Properties

Label 2175.2.a.bc.1.6
Level $2175$
Weight $2$
Character 2175.1
Self dual yes
Analytic conductor $17.367$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 12x^{6} + 23x^{5} + 36x^{4} - 62x^{3} - 15x^{2} + 14x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.485464\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.485464 q^{2} -1.00000 q^{3} -1.76432 q^{4} -0.485464 q^{6} -1.94912 q^{7} -1.82745 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+0.485464 q^{2} -1.00000 q^{3} -1.76432 q^{4} -0.485464 q^{6} -1.94912 q^{7} -1.82745 q^{8} +1.00000 q^{9} +5.30306 q^{11} +1.76432 q^{12} -6.00152 q^{13} -0.946227 q^{14} +2.64149 q^{16} -1.89418 q^{17} +0.485464 q^{18} -4.84040 q^{19} +1.94912 q^{21} +2.57445 q^{22} +3.19725 q^{23} +1.82745 q^{24} -2.91352 q^{26} -1.00000 q^{27} +3.43888 q^{28} +1.00000 q^{29} -4.96870 q^{31} +4.93724 q^{32} -5.30306 q^{33} -0.919558 q^{34} -1.76432 q^{36} -10.9699 q^{37} -2.34984 q^{38} +6.00152 q^{39} -0.749700 q^{41} +0.946227 q^{42} +6.21936 q^{43} -9.35633 q^{44} +1.55215 q^{46} +9.67532 q^{47} -2.64149 q^{48} -3.20094 q^{49} +1.89418 q^{51} +10.5886 q^{52} +4.44791 q^{53} -0.485464 q^{54} +3.56191 q^{56} +4.84040 q^{57} +0.485464 q^{58} +14.8542 q^{59} +15.4683 q^{61} -2.41213 q^{62} -1.94912 q^{63} -2.88613 q^{64} -2.57445 q^{66} +14.6495 q^{67} +3.34195 q^{68} -3.19725 q^{69} +5.37043 q^{71} -1.82745 q^{72} -12.5367 q^{73} -5.32550 q^{74} +8.54003 q^{76} -10.3363 q^{77} +2.91352 q^{78} -7.87855 q^{79} +1.00000 q^{81} -0.363953 q^{82} -11.1873 q^{83} -3.43888 q^{84} +3.01928 q^{86} -1.00000 q^{87} -9.69106 q^{88} +15.2850 q^{89} +11.6977 q^{91} -5.64098 q^{92} +4.96870 q^{93} +4.69702 q^{94} -4.93724 q^{96} +7.14188 q^{97} -1.55394 q^{98} +5.30306 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 8 q^{3} + 12 q^{4} + 2 q^{6} + 2 q^{7} - 3 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} - 8 q^{3} + 12 q^{4} + 2 q^{6} + 2 q^{7} - 3 q^{8} + 8 q^{9} + 6 q^{11} - 12 q^{12} + 6 q^{13} + 9 q^{14} + 32 q^{16} - 12 q^{17} - 2 q^{18} - 2 q^{21} + 3 q^{22} - 14 q^{23} + 3 q^{24} + 18 q^{26} - 8 q^{27} + 14 q^{28} + 8 q^{29} + 8 q^{31} + 2 q^{32} - 6 q^{33} - 13 q^{34} + 12 q^{36} + 4 q^{37} - 26 q^{38} - 6 q^{39} + 2 q^{41} - 9 q^{42} + 2 q^{43} - 15 q^{44} + 24 q^{46} - 12 q^{47} - 32 q^{48} + 38 q^{49} + 12 q^{51} + 49 q^{52} - 4 q^{53} + 2 q^{54} + 58 q^{56} - 2 q^{58} + 18 q^{59} + 12 q^{61} + 4 q^{62} + 2 q^{63} + 21 q^{64} - 3 q^{66} + 26 q^{67} - 81 q^{68} + 14 q^{69} + 24 q^{71} - 3 q^{72} - 14 q^{73} - 22 q^{74} + 26 q^{77} - 18 q^{78} + 10 q^{79} + 8 q^{81} + 48 q^{82} - 40 q^{83} - 14 q^{84} + 8 q^{86} - 8 q^{87} - 10 q^{88} + 34 q^{89} + 26 q^{91} + 18 q^{92} - 8 q^{93} - 43 q^{94} - 2 q^{96} + 30 q^{97} - 29 q^{98} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.485464 0.343275 0.171638 0.985160i \(-0.445094\pi\)
0.171638 + 0.985160i \(0.445094\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.76432 −0.882162
\(5\) 0 0
\(6\) −0.485464 −0.198190
\(7\) −1.94912 −0.736697 −0.368349 0.929688i \(-0.620077\pi\)
−0.368349 + 0.929688i \(0.620077\pi\)
\(8\) −1.82745 −0.646099
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.30306 1.59893 0.799467 0.600710i \(-0.205115\pi\)
0.799467 + 0.600710i \(0.205115\pi\)
\(12\) 1.76432 0.509317
\(13\) −6.00152 −1.66452 −0.832261 0.554384i \(-0.812954\pi\)
−0.832261 + 0.554384i \(0.812954\pi\)
\(14\) −0.946227 −0.252890
\(15\) 0 0
\(16\) 2.64149 0.660372
\(17\) −1.89418 −0.459407 −0.229703 0.973261i \(-0.573776\pi\)
−0.229703 + 0.973261i \(0.573776\pi\)
\(18\) 0.485464 0.114425
