 1.26679 0.633396 0.773828i \(-0.281661\pi\)
0.633396 + 0.773828i \(0.281661\pi\)
\(38\) 7.75186 1.25752
\(39\) −3.74214 −0.599223
\(40\) 0 0
\(41\) 7.88284 1.23109 0.615546 0.788101i \(-0.288935\pi\)
0.615546 + 0.788101i \(0.288935\pi\)
\(42\) 4.29987 0.663484
\(43\) −0.975329 −0.148736 −0.0743681 0.997231i \(-0.523694\pi\)
−0.0743681 + 0.997231i \(0.523694\pi\)
\(44\) 6.68902 1.00841
\(45\) 0 0
\(46\) 7.51075 1.10740
\(47\) −12.1066 −1.76593 −0.882967 0.469436i \(-0.844457\pi\)
−0.882967 + 0.469436i \(0.844457\pi\)
\(48\) 4.11699 0.594236
\(49\) −2.30702 −0.329575
\(50\) 0 0
\(51\) 4.33550 0.607092
\(52\) 7.25858 1.00658
\(53\) 13.1410 1.80505 0.902527 0.430633i \(-0.141710\pi\)
0.902527 + 0.430633i \(0.141710\pi\)
\(54\) −1.98486 −0.270106
\(55\) 0 0
\(56\) 0.259342 0.0346561
\(57\) −3.90548 −0.517294
\(58\) 1.98486 0.260625
\(59\) 1.47781 0.192395 0.0961976 0.995362i \(-0.469332\pi\)
0.0961976 + 0.995362i \(0.469332\pi\)
\(60\) 0 0
\(61\) −4.24195 −0.543126 −0.271563 0.962421i \(-0.587541\pi\)
−0.271563 + 0.962421i \(0.587541\pi\)
\(62\) 20.5082 2.60455
\(63\) −2.16633 −0.272932
\(64\) −7.51043 −0.938804
\(65\) 0 0
\(66\) −6.84482 −0.842539
\(67\) 6.74456 0.823979 0.411989 0.911189i \(-0.364834\pi\)
0.411989 + 0.911189i \(0.364834\pi\)
\(68\) −8.40952 −1.01980
\(69\) −3.78401 −0.455541
\(70\) 0 0
\(71\) 10.3646 1.23005 0.615026 0.788507i \(-0.289145\pi\)
0.615026 + 0.788507i \(0.289145\pi\)
\(72\) −0.119715 −0.0141086
\(73\) 12.3613 1.44678 0.723390 0.690440i \(-0.242583\pi\)
0.723390 + 0.690440i \(0.242583\pi\)
\(74\) 15.2946 1.77796
\(75\) 0 0
\(76\) 7.57541 0.868959
\(77\) −7.47060 −0.851354
\(78\) −7.42765 −0.841015
\(79\) −5.02051 −0.564852 −0.282426 0.959289i \(-0.591139\pi\)
−0.282426 + 0.959289i \(0.591139\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 15.6464 1.72785
\(83\) −10.4380 −1.14572 −0.572861 0.819652i \(-0.694167\pi\)
−0.572861 + 0.819652i \(0.694167\pi\)
\(84\) 4.20200 0.458475
\(85\) 0 0
\(86\) −1.93590 −0.208753
\(87\) −1.00000 −0.107211
\(88\) −0.412839 −0.0440087
\(89\) 4.35405 0.461528 0.230764 0.973010i \(-0.425877\pi\)
0.230764 + 0.973010i \(0.425877\pi\)
\(90\) 0 0
\(91\) −8.10671 −0.849814
\(92\) 7.33979 0.765226
\(93\) −10.3323 −1.07141
\(94\) −24.0300 −2.47851
\(95\) 0 0
\(96\) 7.93224 0.809580
\(97\) −3.75171 −0.380929 −0.190464 0.981694i \(-0.560999\pi\)
−0.190464 + 0.981694i \(0.560999\pi\)
\(98\) −4.57913 −0.462562
\(99\) 3.44851 0.346588
\(100\) 0 0
\(101\) 4.04201 0.402195 0.201097 0.979571i \(-0.435549\pi\)
0.201097 + 0.979571i \(0.435549\pi\)
\(102\) 8.60539 0.852060
\(103\) −1.44387 −0.142269 −0.0711343 0.997467i \(-0.522662\pi\)
−0.0711343 + 0.997467i \(0.522662\pi\)
\(104\) −0.447991 −0.0439292
\(105\) 0 0
\(106\) 26.0831 2.53341
\(107\) 16.1134 1.55774 0.778868 0.627188i \(-0.215794\pi\)
0.778868 + 0.627188i \(0.215794\pi\)
\(108\) −1.93969 −0.186646
\(109\) −6.97181 −0.667779 −0.333889 0.942612i \(-0.608361\pi\)
−0.333889 + 0.942612i \(0.608361\pi\)
\(110\) 0 0
\(111\) −7.70559 −0.731382
\(112\) 8.91875 0.842743
\(113\) −14.7342 −1.38608 −0.693038 0.720901i \(-0.743728\pi\)
−0.693038 + 0.720901i \(0.743728\pi\)
\(114\) −7.75186 −0.726028
\(115\) 0 0
\(116\) 1.93969 0.180095
\(117\) 3.74214 0.345961
\(118\) 2.93326 0.270029
\(119\) 9.39213 0.860975
\(120\) 0 0
\(121\) 0.892199 0.0811090
\(122\) −8.41970 −0.762284
\(123\) −7.88284 −0.710772
\(124\) 20.0414 1.79977
\(125\) 0 0
\(126\) −4.29987 −0.383063
\(127\) −13.2013 −1.17143 −0.585714 0.810518i \(-0.699186\pi\)
−0.585714 + 0.810518i \(0.699186\pi\)
\(128\) 0.957286 0.0846129
\(129\) 0.975329 0.0858729
\(130\) 0 0
\(131\) −7.85914 −0.686656 −0.343328 0.939216i \(-0.611554\pi\)
−0.343328 + 0.939216i \(0.611554\pi\)
\(132\) −6.68902 −0.582204
\(133\) −8.46056 −0.733624
\(134\) 13.3870 1.15646
\(135\) 0 0
\(136\) 0.519026 0.0445061
\(137\) −2.00728 −0.171493 −0.0857466 0.996317i \(-0.527328\pi\)
−0.0857466 + 0.996317i \(0.527328\pi\)
\(138\) −7.51075 −0.639357
\(139\) 16.1970 1.37381 0.686905 0.726747i \(-0.258969\pi\)
0.686905 + 0.726747i \(0.258969\pi\)
\(140\) 0 0
\(141\) 12.1066 1.01956
\(142\) 20.5723 1.72639
\(143\) 12.9048 1.07915
\(144\) −4.11699 −0.343083
\(145\) 0 0
\(146\) 24.5355 2.03057
\(147\) 2.30702 0.190280
\(148\) 14.9464 1.22859
\(149\) 8.07183 0.661270 0.330635 0.943759i \(-0.392737\pi\)