\(19\) −4.84040 −1.11046 −0.555232 0.831696i \(-0.687370\pi\)
−0.555232 + 0.831696i \(0.687370\pi\)
\(20\) 0 0
\(21\) 1.94912 0.425332
\(22\) 2.57445 0.548874
\(23\) 3.19725 0.666672 0.333336 0.942808i \(-0.391826\pi\)
0.333336 + 0.942808i \(0.391826\pi\)
\(24\) 1.82745 0.373026
\(25\) 0 0
\(26\) −2.91352 −0.571389
\(27\) −1.00000 −0.192450
\(28\) 3.43888 0.649887
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −4.96870 −0.892406 −0.446203 0.894932i \(-0.647224\pi\)
−0.446203 + 0.894932i \(0.647224\pi\)
\(32\) 4.93724 0.872789
\(33\) −5.30306 −0.923145
\(34\) −0.919558 −0.157703
\(35\) 0 0
\(36\) −1.76432 −0.294054
\(37\) −10.9699 −1.80344 −0.901721 0.432319i \(-0.857695\pi\)
−0.901721 + 0.432319i \(0.857695\pi\)
\(38\) −2.34984 −0.381194
\(39\) 6.00152 0.961013
\(40\) 0 0
\(41\) −0.749700 −0.117083 −0.0585417 0.998285i \(-0.518645\pi\)
−0.0585417 + 0.998285i \(0.518645\pi\)
\(42\) 0.946227 0.146006
\(43\) 6.21936 0.948444 0.474222 0.880405i \(-0.342729\pi\)
0.474222 + 0.880405i \(0.342729\pi\)
\(44\) −9.35633 −1.41052
\(45\) 0 0
\(46\) 1.55215 0.228852
\(47\) 9.67532 1.41129 0.705645 0.708565i \(-0.250657\pi\)
0.705645 + 0.708565i \(0.250657\pi\)
\(48\) −2.64149 −0.381266
\(49\) −3.20094 −0.457277
\(50\) 0 0
\(51\) 1.89418 0.265239
\(52\) 10.5886 1.46838
\(53\) 4.44791 0.610967 0.305484 0.952197i \(-0.401182\pi\)
0.305484 + 0.952197i \(0.401182\pi\)
\(54\) −0.485464 −0.0660633
\(55\) 0 0
\(56\) 3.56191 0.475980
\(57\) 4.84040 0.641126
\(58\) 0.485464 0.0637446
\(59\) 14.8542 1.93385 0.966926 0.255056i \(-0.0820939\pi\)
0.966926 + 0.255056i \(0.0820939\pi\)
\(60\) 0 0
\(61\) 15.4683 1.98051 0.990255 0.139264i \(-0.0444738\pi\)
0.990255 + 0.139264i \(0.0444738\pi\)
\(62\) −2.41213 −0.306341
\(63\) −1.94912 −0.245566
\(64\) −2.88613 −0.360766
\(65\) 0 0
\(66\) −2.57445 −0.316893
\(67\) 14.6495 1.78972 0.894861 0.446344i \(-0.147274\pi\)
0.894861 + 0.446344i \(0.147274\pi\)
\(68\) 3.34195 0.405271
\(69\) −3.19725 −0.384903
\(70\) 0 0
\(71\) 5.37043 0.637353 0.318676 0.947864i \(-0.396762\pi\)
0.318676 + 0.947864i \(0.396762\pi\)
\(72\) −1.82745 −0.215366
\(73\) −12.5367 −1.46731 −0.733654 0.679523i \(-0.762187\pi\)
−0.733654 + 0.679523i \(0.762187\pi\)
\(74\) −5.32550 −0.619077
\(75\) 0 0
\(76\) 8.54003 0.979609
\(77\) −10.3363 −1.17793
\(78\) 2.91352 0.329892
\(79\) −7.87855 −0.886406 −0.443203 0.896421i \(-0.646158\pi\)
−0.443203 + 0.896421i \(0.646158\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −0.363953 −0.0401918
\(83\) −11.1873 −1.22797 −0.613986 0.789317i \(-0.710435\pi\)
−0.613986 + 0.789317i \(0.710435\pi\)
\(84\) −3.43888 −0.375212
\(85\) 0 0
\(86\) 3.01928 0.325577
\(87\) −1.00000 −0.107211
\(88\) −9.69106 −1.03307
\(89\) 15.2850 1.62021 0.810105 0.586284i \(-0.199410\pi\)
0.810105 + 0.586284i \(0.199410\pi\)
\(90\) 0 0
\(91\) 11.6977 1.22625
\(92\) −5.64098 −0.588113
\(93\) 4.96870 0.515231
\(94\) 4.69702 0.484461
\(95\) 0 0
\(96\) −4.93724 −0.503905
\(97\) 7.14188 0.725149 0.362574 0.931955i \(-0.381898\pi\)
0.362574 + 0.931955i \(0.381898\pi\)
\(98\) −1.55394 −0.156972
\(99\) 5.30306 0.532978
\(100\) 0 0
\(101\) 13.9908 1.39214 0.696069 0.717975i \(-0.254931\pi\)
0.696069 + 0.717975i \(0.254931\pi\)
\(102\) 0.919558 0.0910498
\(103\) 1.02871 0.101362 0.0506809 0.998715i \(-0.483861\pi\)
0.0506809 + 0.998715i \(0.483861\pi\)
\(104\) 10.9675 1.07545
\(105\) 0 0
\(106\) 2.15930 0.209730
\(107\) −4.81163 −0.465158 −0.232579 0.972578i \(-0.574716\pi\)
−0.232579 + 0.972578i \(0.574716\pi\)
\(108\) 1.76432 0.169772
\(109\) −0.502843 −0.0481636 −0.0240818 0.999710i \(-0.507666\pi\)
−0.0240818 + 0.999710i \(0.507666\pi\)
\(110\) 0 0
\(111\) 10.9699 1.04122
\(112\) −5.14857 −0.486495
\(113\) 19.2404 1.80999 0.904993 0.425427i \(-0.139876\pi\)
0.904993 + 0.425427i \(0.139876\pi\)
\(114\) 2.34984 0.220083
\(115\) 0 0
\(116\) −1.76432 −0.163813
\(117\) −6.00152 −0.554841
\(118\) 7.21119 0.663843
\(119\) 3.69199 0.338444
\(120\) 0 0
\(121\) 17.1225 1.55659
\(122\) 7.50930 0.679860
\(123\) 0.749700 0.0675982
\(124\) 8.76641 0.787246
\(125\) 0 0
\(126\) −0.946227 −0.0842966
\(127\) 3.56884 0.316684 0.158342 0.987384i \(-0.449385\pi\)
0.158342 + 0.987384i \(0.449385\pi\)
\(128\) −11.2756 −0.996631
\(129\) −6.21936 −0.547585
\(130\) 0 0
\(131\) −18.2131 −1.59128 −0.795642 0.605767i \(-0.792866\pi\)
−0.795642 + 0.605767i \(0.792866\pi\)
\(132\) 9.35633 0.814364
\(133\) 9.43450 0.818075
\(134\) 7.11181 0.614367
\(135\) 0 0
\(136\) 3.46152 0.296823
\(137\) 9.74717 0.832757 0.416379 0.909191i \(-0.363299\pi\)
0.416379 + 0.909191i \(0.363299\pi\)
\(138\) −1.55215 −0.132128
\(139\) −1.17574 −0.0997250 −0.0498625 0.998756i \(-0.515878\pi\)
−0.0498625 + 0.998756i \(0.515878\pi\)
\(140\) 0 0
\(141\) −9.67532 −0.814809
\(142\) 2.60715 0.218787
\(143\) −31.8265 −2.66146
\(144\) 2.64149 0.220124
\(145\) 0 0
\(146\) −6.08611 −0.503690
\(147\) 3.20094 0.264009
\(148\) 19.3545 1.59093
\(149\) 11.8645 0.971979 0.485989 0.873965i \(-0.338459\pi\)
0.485989 + 0.873965i \(0.338459\pi\)
\(150\) 0 0
\(151\) 8.03728 0.654065 0.327032 0.945013i \(-0.393951\pi\)
0.327032 + 0.945013i \(0.393951\pi\)
\(152\) 8.84556 0.717469
\(153\) −1.89418 −0.153136
\(154\) −5.01790 −0.404354
\(155\) 0 0
\(156\) −10.5886 −0.847769
\(157\) −2.56066 −0.204363 −0.102182 0.994766i \(-0.532582\pi\)
−0.102182 + 0.994766i \(0.532582\pi\)
\(158\) −3.82475 −0.304281
\(159\) −4.44791 −0.352742
\(160\) 0 0
\(161\) −6.23181 −0.491136
\(162\) 0.485464 0.0381417
\(163\) −1.72147 −0.134836 −0.0674180 0.997725i \(-0.521476\pi\)
−0.0674180 + 0.997725i \(0.521476\pi\)
\(164\) 1.32271 0.103287
\(165\) 0 0
\(166\) −5.43106 −0.421532
\(167\) 0.664214 0.0513984 0.0256992 0.999670i \(-0.491819\pi\)
0.0256992 + 0.999670i \(0.491819\pi\)
\(168\) −3.56191 −0.274807
\(169\) 23.0183 1.77064
\(170\) 0 0
\(171\) −4.84040 −0.370154
\(172\) −10.9730 −0.836682
\(173\) −3.59669 −0.273451 −0.136726 0.990609i \(-0.543658\pi\)
−0.136726 + 0.990609i \(0.543658\pi\)
\(174\) −0.485464 −0.0368030
\(175\) 0 0
\(176\) 14.0080 1.05589
\(177\) −14.8542 −1.11651
\(178\) 7.42034 0.556178
\(179\) 15.6539 1.17003 0.585013 0.811024i \(-0.301090\pi\)
0.585013 + 0.811024i \(0.301090\pi\)
\(180\) 0 0
\(181\) −5.74977 −0.427377 −0.213689 0.976902i \(-0.568548\pi\)
−0.213689 + 0.976902i \(0.568548\pi\)
\(182\) 5.67880 0.420941
\(183\) −15.4683 −1.14345
\(184\) −5.84279 −0.430736
\(185\) 0 0
\(186\) 2.41213 0.176866
\(187\) −10.0450 −0.734561
\(188\) −17.0704 −1.24499
\(189\) 1.94912 0.141777
\(190\) 0 0
\(191\) −15.5951 −1.12842 −0.564209 0.825632i \(-0.690819\pi\)
−0.564209 + 0.825632i \(0.690819\pi\)
\(192\) 2.88613 0.208288
\(193\) 14.7090 1.05878 0.529388 0.848380i \(-0.322422\pi\)
0.529388 + 0.848380i \(0.322422\pi\)
\(194\) 3.46713 0.248925
\(195\) 0 0
\(196\) 5.64750 0.403393
\(197\) 3.68654 0.262655 0.131328 0.991339i \(-0.458076\pi\)
0.131328 + 0.991339i \(0.458076\pi\)
\(198\) 2.57445 0.182958
\(199\) −13.6803 −0.969774 −0.484887 0.874577i \(-0.661139\pi\)
−0.484887 + 0.874577i \(0.661139\pi\)
\(200\) 0 0
\(201\) −14.6495 −1.03330
\(202\) 6.79204 0.477886
\(203\) −1.94912 −0.136801
\(204\) −3.34195 −0.233984
\(205\) 0 0
\(206\) 0.499402 0.0347950
\(207\) 3.19725 0.222224