0.330635 + 0.943759i \(0.392737\pi\)
\(150\) 0 0
\(151\) 0.404386 0.0329085 0.0164542 0.999865i \(-0.494762\pi\)
0.0164542 + 0.999865i \(0.494762\pi\)
\(152\) −0.467546 −0.0379230
\(153\) −4.33550 −0.350505
\(154\) −14.8281 −1.19488
\(155\) 0 0
\(156\) −7.25858 −0.581152
\(157\) 11.2927 0.901258 0.450629 0.892711i \(-0.351200\pi\)
0.450629 + 0.892711i \(0.351200\pi\)
\(158\) −9.96503 −0.792775
\(159\) −13.1410 −1.04215
\(160\) 0 0
\(161\) −8.19741 −0.646046
\(162\) 1.98486 0.155946
\(163\) 6.76053 0.529526 0.264763 0.964314i \(-0.414706\pi\)
0.264763 + 0.964314i \(0.414706\pi\)
\(164\) 15.2902 1.19397
\(165\) 0 0
\(166\) −20.7181 −1.60803
\(167\) −23.6942 −1.83351 −0.916755 0.399449i \(-0.869201\pi\)
−0.916755 + 0.399449i \(0.869201\pi\)
\(168\) −0.259342 −0.0200087
\(169\) 1.00364 0.0772032
\(170\) 0 0
\(171\) 3.90548 0.298660
\(172\) −1.89183 −0.144251
\(173\) 8.47285 0.644179 0.322089 0.946709i \(-0.395615\pi\)
0.322089 + 0.946709i \(0.395615\pi\)
\(174\) −1.98486 −0.150472
\(175\) 0 0
\(176\) −14.1975 −1.07017
\(177\) −1.47781 −0.111079
\(178\) 8.64220 0.647760
\(179\) −9.43589 −0.705271 −0.352636 0.935761i \(-0.614715\pi\)
−0.352636 + 0.935761i \(0.614715\pi\)
\(180\) 0 0
\(181\) −15.9628 −1.18650 −0.593252 0.805017i \(-0.702156\pi\)
−0.593252 + 0.805017i \(0.702156\pi\)
\(182\) −16.0907 −1.19272
\(183\) 4.24195 0.313574
\(184\) −0.453003 −0.0333959
\(185\) 0 0
\(186\) −20.5082 −1.50374
\(187\) −14.9510 −1.09333
\(188\) −23.4831 −1.71268
\(189\) 2.16633 0.157577
\(190\) 0 0
\(191\) −12.2070 −0.883269 −0.441635 0.897195i \(-0.645601\pi\)
−0.441635 + 0.897195i \(0.645601\pi\)
\(192\) 7.51043 0.542019
\(193\) −12.8827 −0.927316 −0.463658 0.886014i \(-0.653463\pi\)
−0.463658 + 0.886014i \(0.653463\pi\)
\(194\) −7.44664 −0.534638
\(195\) 0 0
\(196\) −4.47490 −0.319636
\(197\) −5.64807 −0.402409 −0.201204 0.979549i \(-0.564486\pi\)
−0.201204 + 0.979549i \(0.564486\pi\)
\(198\) 6.84482 0.486440
\(199\) −2.79194 −0.197915 −0.0989577 0.995092i \(-0.531551\pi\)
−0.0989577 + 0.995092i \(0.531551\pi\)
\(200\) 0 0
\(201\) −6.74456 −0.475724
\(202\) 8.02284 0.564485
\(203\) −2.16633 −0.152046
\(204\) 8.40952 0.588784
\(205\) 0 0
\(206\) −2.86589 −0.199676
\(207\) 3.78401 0.263007
\(208\) −15.4064 −1.06824
\(209\) 13.4681 0.931607
\(210\) 0 0
\(211\) 19.7072 1.35670 0.678349 0.734740i \(-0.262696\pi\)
0.678349 + 0.734740i \(0.262696\pi\)
\(212\) 25.4894 1.75062
\(213\) −10.3646 −0.710171
\(214\) 31.9828 2.18630
\(215\) 0 0
\(216\) 0.119715 0.00814558
\(217\) −22.3832 −1.51947
\(218\) −13.8381 −0.937235
\(219\) −12.3613 −0.835299
\(220\) 0 0
\(221\) −16.2241 −1.09135
\(222\) −15.2946 −1.02650
\(223\) −23.7198 −1.58840 −0.794199 0.607658i \(-0.792109\pi\)
−0.794199 + 0.607658i \(0.792109\pi\)
\(224\) 17.1838 1.14814
\(225\) 0 0
\(226\) −29.2454 −1.94537
\(227\) −21.4371 −1.42283 −0.711414 0.702773i \(-0.751945\pi\)
−0.711414 + 0.702773i \(0.751945\pi\)
\(228\) −7.57541 −0.501694
\(229\) 8.66186 0.572392 0.286196 0.958171i \(-0.407609\pi\)
0.286196 + 0.958171i \(0.407609\pi\)
\(230\) 0 0
\(231\) 7.47060 0.491529
\(232\) −0.119715 −0.00785969
\(233\) −15.7073 −1.02902 −0.514509 0.857485i \(-0.672026\pi\)
−0.514509 + 0.857485i \(0.672026\pi\)
\(234\) 7.42765 0.485561
\(235\) 0 0
\(236\) 2.86650 0.186593
\(237\) 5.02051 0.326117
\(238\) 18.6421 1.20839
\(239\) −5.29189 −0.342304 −0.171152 0.985245i \(-0.554749\pi\)
−0.171152 + 0.985245i \(0.554749\pi\)
\(240\) 0 0
\(241\) 14.3138 0.922031 0.461015 0.887392i \(-0.347485\pi\)
0.461015 + 0.887392i \(0.347485\pi\)
\(242\) 1.77089 0.113837
\(243\) −1.00000 −0.0641500
\(244\) −8.22805 −0.526747
\(245\) 0 0
\(246\) −15.6464 −0.997576
\(247\) 14.6149 0.929923
\(248\) −1.23693 −0.0785454
\(249\) 10.4380 0.661483
\(250\) 0 0
\(251\) −0.111554 −0.00704121 −0.00352061 0.999994i \(-0.501121\pi\)
−0.00352061 + 0.999994i \(0.501121\pi\)
\(252\) −4.20200 −0.264701
\(253\) 13.0492 0.820395
\(254\) −26.2028 −1.64411
\(255\) 0 0
\(256\) 16.9209 1.05756
\(257\) −8.53838 −0.532609 −0.266305 0.963889i \(-0.585803\pi\)
−0.266305 + 0.963889i \(0.585803\pi\)
\(258\) 1.93590 0.120524
\(259\) −16.6928 −1.03724
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) −15.5993 −0.963729
\(263\) 9.48901 0.585117 0.292559 0.956248i \(-0.405493\pi\)
0.292559 + 0.956248i \(0.405493\pi\)
\(264\) 0.412839 0.0254085
\(265\) 0 0
\(266\) −16.7931 −1.02965
\(267\) −4.35405 −0.266463
\(268\) 13.0823 0.799130
\(269\) 1.98710 0.121156 0.0605778 0.998163i \(-0.480706\pi\)
0.0605778 + 0.998163i \(0.480706\pi\)
\(270\) 0 0
\(271\) 25.0189 1.51979 0.759896 0.650045i \(-0.225250\pi\)
0.759896 + 0.650045i \(0.225250\pi\)
\(272\) 17.8492 1.08227
\(273\) 8.10671 0.490641
\(274\) −3.98417 −0.240693
\(275\) 0 0
\(276\) −7.33979 −0.441804
\(277\) 25.7950 1.54987 0.774935 0.632041i \(-0.217783\pi\)
0.774935 + 0.632041i \(0.217783\pi\)
\(278\) 32.1488 1.92816
\(279\) 10.3323 0.618579
\(280\) 0 0
\(281\) 9.78709 0.583849 0.291924 0.956441i \(-0.405704\pi\)
0.291924 + 0.956441i \(0.405704\pi\)
\(282\) 24.0300 1.43097
\(283\) −26.6275 −1.58284 −0.791421 0.611272i \(-0.790658\pi\)
−0.791421 + 0.611272i \(0.790658\pi\)
\(284\) 20.1041 1.19296
\(285\) 0 0
\(286\) 25.6143 1.51460
\(287\) −17.0768 −1.00801
\(288\) −7.93224 −0.467412
\(289\) 1.79660 0.105682
\(290\) 0 0
\(291\) 3.75171 0.219929
\(292\) 23.9770 1.40315
\(293\) 27.9226 1.63126 0.815628 0.578576i \(-0.196392\pi\)
0.815628 + 0.578576i \(0.196392\pi\)
\(294\) 4.57913 0.267060
\(295\) 0 0
\(296\) −0.922476 −0.0536178
\(297\) −3.44851 −0.200103
\(298\) 16.0215 0.928100
\(299\) 14.1603 0.818912
\(300\) 0 0
\(301\) 2.11288 0.121785
\(302\) 0.802652 0.0461874
\(303\) −4.04201 −0.232207
\(304\) −16.0788 −0.922185
\(305\) 0 0
\(306\) −8.60539 −0.491937
\(307\) −33.6418 −1.92004 −0.960021 0.279930i \(-0.909689\pi\)
−0.960021 + 0.279930i \(0.909689\pi\)
\(308\) −14.4906 −0.825679
\(309\) 1.44387 0.0821389
\(310\) 0 0
\(311\) −11.2518 −0.638030 −0.319015 0.947750i \(-0.603352\pi\)
−0.319015 + 0.947750i \(0.603352\pi\)
\(312\) 0.447991 0.0253625
\(313\) −5.97942 −0.337977 −0.168988 0.985618i \(-0.554050\pi\)
−0.168988 + 0.985618i \(0.554050\pi\)
\(314\) 22.4145 1.26493
\(315\) 0 0
\(316\) −9.73822 −0.547817
\(317\) 7.06727 0.396938 0.198469 0.980107i \(-0.436403\pi\)
0.198469 + 0.980107i \(0.436403\pi\)
\(318\) −26.0831 −1.46267
\(319\) 3.44851 0.193079
\(320\) 0 0
\(321\) −16.1134 −0.899360
\(322\) −16.2707 −0.906733
\(323\) −16.9322 −0.942135
\(324\) 1.93969 0.107760
\(325\) 0 0
\(326\) 13.4187 0.743195
\(327\) 6.97181 0.385542
\(328\) −0.943695 −0.0521069
\(329\) 26.2269 1.44594
\(330\) 0 0
\(331\) 1.01858 0.0559864 0.0279932 0.999608i \(-0.491088\pi\)
0.0279932 + 0.999608i \(0.491088\pi\)
\(332\) −20.2465 −1.11117
\(333\) 7.70559 0.422264
\(334\) −47.0297 −2.57335
\(335\) 0 0
\(336\) −8.91875 −0.486558
\(337\) 0.986769 0.0537527 0.0268764 0.999639i \(-0.491444\pi\)
0.0268764 + 0.999639i \(0.491444\pi\)
\(338\) 1.99209 0.108356
\(339\) 14.7342 0.800251
\(340\) 0 0
\(341\) 35.6310 1.92953
\(342\) 7.75186 0.419172
\(343\) 20.1621 1.08865
\(344\) 0.116762 0.00629537
\(345\) 0 0
\(346\) 16.8175 0.904112
\(347\) −11.7873 −0.632777 −0.316388 0.948630i \(-0.602470\pi\)
−0.316388 + 0.948630i \(0.602470\pi\)
\(348\) −1.93969 −0.103978
\(349\) 3.27618 0.175370 0.0876850 0.996148i \(-0.472053\pi\)
0.0876850 + 0.996148i \(0.472053\pi\)
\(350\) 0 0
\(351\) −3.74214 −0.199741
\(352\) −27.3544 −1.45799
\(353\) 21.4744 1.14296 0.571482 0.820614i \(-0.306369\pi\)
0.571482 + 0.820614i \(0.306369\pi\)
\(354\) −2.93326 −0.155901
\(355\) 0 0
\(356\) 8.44549 0.447610
\(357\) −9.39213 −0.497084
\(358\) −18.7290 −0.989856
\(359\) 2.82558 0.149129 0.0745643 0.997216i \(-0.476243\pi\)
0.0745643 + 0.997216i \(0.476243\pi\)
\(360\) 0 0
\(361\) −3.74720 −0.197221
\(362\) −31.6839 −1.66527
\(363\) −0.892199 −0.0468283
\(364\) −15.7245 −0.824186
\(365\) 0 0
\(366\) 8.41970 0.440105
\(367\) −30.5656 −1.59551 −0.797757 0.602979i \(-0.793980\pi\)
−0.797757 + 0.602979i \(0.793980\pi\)
\(368\) −15.5787 −0.812098
\(369\) 7.88284 0.410364
\(370\) 0 0
\(371\) −28.4677 −1.47797
\(372\) −20.0414 −1.03910
\(373\) 18.9296 0.980137 0.490069 0.871684i \(-0.336972\pi\)
0.490069 + 0.871684i \(0.336972\pi\)
\(374\) −29.6757 −1.53450
\(375\) 0 0
\(376\) 1.44935 0.0747444
\(377\) 3.74214 0.192730
\(378\) 4.29987 0.221161
\(379\) 34.5194 1.77314 0.886572 0.462591i \(-0.153080\pi\)
0.886572 + 0.462591i \(0.153080\pi\)
\(380\) 0 0
\(381\) 13.2013 0.676324
\(382\) −24.2293 −1.23968
\(383\) −24.1113 −1.23203 −0.616014 0.787735i \(-0.711254\pi\)
−0.616014 + 0.787735i \(0.711254\pi\)
\(384\) −0.957286 −0.0488513
\(385\) 0 0
\(386\) −25.5704 −1.30150