\(208\) −15.8530 −1.09920
\(209\) −25.6689 −1.77556
\(210\) 0 0
\(211\) −15.1847 −1.04536 −0.522680 0.852529i \(-0.675068\pi\)
−0.522680 + 0.852529i \(0.675068\pi\)
\(212\) −7.84755 −0.538972
\(213\) −5.37043 −0.367976
\(214\) −2.33587 −0.159677
\(215\) 0 0
\(216\) 1.82745 0.124342
\(217\) 9.68459 0.657433
\(218\) −0.244112 −0.0165334
\(219\) 12.5367 0.847151
\(220\) 0 0
\(221\) 11.3680 0.764693
\(222\) 5.32550 0.357424
\(223\) 23.8871 1.59960 0.799800 0.600266i \(-0.204939\pi\)
0.799800 + 0.600266i \(0.204939\pi\)
\(224\) −9.62326 −0.642981
\(225\) 0 0
\(226\) 9.34053 0.621323
\(227\) −23.8609 −1.58371 −0.791853 0.610712i \(-0.790883\pi\)
−0.791853 + 0.610712i \(0.790883\pi\)
\(228\) −8.54003 −0.565577
\(229\) −12.9027 −0.852633 −0.426317 0.904574i \(-0.640189\pi\)
−0.426317 + 0.904574i \(0.640189\pi\)
\(230\) 0 0
\(231\) 10.3363 0.680078
\(232\) −1.82745 −0.119978
\(233\) 10.5268 0.689633 0.344816 0.938670i \(-0.387941\pi\)
0.344816 + 0.938670i \(0.387941\pi\)
\(234\) −2.91352 −0.190463
\(235\) 0 0
\(236\) −26.2076 −1.70597
\(237\) 7.87855 0.511767
\(238\) 1.79233 0.116179
\(239\) −7.00563 −0.453156 −0.226578 0.973993i \(-0.572754\pi\)
−0.226578 + 0.973993i \(0.572754\pi\)
\(240\) 0 0
\(241\) −14.3596 −0.924981 −0.462490 0.886624i \(-0.653044\pi\)
−0.462490 + 0.886624i \(0.653044\pi\)
\(242\) 8.31236 0.534339
\(243\) −1.00000 −0.0641500
\(244\) −27.2911 −1.74713
\(245\) 0 0
\(246\) 0.363953 0.0232048
\(247\) 29.0497 1.84839
\(248\) 9.08003 0.576583
\(249\) 11.1873 0.708969
\(250\) 0 0
\(251\) 21.7642 1.37375 0.686873 0.726778i \(-0.258983\pi\)
0.686873 + 0.726778i \(0.258983\pi\)
\(252\) 3.43888 0.216629
\(253\) 16.9552 1.06596
\(254\) 1.73255 0.108710
\(255\) 0 0
\(256\) 0.298356 0.0186473
\(257\) −10.1732 −0.634589 −0.317295 0.948327i \(-0.602774\pi\)
−0.317295 + 0.948327i \(0.602774\pi\)
\(258\) −3.01928 −0.187972
\(259\) 21.3816 1.32859
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) −8.84180 −0.546248
\(263\) −16.8078 −1.03642 −0.518208 0.855255i \(-0.673401\pi\)
−0.518208 + 0.855255i \(0.673401\pi\)
\(264\) 9.69106 0.596443
\(265\) 0 0
\(266\) 4.58011 0.280825
\(267\) −15.2850 −0.935429
\(268\) −25.8465 −1.57883
\(269\) 24.1896 1.47487 0.737434 0.675419i \(-0.236037\pi\)
0.737434 + 0.675419i \(0.236037\pi\)
\(270\) 0 0
\(271\) −4.46984 −0.271523 −0.135762 0.990742i \(-0.543348\pi\)
−0.135762 + 0.990742i \(0.543348\pi\)
\(272\) −5.00346 −0.303380
\(273\) −11.6977 −0.707975
\(274\) 4.73190 0.285865
\(275\) 0 0
\(276\) 5.64098 0.339547
\(277\) 1.88450 0.113229 0.0566143 0.998396i \(-0.481969\pi\)
0.0566143 + 0.998396i \(0.481969\pi\)
\(278\) −0.570780 −0.0342331
\(279\) −4.96870 −0.297469
\(280\) 0 0
\(281\) 15.0159 0.895774 0.447887 0.894090i \(-0.352177\pi\)
0.447887 + 0.894090i \(0.352177\pi\)
\(282\) −4.69702 −0.279704
\(283\) 20.2576 1.20419 0.602096 0.798424i \(-0.294333\pi\)
0.602096 + 0.798424i \(0.294333\pi\)
\(284\) −9.47518 −0.562248
\(285\) 0 0
\(286\) −15.4506 −0.913614
\(287\) 1.46125 0.0862551
\(288\) 4.93724 0.290930
\(289\) −13.4121 −0.788945
\(290\) 0 0
\(291\) −7.14188 −0.418665
\(292\) 22.1188 1.29440
\(293\) −5.25806 −0.307179 −0.153589 0.988135i \(-0.549083\pi\)
−0.153589 + 0.988135i \(0.549083\pi\)
\(294\) 1.55394 0.0906277
\(295\) 0 0
\(296\) 20.0469 1.16520
\(297\) −5.30306 −0.307715
\(298\) 5.75980 0.333656
\(299\) −19.1883 −1.10969
\(300\) 0 0
\(301\) −12.1223 −0.698716
\(302\) 3.90181 0.224524
\(303\) −13.9908 −0.803751
\(304\) −12.7859 −0.733319
\(305\) 0 0
\(306\) −0.919558 −0.0525676
\(307\) −18.0575 −1.03060 −0.515298 0.857011i \(-0.672319\pi\)
−0.515298 + 0.857011i \(0.672319\pi\)