\(387\) −0.975329 −0.0495788
\(388\) −7.27715 −0.369441
\(389\) 1.62643 0.0824633 0.0412317 0.999150i \(-0.486872\pi\)
0.0412317 + 0.999150i \(0.486872\pi\)
\(390\) 0 0
\(391\) −16.4056 −0.829667
\(392\) 0.276186 0.0139495
\(393\) 7.85914 0.396441
\(394\) −11.2107 −0.564785
\(395\) 0 0
\(396\) 6.68902 0.336136
\(397\) 30.4581 1.52865 0.764325 0.644831i \(-0.223072\pi\)
0.764325 + 0.644831i \(0.223072\pi\)
\(398\) −5.54162 −0.277777
\(399\) 8.46056 0.423558
\(400\) 0 0
\(401\) 21.5746 1.07739 0.538693 0.842502i \(-0.318918\pi\)
0.538693 + 0.842502i \(0.318918\pi\)
\(402\) −13.3870 −0.667684
\(403\) 38.6650 1.92604
\(404\) 7.84023 0.390066
\(405\) 0 0
\(406\) −4.29987 −0.213399
\(407\) 26.5728 1.31716
\(408\) −0.519026 −0.0256956
\(409\) −12.4960 −0.617886 −0.308943 0.951080i \(-0.599975\pi\)
−0.308943 + 0.951080i \(0.599975\pi\)
\(410\) 0 0
\(411\) 2.00728 0.0990117
\(412\) −2.80065 −0.137978
\(413\) −3.20143 −0.157532
\(414\) 7.51075 0.369133
\(415\) 0 0
\(416\) −29.6836 −1.45536
\(417\) −16.1970 −0.793170
\(418\) 26.7323 1.30752
\(419\) −11.1267 −0.543574 −0.271787 0.962357i \(-0.587615\pi\)
−0.271787 + 0.962357i \(0.587615\pi\)
\(420\) 0 0
\(421\) −5.92063 −0.288554 −0.144277 0.989537i \(-0.546086\pi\)
−0.144277 + 0.989537i \(0.546086\pi\)
\(422\) 39.1161 1.90414
\(423\) −12.1066 −0.588644
\(424\) −1.57318 −0.0764002
\(425\) 0 0
\(426\) −20.5723 −0.996733
\(427\) 9.18946 0.444709
\(428\) 31.2548 1.51076
\(429\) −12.9048 −0.623050
\(430\) 0 0
\(431\) −26.7078 −1.28647 −0.643234 0.765670i \(-0.722408\pi\)
−0.643234 + 0.765670i \(0.722408\pi\)
\(432\) 4.11699 0.198079
\(433\) −1.00946 −0.0485113 −0.0242557 0.999706i \(-0.507722\pi\)
−0.0242557 + 0.999706i \(0.507722\pi\)
\(434\) −44.4276 −2.13259
\(435\) 0 0
\(436\) −13.5231 −0.647640
\(437\) 14.7784 0.706946
\(438\) −24.5355 −1.17235
\(439\) −27.9498 −1.33397 −0.666985 0.745071i \(-0.732415\pi\)
−0.666985 + 0.745071i \(0.732415\pi\)
\(440\) 0 0
\(441\) −2.30702 −0.109858
\(442\) −32.2026 −1.53172
\(443\) 13.6698 0.649472 0.324736 0.945805i \(-0.394725\pi\)
0.324736 + 0.945805i \(0.394725\pi\)
\(444\) −14.9464 −0.709326
\(445\) 0 0
\(446\) −47.0806 −2.22933
\(447\) −8.07183 −0.381785
\(448\) 16.2701 0.768688
\(449\) −16.8518 −0.795287 −0.397643 0.917540i \(-0.630172\pi\)
−0.397643 + 0.917540i \(0.630172\pi\)
\(450\) 0 0
\(451\) 27.1840 1.28005
\(452\) −28.5797 −1.34428
\(453\) −0.404386 −0.0189997
\(454\) −42.5497 −1.99696
\(455\) 0 0
\(456\) 0.467546 0.0218948
\(457\) 31.0628 1.45306 0.726529 0.687135i \(-0.241132\pi\)
0.726529 + 0.687135i \(0.241132\pi\)
\(458\) 17.1926 0.803358
\(459\) 4.33550 0.202364
\(460\) 0 0
\(461\) 12.8686 0.599352 0.299676 0.954041i \(-0.403121\pi\)
0.299676 + 0.954041i \(0.403121\pi\)
\(462\) 14.8281 0.689867
\(463\) 15.7824 0.733469 0.366734 0.930326i \(-0.380476\pi\)
0.366734 + 0.930326i \(0.380476\pi\)
\(464\) −4.11699 −0.191126
\(465\) 0 0
\(466\) −31.1768 −1.44424
\(467\) 2.64850 0.122558 0.0612791 0.998121i \(-0.480482\pi\)
0.0612791 + 0.998121i \(0.480482\pi\)
\(468\) 7.25858 0.335528
\(469\) −14.6109 −0.674670
\(470\) 0 0
\(471\) −11.2927 −0.520342
\(472\) −0.176917 −0.00814326
\(473\) −3.36343 −0.154651
\(474\) 9.96503 0.457709
\(475\) 0 0
\(476\) 18.2178 0.835010
\(477\) 13.1410 0.601685
\(478\) −10.5037 −0.480427
\(479\) −42.8226 −1.95661 −0.978307 0.207161i \(-0.933578\pi\)
−0.978307 + 0.207161i \(0.933578\pi\)
\(480\) 0 0
\(481\) 28.8354 1.31478
\(482\) 28.4109 1.29408
\(483\) 8.19741 0.372995
\(484\) 1.73059 0.0786630
\(485\) 0 0
\(486\) −1.98486 −0.0900353
\(487\) 17.5946 0.797289 0.398644 0.917106i \(-0.369481\pi\)
0.398644 + 0.917106i \(0.369481\pi\)
\(488\) 0.507826 0.0229882
\(489\) −6.76053 −0.305722
\(490\) 0 0
\(491\) −31.7466 −1.43270 −0.716351 0.697740i \(-0.754189\pi\)
−0.716351 + 0.697740i \(0.754189\pi\)
\(492\) −15.2902 −0.689337
\(493\) −4.33550 −0.195261
\(494\) 29.0086 1.30516
\(495\) 0 0
\(496\) −42.5380 −1.91001
\(497\) −22.4531 −1.00716
\(498\) 20.7181 0.928399
\(499\) 10.7922 0.483126 0.241563 0.970385i \(-0.422340\pi\)
0.241563 + 0.970385i \(0.422340\pi\)
\(500\) 0 0
\(501\) 23.6942 1.05858
\(502\) −0.221419 −0.00988242
\(503\) −11.7995 −0.526114 −0.263057 0.964780i \(-0.584731\pi\)
−0.263057 + 0.964780i \(0.584731\pi\)
\(504\) 0.259342 0.0115520
\(505\) 0 0
\(506\) 25.9009 1.15143
\(507\) −1.00364 −0.0445733