\(308\) 18.2366 1.03913
\(309\) −1.02871 −0.0585213
\(310\) 0 0
\(311\) −3.28065 −0.186029 −0.0930143 0.995665i \(-0.529650\pi\)
−0.0930143 + 0.995665i \(0.529650\pi\)
\(312\) −10.9675 −0.620910
\(313\) −8.87479 −0.501633 −0.250816 0.968035i \(-0.580699\pi\)
−0.250816 + 0.968035i \(0.580699\pi\)
\(314\) −1.24311 −0.0701528
\(315\) 0 0
\(316\) 13.9003 0.781954
\(317\) 18.1311 1.01835 0.509173 0.860664i \(-0.329951\pi\)
0.509173 + 0.860664i \(0.329951\pi\)
\(318\) −2.15930 −0.121088
\(319\) 5.30306 0.296915
\(320\) 0 0
\(321\) 4.81163 0.268559
\(322\) −3.02532 −0.168595
\(323\) 9.16860 0.510154
\(324\) −1.76432 −0.0980180
\(325\) 0 0
\(326\) −0.835712 −0.0462858
\(327\) 0.502843 0.0278073
\(328\) 1.37004 0.0756476
\(329\) −18.8583 −1.03969
\(330\) 0 0
\(331\) 9.86489 0.542223 0.271112 0.962548i \(-0.412609\pi\)
0.271112 + 0.962548i \(0.412609\pi\)
\(332\) 19.7381 1.08327
\(333\) −10.9699 −0.601147
\(334\) 0.322452 0.0176438
\(335\) 0 0
\(336\) 5.14857 0.280878
\(337\) 10.5463 0.574493 0.287247 0.957857i \(-0.407260\pi\)
0.287247 + 0.957857i \(0.407260\pi\)
\(338\) 11.1745 0.607815
\(339\) −19.2404 −1.04500
\(340\) 0 0
\(341\) −26.3494 −1.42690
\(342\) −2.34984 −0.127065
\(343\) 19.8828 1.07357
\(344\) −11.3655 −0.612789
\(345\) 0 0
\(346\) −1.74606 −0.0938690
\(347\) −31.1044 −1.66977 −0.834885 0.550425i \(-0.814466\pi\)
−0.834885 + 0.550425i \(0.814466\pi\)
\(348\) 1.76432 0.0945777
\(349\) −5.00604 −0.267967 −0.133984 0.990984i \(-0.542777\pi\)
−0.133984 + 0.990984i \(0.542777\pi\)
\(350\) 0 0
\(351\) 6.00152 0.320338
\(352\) 26.1825 1.39553
\(353\) −4.01219 −0.213548 −0.106774 0.994283i \(-0.534052\pi\)
−0.106774 + 0.994283i \(0.534052\pi\)
\(354\) −7.21119 −0.383270
\(355\) 0 0
\(356\) −26.9678 −1.42929
\(357\) −3.69199 −0.195401
\(358\) 7.59939 0.401640
\(359\) 21.1999 1.11889 0.559445 0.828868i \(-0.311014\pi\)
0.559445 + 0.828868i \(0.311014\pi\)
\(360\) 0 0
\(361\) 4.42944 0.233128
\(362\) −2.79131 −0.146708
\(363\) −17.1225 −0.898698
\(364\) −20.6385 −1.08175
\(365\) 0 0
\(366\) −7.50930 −0.392517
\(367\) −13.2223 −0.690196 −0.345098 0.938567i \(-0.612154\pi\)
−0.345098 + 0.938567i \(0.612154\pi\)
\(368\) 8.44550 0.440252
\(369\) −0.749700 −0.0390278
\(370\) 0 0
\(371\) −8.66950 −0.450098
\(372\) −8.76641 −0.454517
\(373\) −11.5629 −0.598702 −0.299351 0.954143i \(-0.596770\pi\)
−0.299351 + 0.954143i \(0.596770\pi\)
\(374\) −4.87648 −0.252157
\(375\) 0 0
\(376\) −17.6811 −0.911834
\(377\) −6.00152 −0.309094
\(378\) 0.946227 0.0486687
\(379\) 24.3120 1.24882 0.624412 0.781095i \(-0.285339\pi\)
0.624412 + 0.781095i \(0.285339\pi\)
\(380\) 0 0
\(381\) −3.56884 −0.182837
\(382\) −7.57084 −0.387358
\(383\) −1.27322 −0.0650586 −0.0325293 0.999471i \(-0.510356\pi\)
−0.0325293 + 0.999471i \(0.510356\pi\)
\(384\) 11.2756 0.575405
\(385\) 0 0
\(386\) 7.14069 0.363451
\(387\) 6.21936 0.316148
\(388\) −12.6006 −0.639699
\(389\) 28.4298 1.44145 0.720725 0.693221i \(-0.243809\pi\)
0.720725 + 0.693221i \(0.243809\pi\)
\(390\) 0 0
\(391\) −6.05617 −0.306274
\(392\) 5.84954 0.295446
\(393\) 18.2131 0.918728
\(394\) 1.78969 0.0901631
\(395\) 0 0
\(396\) −9.35633 −0.470173
\(397\) 8.89762 0.446559 0.223279 0.974754i \(-0.428324\pi\)
0.223279 + 0.974754i \(0.428324\pi\)
\(398\) −6.64132 −0.332899
\(399\) −9.43450 −0.472316
\(400\) 0 0
\(401\) 6.49653 0.324421 0.162211 0.986756i \(-0.448138\pi\)
0.162211 + 0.986756i \(0.448138\pi\)
\(402\) −7.11181 −0.354705
\(403\) 29.8198 1.48543
\(404\) −24.6843 −1.22809
\(405\) 0 0
\(406\) −0.946227 −0.0469605
\(407\) −58.1741 −2.88358
\(408\) −3.46152 −0.171371