\(508\) −25.6064 −1.13610
\(509\) 13.6611 0.605516 0.302758 0.953068i \(-0.402093\pi\)
0.302758 + 0.953068i \(0.402093\pi\)
\(510\) 0 0
\(511\) −26.7786 −1.18462
\(512\) 31.6712 1.39968
\(513\) −3.90548 −0.172431
\(514\) −16.9475 −0.747523
\(515\) 0 0
\(516\) 1.89183 0.0832833
\(517\) −41.7498 −1.83615
\(518\) −33.1330 −1.45578
\(519\) −8.47285 −0.371917
\(520\) 0 0
\(521\) 5.55126 0.243205 0.121603 0.992579i \(-0.461197\pi\)
0.121603 + 0.992579i \(0.461197\pi\)
\(522\) 1.98486 0.0868751
\(523\) 28.8905 1.26329 0.631647 0.775256i \(-0.282379\pi\)
0.631647 + 0.775256i \(0.282379\pi\)
\(524\) −15.2443 −0.665949
\(525\) 0 0
\(526\) 18.8344 0.821218
\(527\) −44.7958 −1.95133
\(528\) 14.1975 0.617866
\(529\) −8.68126 −0.377446
\(530\) 0 0
\(531\) 1.47781 0.0641317
\(532\) −16.4108 −0.711500
\(533\) 29.4987 1.27773
\(534\) −8.64220 −0.373984
\(535\) 0 0
\(536\) −0.807426 −0.0348755
\(537\) 9.43589 0.407189
\(538\) 3.94412 0.170043
\(539\) −7.95578 −0.342680
\(540\) 0 0
\(541\) −26.7544 −1.15026 −0.575132 0.818061i \(-0.695049\pi\)
−0.575132 + 0.818061i \(0.695049\pi\)
\(542\) 49.6592 2.13304
\(543\) 15.9628 0.685028
\(544\) 34.3902 1.47447
\(545\) 0 0
\(546\) 16.0907 0.688619
\(547\) 43.9711 1.88007 0.940035 0.341077i \(-0.110792\pi\)
0.940035 + 0.341077i \(0.110792\pi\)
\(548\) −3.89349 −0.166322
\(549\) −4.24195 −0.181042
\(550\) 0 0
\(551\) 3.90548 0.166379
\(552\) 0.453003 0.0192811
\(553\) 10.8761 0.462498
\(554\) 51.1995 2.17526
\(555\) 0 0
\(556\) 31.4171 1.33238
\(557\) −29.0132 −1.22933 −0.614665 0.788788i \(-0.710709\pi\)
−0.614665 + 0.788788i \(0.710709\pi\)
\(558\) 20.5082 0.868183
\(559\) −3.64982 −0.154371
\(560\) 0 0
\(561\) 14.9510 0.631232
\(562\) 19.4260 0.819438
\(563\) −32.7636 −1.38082 −0.690410 0.723419i \(-0.742570\pi\)
−0.690410 + 0.723419i \(0.742570\pi\)
\(564\) 23.4831 0.988815
\(565\) 0 0
\(566\) −52.8520 −2.22154
\(567\) −2.16633 −0.0909772
\(568\) −1.24080 −0.0520628
\(569\) −46.5934 −1.95330 −0.976648 0.214848i \(-0.931074\pi\)
−0.976648 + 0.214848i \(0.931074\pi\)
\(570\) 0 0
\(571\) −13.2917 −0.556238 −0.278119 0.960547i \(-0.589711\pi\)
−0.278119 + 0.960547i \(0.589711\pi\)
\(572\) 25.0313 1.04661
\(573\) 12.2070 0.509956
\(574\) −33.8952 −1.41476
\(575\) 0 0
\(576\) −7.51043 −0.312935
\(577\) 5.53380 0.230375 0.115187 0.993344i \(-0.463253\pi\)
0.115187 + 0.993344i \(0.463253\pi\)
\(578\) 3.56600 0.148326
\(579\) 12.8827 0.535386
\(580\) 0 0
\(581\) 22.6122 0.938112
\(582\) 7.44664 0.308673
\(583\) 45.3168 1.87683
\(584\) −1.47983 −0.0612360
\(585\) 0 0
\(586\) 55.4226 2.28949
\(587\) −33.5077 −1.38301 −0.691505 0.722372i \(-0.743052\pi\)
−0.691505 + 0.722372i \(0.743052\pi\)
\(588\) 4.47490 0.184542
\(589\) 40.3527 1.66270
\(590\) 0 0
\(591\) 5.64807 0.232331
\(592\) −31.7238 −1.30384
\(593\) 16.3242 0.670355 0.335178 0.942155i \(-0.391204\pi\)
0.335178 + 0.942155i \(0.391204\pi\)
\(594\) −6.84482 −0.280846
\(595\) 0 0
\(596\) 15.6568 0.641328
\(597\) 2.79194 0.114267
\(598\) 28.1063 1.14935
\(599\) −19.8302 −0.810242 −0.405121 0.914263i \(-0.632771\pi\)
−0.405121 + 0.914263i \(0.632771\pi\)
\(600\) 0 0
\(601\) −11.2018 −0.456933 −0.228466 0.973552i \(-0.573371\pi\)
−0.228466 + 0.973552i \(0.573371\pi\)
\(602\) 4.19379 0.170926
\(603\) 6.74456 0.274660
\(604\) 0.784382 0.0319161
\(605\) 0 0
\(606\) −8.02284 −0.325905
\(607\) 26.7066 1.08399 0.541994 0.840382i \(-0.317669\pi\)
0.541994 + 0.840382i \(0.317669\pi\)
\(608\) −30.9792 −1.25637
\(609\) 2.16633 0.0877840
\(610\) 0 0
\(611\) −45.3048 −1.83283
\(612\) −8.40952 −0.339935
\(613\) 22.0053 0.888784 0.444392 0.895832i \(-0.353420\pi\)
0.444392 + 0.895832i \(0.353420\pi\)
\(614\) −66.7745 −2.69480
\(615\) 0 0
\(616\) 0.894344 0.0360341
\(617\) 35.1749 1.41609 0.708044 0.706168i \(-0.249578\pi\)
0.708044 + 0.706168i \(0.249578\pi\)
\(618\) 2.86589 0.115283
\(619\) −15.6201 −0.627826 −0.313913 0.949452i \(-0.601640\pi\)
−0.313913 + 0.949452i \(0.601640\pi\)
\(620\) 0 0
\(621\) −3.78401 −0.151847
\(622\) −22.3333 −0.895483
\(623\) −9.43230 −0.377897
\(624\) 15.4064 0.616748
\(625\) 0 0
\(626\) −11.8683 −0.474354
\(627\) −13.4681 −0.537864
\(628\) 21.9044 0.874079
\(629\) −33.4076 −1.33205
\(630\) 0 0
\(631\) 37.6084 1.49717 0.748583 0.663041i \(-0.230735\pi\)
0.748583 + 0.663041i \(0.230735\pi\)
\(632\) 0.601031 0.0239077