\(409\) 39.8121 1.96858 0.984291 0.176556i \(-0.0564956\pi\)
0.984291 + 0.176556i \(0.0564956\pi\)
\(410\) 0 0
\(411\) −9.74717 −0.480793
\(412\) −1.81498 −0.0894176
\(413\) −28.9526 −1.42466
\(414\) 1.55215 0.0762840
\(415\) 0 0
\(416\) −29.6309 −1.45278
\(417\) 1.17574 0.0575762
\(418\) −12.4613 −0.609505
\(419\) 10.7000 0.522728 0.261364 0.965240i \(-0.415828\pi\)
0.261364 + 0.965240i \(0.415828\pi\)
\(420\) 0 0
\(421\) −18.3169 −0.892711 −0.446355 0.894856i \(-0.647278\pi\)
−0.446355 + 0.894856i \(0.647278\pi\)
\(422\) −7.37165 −0.358846
\(423\) 9.67532 0.470430
\(424\) −8.12831 −0.394746
\(425\) 0 0
\(426\) −2.60715 −0.126317
\(427\) −30.1495 −1.45904
\(428\) 8.48927 0.410344
\(429\) 31.8265 1.53660
\(430\) 0 0
\(431\) 1.14956 0.0553723 0.0276861 0.999617i \(-0.491186\pi\)
0.0276861 + 0.999617i \(0.491186\pi\)
\(432\) −2.64149 −0.127089
\(433\) 26.2208 1.26009 0.630045 0.776559i \(-0.283036\pi\)
0.630045 + 0.776559i \(0.283036\pi\)
\(434\) 4.70152 0.225680
\(435\) 0 0
\(436\) 0.887178 0.0424881
\(437\) −15.4759 −0.740315
\(438\) 6.08611 0.290806
\(439\) −5.92196 −0.282640 −0.141320 0.989964i \(-0.545135\pi\)
−0.141320 + 0.989964i \(0.545135\pi\)
\(440\) 0 0
\(441\) −3.20094 −0.152426
\(442\) 5.51875 0.262500
\(443\) 12.4000 0.589140 0.294570 0.955630i \(-0.404824\pi\)
0.294570 + 0.955630i \(0.404824\pi\)
\(444\) −19.3545 −0.918523
\(445\) 0 0
\(446\) 11.5963 0.549103
\(447\) −11.8645 −0.561172
\(448\) 5.62540 0.265775
\(449\) −35.5492 −1.67767 −0.838835 0.544386i \(-0.816763\pi\)
−0.838835 + 0.544386i \(0.816763\pi\)
\(450\) 0 0
\(451\) −3.97571 −0.187209
\(452\) −33.9463 −1.59670
\(453\) −8.03728 −0.377624
\(454\) −11.5836 −0.543647
\(455\) 0 0
\(456\) −8.84556 −0.414231
\(457\) 11.7868 0.551364 0.275682 0.961249i \(-0.411096\pi\)
0.275682 + 0.961249i \(0.411096\pi\)
\(458\) −6.26379 −0.292688
\(459\) 1.89418 0.0884129
\(460\) 0 0
\(461\) −8.53366 −0.397452 −0.198726 0.980055i \(-0.563680\pi\)
−0.198726 + 0.980055i \(0.563680\pi\)
\(462\) 5.01790 0.233454
\(463\) 3.75971 0.174729 0.0873643 0.996176i \(-0.472156\pi\)
0.0873643 + 0.996176i \(0.472156\pi\)
\(464\) 2.64149 0.122628
\(465\) 0 0
\(466\) 5.11038 0.236734
\(467\) −1.32889 −0.0614938 −0.0307469 0.999527i \(-0.509789\pi\)
−0.0307469 + 0.999527i \(0.509789\pi\)
\(468\) 10.5886 0.489460
\(469\) −28.5536 −1.31848
\(470\) 0 0
\(471\) 2.56066 0.117989
\(472\) −27.1452 −1.24946
\(473\) 32.9817 1.51650
\(474\) 3.82475 0.175677
\(475\) 0 0
\(476\) −6.51386 −0.298562
\(477\) 4.44791 0.203656
\(478\) −3.40098 −0.155557
\(479\) −7.85604 −0.358952 −0.179476 0.983762i \(-0.557440\pi\)
−0.179476 + 0.983762i \(0.557440\pi\)
\(480\) 0 0
\(481\) 65.8361 3.00187
\(482\) −6.97105 −0.317523
\(483\) 6.23181 0.283557
\(484\) −30.2096 −1.37316
\(485\) 0 0
\(486\) −0.485464 −0.0220211
\(487\) −15.3505 −0.695597 −0.347798 0.937569i \(-0.613071\pi\)
−0.347798 + 0.937569i \(0.613071\pi\)
\(488\) −28.2674 −1.27961
\(489\) 1.72147 0.0778476
\(490\) 0 0
\(491\) −37.2963 −1.68316 −0.841579 0.540133i \(-0.818374\pi\)
−0.841579 + 0.540133i \(0.818374\pi\)
\(492\) −1.32271 −0.0596326
\(493\) −1.89418 −0.0853097
\(494\) 14.1026 0.634507
\(495\) 0 0
\(496\) −13.1248 −0.589320
\(497\) −10.4676 −0.469536
\(498\) 5.43106 0.243372
\(499\) 23.2644 1.04146 0.520730 0.853722i \(-0.325660\pi\)
0.520730 + 0.853722i \(0.325660\pi\)
\(500\) 0 0
\(501\) −0.664214 −0.0296749
\(502\) 10.5658 0.471573
\(503\) 11.0584 0.493072 0.246536 0.969134i \(-0.420708\pi\)
0.246536 + 0.969134i \(0.420708\pi\)
\(504\) 3.56191 0.158660
\(505\) 0 0
\(506\) 8.23115 0.365919
\(507\) −23.0183 −1.02228