\(633\) −19.7072 −0.783290
\(634\) 14.0276 0.557106
\(635\) 0 0
\(636\) −25.4894 −1.01072
\(637\) −8.63321 −0.342060
\(638\) 6.84482 0.270989
\(639\) 10.3646 0.410017
\(640\) 0 0
\(641\) 5.74582 0.226946 0.113473 0.993541i \(-0.463802\pi\)
0.113473 + 0.993541i \(0.463802\pi\)
\(642\) −31.9828 −1.26226
\(643\) −23.9831 −0.945802 −0.472901 0.881116i \(-0.656793\pi\)
−0.472901 + 0.881116i \(0.656793\pi\)
\(644\) −15.9004 −0.626564
\(645\) 0 0
\(646\) −33.6082 −1.32230
\(647\) 3.39096 0.133312 0.0666562 0.997776i \(-0.478767\pi\)
0.0666562 + 0.997776i \(0.478767\pi\)
\(648\) −0.119715 −0.00470286
\(649\) 5.09625 0.200045
\(650\) 0 0
\(651\) 22.3832 0.877266
\(652\) 13.1133 0.513557
\(653\) −5.53243 −0.216501 −0.108250 0.994124i \(-0.534525\pi\)
−0.108250 + 0.994124i \(0.534525\pi\)
\(654\) 13.8381 0.541113
\(655\) 0 0
\(656\) −32.4536 −1.26710
\(657\) 12.3613 0.482260
\(658\) 52.0569 2.02939
\(659\) 19.5303 0.760794 0.380397 0.924823i \(-0.375787\pi\)
0.380397 + 0.924823i \(0.375787\pi\)
\(660\) 0 0
\(661\) −11.2225 −0.436506 −0.218253 0.975892i \(-0.570036\pi\)
−0.218253 + 0.975892i \(0.570036\pi\)
\(662\) 2.02175 0.0785775
\(663\) 16.2241 0.630091
\(664\) 1.24959 0.0484935
\(665\) 0 0
\(666\) 15.2946 0.592652
\(667\) 3.78401 0.146517
\(668\) −45.9593 −1.77822
\(669\) 23.7198 0.917061
\(670\) 0 0
\(671\) −14.6284 −0.564723
\(672\) −17.1838 −0.662881
\(673\) −44.2403 −1.70534 −0.852670 0.522450i \(-0.825018\pi\)
−0.852670 + 0.522450i \(0.825018\pi\)
\(674\) 1.95860 0.0754425
\(675\) 0 0
\(676\) 1.94675 0.0748750
\(677\) −30.7265 −1.18092 −0.590458 0.807068i \(-0.701053\pi\)
−0.590458 + 0.807068i \(0.701053\pi\)
\(678\) 29.2454 1.12316
\(679\) 8.12745 0.311903
\(680\) 0 0
\(681\) 21.4371 0.821471
\(682\) 70.7228 2.70811
\(683\) 33.1261 1.26753 0.633767 0.773524i \(-0.281508\pi\)
0.633767 + 0.773524i \(0.281508\pi\)
\(684\) 7.57541 0.289653
\(685\) 0 0
\(686\) 40.0190 1.52793
\(687\) −8.66186 −0.330470
\(688\) 4.01542 0.153086
\(689\) 49.1755 1.87344
\(690\) 0 0
\(691\) −16.3416 −0.621663 −0.310831 0.950465i \(-0.600607\pi\)
−0.310831 + 0.950465i \(0.600607\pi\)
\(692\) 16.4347 0.624752
\(693\) −7.47060 −0.283785
\(694\) −23.3962 −0.888109
\(695\) 0 0
\(696\) 0.119715 0.00453779
\(697\) −34.1761 −1.29451
\(698\) 6.50278 0.246134
\(699\) 15.7073 0.594103
\(700\) 0 0
\(701\) 22.4186 0.846737 0.423369 0.905957i \(-0.360847\pi\)
0.423369 + 0.905957i \(0.360847\pi\)
\(702\) −7.42765 −0.280338
\(703\) 30.0941 1.13502
\(704\) −25.8998 −0.976134
\(705\) 0 0
\(706\) 42.6237 1.60416
\(707\) −8.75632 −0.329315
\(708\) −2.86650 −0.107730
\(709\) 39.4966 1.48332 0.741662 0.670773i \(-0.234038\pi\)
0.741662 + 0.670773i \(0.234038\pi\)
\(710\) 0 0
\(711\) −5.02051 −0.188284
\(712\) −0.521246 −0.0195345
\(713\) 39.0976 1.46422
\(714\) −18.6421 −0.697663
\(715\) 0 0
\(716\) −18.3027 −0.684003
\(717\) 5.29189 0.197629
\(718\) 5.60840 0.209304
\(719\) −26.4473 −0.986317 −0.493158 0.869940i \(-0.664158\pi\)
−0.493158 + 0.869940i \(0.664158\pi\)
\(720\) 0 0
\(721\) 3.12790 0.116489
\(722\) −7.43768 −0.276802
\(723\) −14.3138 −0.532335
\(724\) −30.9628 −1.15072
\(725\) 0 0
\(726\) −1.77089 −0.0657240
\(727\) 26.9951 1.00119 0.500597 0.865681i \(-0.333114\pi\)
0.500597 + 0.865681i \(0.333114\pi\)
\(728\) 0.970496 0.0359690
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 4.22854 0.156398
\(732\) 8.22805 0.304118
\(733\) −43.0982 −1.59187 −0.795934 0.605383i \(-0.793020\pi\)
−0.795934 + 0.605383i \(0.793020\pi\)
\(734\) −60.6687 −2.23932
\(735\) 0 0
\(736\) −30.0157 −1.10639
\(737\) 23.2586 0.856743
\(738\) 15.6464 0.575951
\(739\) −5.59739 −0.205903 −0.102952 0.994686i \(-0.532829\pi\)
−0.102952 + 0.994686i \(0.532829\pi\)
\(740\) 0 0
\(741\) −14.6149 −0.536891
\(742\) −56.5045 −2.07435
\(743\) 29.3572 1.07701 0.538506 0.842621i \(-0.318989\pi\)
0.538506 + 0.842621i \(0.318989\pi\)
\(744\) 1.23693 0.0453482
\(745\) 0 0
\(746\) 37.5727 1.37563
\(747\) −10.4380 −0.381908
\(748\) −29.0003 −1.06036
\(749\) −34.9068 −1.27547
\(750\) 0 0
\(751\) 33.2141 1.21200 0.606000 0.795465i \(-0.292773\pi\)
0.606000 + 0.795465i \(0.292773\pi\)
\(752\) 49.8429 1.81758
\(753\) 0.111554 0.00406525
\(754\) 7.42765 0.270499
\(755\) 0 0
\(756\) 4.20200 0.152825
\(757\) 51.1932 1.86065 0.930324 0.366738i \(-0.119525\pi\)
0.930324 + 0.366738i \(0.119525\pi\)
\(758\) 68.5164 2.48863
\(759\) −13.0492 −0.473656
\(760\) 0 0
\(761\) −22.2603 −0.806935 −0.403467 0.914994i \(-0.632195\pi\)
−0.403467 + 0.914994i \(0.632195\pi\)
\(762\) 26.2028 0.949229
\(763\) 15.1032 0.546774
\(764\) −23.6778 −0.856632
\(765\) 0 0
\(766\) −47.8576 −1.72917
\(767\) 5.53020 0.199684
\(768\) −16.9209 −0.610582
\(769\) 41.5103 1.49690 0.748450 0.663192i \(-0.230799\pi\)
0.748450 + 0.663192i \(0.230799\pi\)
\(770\) 0 0
\(771\) 8.53838 0.307502
\(772\) −24.9884 −0.899351
\(773\) −12.9815 −0.466913 −0.233457 0.972367i \(-0.575004\pi\)
−0.233457 + 0.972367i \(0.575004\pi\)
\(774\) −1.93590 −0.0695843
\(775\) 0 0
\(776\) 0.449137 0.0161231
\(777\) 16.6928 0.598852
\(778\) 3.22824 0.115738
\(779\) 30.7863 1.10303
\(780\) 0 0
\(781\) 35.7424 1.27896
\(782\) −32.5629 −1.16445
\(783\) −1.00000 −0.0357371
\(784\) 9.49799 0.339214
\(785\) 0 0
\(786\) 15.5993 0.556409
\(787\) 22.7162 0.809745 0.404872 0.914373i \(-0.367316\pi\)
0.404872 + 0.914373i \(0.367316\pi\)
\(788\) −10.9555 −0.390273
\(789\) −9.48901 −0.337818
\(790\) 0 0
\(791\) 31.9191 1.13491
\(792\) −0.412839 −0.0146696
\(793\) −15.8740 −0.563702
\(794\) 60.4553 2.14548
\(795\) 0 0
\(796\) −5.41549 −0.191947
\(797\) −17.8673 −0.632892 −0.316446 0.948611i \(-0.602490\pi\)
−0.316446 + 0.948611i \(0.602490\pi\)
\(798\) 16.7931 0.594468
\(799\) 52.4883 1.85690
\(800\) 0 0
\(801\) 4.35405 0.153843
\(802\) 42.8227 1.51212
\(803\) 42.6280 1.50431
\(804\) −13.0823 −0.461378
\(805\) 0 0
\(806\) 76.7447 2.70322
\(807\) −1.98710 −0.0699492
\(808\) −0.483890 −0.0170232
\(809\) 8.20702 0.288543 0.144272 0.989538i \(-0.453916\pi\)
0.144272 + 0.989538i \(0.453916\pi\)
\(810\) 0 0
\(811\) −33.4661 −1.17516 −0.587578 0.809168i \(-0.699918\pi\)
−0.587578 + 0.809168i \(0.699918\pi\)
\(812\) −4.20200 −0.147461
\(813\) −25.0189 −0.877452
\(814\) 52.7434 1.84865
\(815\) 0 0
\(816\) −17.8492 −0.624848
\(817\) −3.80913 −0.133265
\(818\) −24.8028 −0.867210
\(819\) −8.10671 −0.283271
\(820\) 0 0
\(821\) −44.7864 −1.56306 −0.781528 0.623870i \(-0.785560\pi\)
−0.781528 + 0.623870i \(0.785560\pi\)
\(822\) 3.98417 0.138964
\(823\) 15.4704 0.539263 0.269631 0.962964i \(-0.413098\pi\)
0.269631 + 0.962964i \(0.413098\pi\)
\(824\) 0.172853 0.00602162
\(825\) 0 0
\(826\) −6.35441 −0.221098
\(827\) 3.28177 0.114118 0.0570591 0.998371i \(-0.481828\pi\)
0.0570591 + 0.998371i \(0.481828\pi\)
\(828\) 7.33979 0.255075
\(829\) 13.8994 0.482745 0.241373 0.970433i \(-0.422402\pi\)
0.241373 + 0.970433i \(0.422402\pi\)
\(830\) 0 0
\(831\) −25.7950 −0.894818
\(832\) −28.1051 −0.974370
\(833\) 10.0021 0.346552
\(834\) −32.1488 −1.11322
\(835\) 0 0
\(836\) 26.1239 0.903513
\(837\) −10.3323 −0.357137
\(838\) −22.0849 −0.762911
\(839\) 23.2825 0.803801 0.401901 0.915683i \(-0.368350\pi\)
0.401901 + 0.915683i \(0.368350\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −11.7517 −0.404989
\(843\) −9.78709 −0.337085
\(844\) 38.2257 1.31578
\(845\) 0 0
\(846\) −24.0300 −0.826169
\(847\) −1.93280 −0.0664116
\(848\) −54.1013 −1.85785
\(849\) 26.6275 0.913854
\(850\) 0 0
\(851\) 29.1580 0.999525
\(852\) −20.1041 −0.688754
\(853\) −0.183345 −0.00627762 −0.00313881 0.999995i \(-0.500999\pi\)
−0.00313881 + 0.999995i \(0.500999\pi\)
\(854\) 18.2398 0.624154
\(855\) 0 0
\(856\) −1.92901 −0.0659323
\(857\) 29.5304 1.00874 0.504369 0.863488i \(-0.331725\pi\)
0.504369 + 0.863488i \(0.331725\pi\)
\(858\) −25.6143 −0.874458
\(859\) 14.0724 0.480144 0.240072 0.970755i \(-0.422829\pi\)
0.240072 + 0.970755i \(0.422829\pi\)
\(860\) 0 0
\(861\) 17.0768 0.581976
\(862\) −53.0113 −1.80557
\(863\) −37.7709 −1.28574 −0.642868 0.765977i \(-0.722256\pi\)
−0.642868 + 0.765977i \(0.722256\pi\)
\(864\) 7.93224 0.269860
\(865\) 0 0
\(866\) −2.00363 −0.0680862
\(867\) −1.79660 −0.0610157
\(868\) −43.4163 −1.47365
\(869\) −17.3133 −0.587312
\(870\) 0 0
\(871\) 25.2391 0.855194
\(872\) 0.834632 0.0282642
\(873\) −3.75171 −0.126976
\(874\) 29.3331 0.992207
\(875\) 0 0
\(876\) −23.9770 −0.810108
\(877\) 28.7011 0.969167 0.484583 0.874745i \(-0.338971\pi\)
0.484583 + 0.874745i \(0.338971\pi\)
\(878\) −55.4765 −1.87224
\(879\) −27.9226 −0.941806
\(880\) 0 0
\(881\) −15.0242 −0.506179 −0.253089 0.967443i \(-0.581447\pi\)
−0.253089 + 0.967443i \(0.581447\pi\)
\(882\) −4.57913 −0.154187
\(883\) 56.7832 1.91091 0.955453 0.295143i \(-0.0953673\pi\)