\(508\) −6.29660 −0.279366
\(509\) −29.0128 −1.28597 −0.642984 0.765880i \(-0.722304\pi\)
−0.642984 + 0.765880i \(0.722304\pi\)
\(510\) 0 0
\(511\) 24.4355 1.08096
\(512\) 22.6960 1.00303
\(513\) 4.84040 0.213709
\(514\) −4.93874 −0.217839
\(515\) 0 0
\(516\) 10.9730 0.483058
\(517\) 51.3088 2.25656
\(518\) 10.3800 0.456072
\(519\) 3.59669 0.157877
\(520\) 0 0
\(521\) −17.2400 −0.755298 −0.377649 0.925949i \(-0.623267\pi\)
−0.377649 + 0.925949i \(0.623267\pi\)
\(522\) 0.485464 0.0212482
\(523\) 36.1676 1.58150 0.790750 0.612139i \(-0.209691\pi\)
0.790750 + 0.612139i \(0.209691\pi\)
\(524\) 32.1338 1.40377
\(525\) 0 0
\(526\) −8.15961 −0.355776
\(527\) 9.41163 0.409977
\(528\) −14.0080 −0.609619
\(529\) −12.7776 −0.555548
\(530\) 0 0
\(531\) 14.8542 0.644618
\(532\) −16.6455 −0.721675
\(533\) 4.49934 0.194888
\(534\) −7.42034 −0.321110
\(535\) 0 0
\(536\) −26.7712 −1.15634
\(537\) −15.6539 −0.675514
\(538\) 11.7432 0.506286
\(539\) −16.9748 −0.731156
\(540\) 0 0
\(541\) −12.8146 −0.550943 −0.275471 0.961309i \(-0.588834\pi\)
−0.275471 + 0.961309i \(0.588834\pi\)
\(542\) −2.16995 −0.0932072
\(543\) 5.74977 0.246746
\(544\) −9.35203 −0.400965
\(545\) 0 0
\(546\) −5.67880 −0.243030
\(547\) −3.86645 −0.165318 −0.0826588 0.996578i \(-0.526341\pi\)
−0.0826588 + 0.996578i \(0.526341\pi\)
\(548\) −17.1972 −0.734627
\(549\) 15.4683 0.660170
\(550\) 0 0
\(551\) −4.84040 −0.206208
\(552\) 5.84279 0.248686
\(553\) 15.3562 0.653013
\(554\) 0.914857 0.0388685
\(555\) 0 0
\(556\) 2.07439 0.0879736
\(557\) −27.1140 −1.14886 −0.574428 0.818555i \(-0.694775\pi\)
−0.574428 + 0.818555i \(0.694775\pi\)
\(558\) −2.41213 −0.102114
\(559\) −37.3257 −1.57871
\(560\) 0 0
\(561\) 10.0450 0.424099
\(562\) 7.28969 0.307497
\(563\) 11.9543 0.503816 0.251908 0.967751i \(-0.418942\pi\)
0.251908 + 0.967751i \(0.418942\pi\)
\(564\) 17.0704 0.718793
\(565\) 0 0
\(566\) 9.83436 0.413369
\(567\) −1.94912 −0.0818553
\(568\) −9.81416 −0.411793
\(569\) 44.4464 1.86329 0.931646 0.363368i \(-0.118373\pi\)
0.931646 + 0.363368i \(0.118373\pi\)
\(570\) 0 0
\(571\) −14.0314 −0.587196 −0.293598 0.955929i \(-0.594853\pi\)
−0.293598 + 0.955929i \(0.594853\pi\)
\(572\) 56.1522 2.34784
\(573\) 15.5951 0.651493
\(574\) 0.709387 0.0296092
\(575\) 0 0
\(576\) −2.88613 −0.120255
\(577\) 17.9198 0.746010 0.373005 0.927829i \(-0.378327\pi\)
0.373005 + 0.927829i \(0.378327\pi\)
\(578\) −6.51108 −0.270825
\(579\) −14.7090 −0.611285
\(580\) 0 0
\(581\) 21.8055 0.904643
\(582\) −3.46713 −0.143717
\(583\) 23.5875 0.976896
\(584\) 22.9101 0.948027
\(585\) 0 0
\(586\) −2.55260 −0.105447
\(587\) 13.3009 0.548988 0.274494 0.961589i \(-0.411490\pi\)
0.274494 + 0.961589i \(0.411490\pi\)
\(588\) −5.64750 −0.232899
\(589\) 24.0505 0.990983
\(590\) 0 0
\(591\) −3.68654 −0.151644
\(592\) −28.9769 −1.19094
\(593\) 33.4113 1.37204 0.686020 0.727583i \(-0.259356\pi\)
0.686020 + 0.727583i \(0.259356\pi\)
\(594\) −2.57445 −0.105631
\(595\) 0 0
\(596\) −20.9328 −0.857443
\(597\) 13.6803 0.559899
\(598\) −9.31526 −0.380929
\(599\) −10.4231 −0.425875 −0.212938 0.977066i \(-0.568303\pi\)
−0.212938 + 0.977066i \(0.568303\pi\)
\(600\) 0 0
\(601\) 13.6537 0.556948 0.278474 0.960444i \(-0.410171\pi\)
0.278474 + 0.960444i \(0.410171\pi\)
\(602\) −5.88493 −0.239852
\(603\) 14.6495 0.596574
\(604\) −14.1804 −0.576991
\(605\) 0 0
\(606\) −6.79204 −0.275908
\(607\) −9.97305 −0.404794 −0.202397 0.979304i \(-0.564873\pi\)
−0.202397 + 0.979304i \(0.564873\pi\)
\(608\) −23.8982 −0.969200
\(609\) 1.94912 0.0789822
\(610\) 0 0
\(611\) −58.0666 −2.34912
\(612\) 3.34195 0.135090