0.955453 + 0.295143i \(0.0953673\pi\)
\(884\) −31.4696 −1.05844
\(885\) 0 0
\(886\) 27.1327 0.911541
\(887\) −18.5123 −0.621584 −0.310792 0.950478i \(-0.600594\pi\)
−0.310792 + 0.950478i \(0.600594\pi\)
\(888\) 0.922476 0.0309563
\(889\) 28.5984 0.959160
\(890\) 0 0
\(891\) 3.44851 0.115529
\(892\) −46.0090 −1.54050
\(893\) −47.2822 −1.58224
\(894\) −16.0215 −0.535839
\(895\) 0 0
\(896\) −2.07380 −0.0692806
\(897\) −14.1603 −0.472799
\(898\) −33.4486 −1.11619
\(899\) 10.3323 0.344602
\(900\) 0 0
\(901\) −56.9728 −1.89804
\(902\) 53.9566 1.79656
\(903\) −2.11288 −0.0703123
\(904\) 1.76391 0.0586666
\(905\) 0 0
\(906\) −0.802652 −0.0266663
\(907\) −37.5849 −1.24798 −0.623992 0.781430i \(-0.714490\pi\)
−0.623992 + 0.781430i \(0.714490\pi\)
\(908\) −41.5812 −1.37992
\(909\) 4.04201 0.134065
\(910\) 0 0
\(911\) −17.4415 −0.577862 −0.288931 0.957350i \(-0.593300\pi\)
−0.288931 + 0.957350i \(0.593300\pi\)
\(912\) 16.0788 0.532424
\(913\) −35.9956 −1.19128
\(914\) 61.6555 2.03938
\(915\) 0 0
\(916\) 16.8013 0.555130
\(917\) 17.0255 0.562231
\(918\) 8.60539 0.284020
\(919\) 2.23086 0.0735894 0.0367947 0.999323i \(-0.488285\pi\)
0.0367947 + 0.999323i \(0.488285\pi\)
\(920\) 0 0
\(921\) 33.6418 1.10854
\(922\) 25.5425 0.841197
\(923\) 38.7858 1.27665
\(924\) 14.4906 0.476706
\(925\) 0 0
\(926\) 31.3258 1.02943
\(927\) −1.44387 −0.0474229
\(928\) −7.93224 −0.260388
\(929\) −51.7922 −1.69925 −0.849624 0.527388i \(-0.823171\pi\)
−0.849624 + 0.527388i \(0.823171\pi\)
\(930\) 0 0
\(931\) −9.01004 −0.295292
\(932\) −30.4672 −0.997985
\(933\) 11.2518 0.368367
\(934\) 5.25692 0.172012
\(935\) 0 0
\(936\) −0.447991 −0.0146431
\(937\) 35.9764 1.17530 0.587648 0.809116i \(-0.300054\pi\)
0.587648 + 0.809116i \(0.300054\pi\)
\(938\) −29.0007 −0.946906
\(939\) 5.97942 0.195131
\(940\) 0 0
\(941\) −46.3203 −1.51000 −0.754999 0.655726i \(-0.772362\pi\)
−0.754999 + 0.655726i \(0.772362\pi\)
\(942\) −22.4145 −0.730305
\(943\) 29.8287 0.971358
\(944\) −6.08415 −0.198022
\(945\) 0 0
\(946\) −6.67595 −0.217054
\(947\) −4.98490 −0.161987 −0.0809937 0.996715i \(-0.525809\pi\)
−0.0809937 + 0.996715i \(0.525809\pi\)
\(948\) 9.73822 0.316283
\(949\) 46.2577 1.50159
\(950\) 0 0
\(951\) −7.06727 −0.229172
\(952\) −1.12438 −0.0364414
\(953\) −8.50497 −0.275503 −0.137751 0.990467i \(-0.543988\pi\)
−0.137751 + 0.990467i \(0.543988\pi\)
\(954\) 26.0831 0.844471
\(955\) 0 0
\(956\) −10.2646 −0.331981
\(957\) −3.44851 −0.111474
\(958\) −84.9970 −2.74613
\(959\) 4.34842 0.140418
\(960\) 0 0
\(961\) 75.7566 2.44376
\(962\) 57.2344 1.84531
\(963\) 16.1134 0.519246
\(964\) 27.7642 0.894225
\(965\) 0 0
\(966\) 16.2707 0.523503
\(967\) −14.5668 −0.468436 −0.234218 0.972184i \(-0.575253\pi\)
−0.234218 + 0.972184i \(0.575253\pi\)
\(968\) −0.106810 −0.00343299
\(969\) 16.9322 0.543942
\(970\) 0 0
\(971\) 10.1423 0.325482 0.162741 0.986669i \(-0.447967\pi\)
0.162741 + 0.986669i \(0.447967\pi\)
\(972\) −1.93969 −0.0622155
\(973\) −35.0880 −1.12487
\(974\) 34.9230 1.11900
\(975\) 0 0
\(976\) 17.4641 0.559011
\(977\) 39.0644 1.24978 0.624891 0.780712i \(-0.285143\pi\)
0.624891 + 0.780712i \(0.285143\pi\)
\(978\) −13.4187 −0.429084
\(979\) 15.0150 0.479880
\(980\) 0 0
\(981\) −6.97181 −0.222593
\(982\) −63.0126 −2.01081
\(983\) −28.5284 −0.909915 −0.454957 0.890513i \(-0.650346\pi\)
−0.454957 + 0.890513i \(0.650346\pi\)
\(984\) 0.943695 0.0300839
\(985\) 0 0
\(986\) −8.60539 −0.274051
\(987\) −26.2269 −0.834812
\(988\) 28.3483 0.901879
\(989\) −3.69066 −0.117356
\(990\) 0 0
\(991\) −56.7608 −1.80307 −0.901534 0.432709i \(-0.857558\pi\)
−0.901534 + 0.432709i \(0.857558\pi\)
\(992\) −81.9583 −2.60218
\(993\) −1.01858 −0.0323238
\(994\) −44.5664 −1.41356
\(995\) 0 0
\(996\) 20.2465 0.641535
\(997\) 10.0683 0.318866 0.159433 0.987209i \(-0.449033\pi\)
0.159433 + 0.987209i \(0.449033\pi\)
\(998\) 21.4211 0.678073
\(999\) −7.70559 −0.243794
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.a.bc.1.7 8
3.2 odd 2 6525.2.a.bz.1.2 8
5.2 odd 4 2175.2.c.p.349.13 16
5.3 odd 4 2175.2.c.p.349.4 16
5.4 even 2 2175.2.a.bd.1.2 yes 8
15.14 odd 2 6525.2.a.by.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.bc.1.7 8 1.1 even 1 trivial
2175.2.a.bd.1.2 yes 8 5.4 even 2
2175.2.c.p.349.4 16 5.3 odd 4
2175.2.c.p.349.13 16 5.2 odd 4
6525.2.a.by.1.7 8 15.14 odd 2
6525.2.a.bz.1.2 8 3.2 odd 2