\(613\) −27.5521 −1.11282 −0.556410 0.830908i \(-0.687822\pi\)
−0.556410 + 0.830908i \(0.687822\pi\)
\(614\) −8.76626 −0.353778
\(615\) 0 0
\(616\) 18.8890 0.761060
\(617\) −2.82321 −0.113658 −0.0568290 0.998384i \(-0.518099\pi\)
−0.0568290 + 0.998384i \(0.518099\pi\)
\(618\) −0.499402 −0.0200889
\(619\) −19.7985 −0.795769 −0.397884 0.917436i \(-0.630256\pi\)
−0.397884 + 0.917436i \(0.630256\pi\)
\(620\) 0 0
\(621\) −3.19725 −0.128301
\(622\) −1.59264 −0.0638590
\(623\) −29.7923 −1.19361
\(624\) 15.8530 0.634626
\(625\) 0 0
\(626\) −4.30839 −0.172198
\(627\) 25.6689 1.02512
\(628\) 4.51784 0.180282
\(629\) 20.7790 0.828513
\(630\) 0 0
\(631\) −21.2079 −0.844273 −0.422137 0.906532i \(-0.638720\pi\)
−0.422137 + 0.906532i \(0.638720\pi\)
\(632\) 14.3976 0.572706
\(633\) 15.1847 0.603539
\(634\) 8.80202 0.349573
\(635\) 0 0
\(636\) 7.84755 0.311176
\(637\) 19.2105 0.761148
\(638\) 2.57445 0.101923
\(639\) 5.37043 0.212451
\(640\) 0 0
\(641\) 20.3393 0.803352 0.401676 0.915782i \(-0.368428\pi\)
0.401676 + 0.915782i \(0.368428\pi\)
\(642\) 2.33587 0.0921896
\(643\) −7.62000 −0.300504 −0.150252 0.988648i \(-0.548008\pi\)
−0.150252 + 0.988648i \(0.548008\pi\)
\(644\) 10.9949 0.433261
\(645\) 0 0
\(646\) 4.45103 0.175123
\(647\) 16.2002 0.636894 0.318447 0.947941i \(-0.396839\pi\)
0.318447 + 0.947941i \(0.396839\pi\)
\(648\) −1.82745 −0.0717888
\(649\) 78.7728 3.09210
\(650\) 0 0
\(651\) −9.68459 −0.379569
\(652\) 3.03723 0.118947
\(653\) 16.1885 0.633504 0.316752 0.948508i \(-0.397408\pi\)
0.316752 + 0.948508i \(0.397408\pi\)
\(654\) 0.244112 0.00954555
\(655\) 0 0
\(656\) −1.98032 −0.0773187
\(657\) −12.5367 −0.489103
\(658\) −9.15505 −0.356901
\(659\) −15.2321 −0.593360 −0.296680 0.954977i \(-0.595879\pi\)
−0.296680 + 0.954977i \(0.595879\pi\)
\(660\) 0 0
\(661\) −24.1313 −0.938600 −0.469300 0.883039i \(-0.655494\pi\)
−0.469300 + 0.883039i \(0.655494\pi\)
\(662\) 4.78905 0.186132
\(663\) −11.3680 −0.441496
\(664\) 20.4443 0.793391
\(665\) 0 0
\(666\) −5.32550 −0.206359
\(667\) 3.19725 0.123798
\(668\) −1.17189 −0.0453417
\(669\) −23.8871 −0.923530
\(670\) 0 0
\(671\) 82.0293 3.16671
\(672\) 9.62326 0.371225
\(673\) 26.0546 1.00433 0.502166 0.864771i \(-0.332537\pi\)
0.502166 + 0.864771i \(0.332537\pi\)
\(674\) 5.11985 0.197209
\(675\) 0 0
\(676\) −40.6117 −1.56199
\(677\) −15.2415 −0.585778 −0.292889 0.956146i \(-0.594617\pi\)
−0.292889 + 0.956146i \(0.594617\pi\)
\(678\) −9.34053 −0.358721
\(679\) −13.9204 −0.534215
\(680\) 0 0
\(681\) 23.8609 0.914353
\(682\) −12.7917 −0.489818
\(683\) 25.0393 0.958104 0.479052 0.877787i \(-0.340981\pi\)
0.479052 + 0.877787i \(0.340981\pi\)
\(684\) 8.54003 0.326536
\(685\) 0 0
\(686\) 9.65241 0.368531
\(687\) 12.9027 0.492268
\(688\) 16.4284 0.626326
\(689\) −26.6942 −1.01697
\(690\) 0 0
\(691\) 10.0997 0.384210 0.192105 0.981374i \(-0.438469\pi\)
0.192105 + 0.981374i \(0.438469\pi\)
\(692\) 6.34573 0.241228
\(693\) −10.3363 −0.392643
\(694\) −15.1001 −0.573190
\(695\) 0 0
\(696\) 1.82745 0.0692691
\(697\) 1.42007 0.0537890
\(698\) −2.43026 −0.0919865
\(699\) −10.5268 −0.398160
\(700\) 0 0
\(701\) 2.30566 0.0870837 0.0435418 0.999052i \(-0.486136\pi\)
0.0435418 + 0.999052i \(0.486136\pi\)
\(702\) 2.91352 0.109964
\(703\) 53.0987 2.00266
\(704\) −15.3053 −0.576841
\(705\) 0 0
\(706\) −1.94778 −0.0733055
\(707\) −27.2697 −1.02558
\(708\) 26.2076 0.984943
\(709\) −18.8911 −0.709471 −0.354736 0.934967i \(-0.615429\pi\)
−0.354736 + 0.934967i \(0.615429\pi\)
\(710\) 0 0
\(711\) −7.87855 −0.295469
\(712\) −27.9326 −1.04682
\(713\) −15.8862 −0.594942
\(714\) −1.79233 −0.0670762
\(715\) 0 0
\(716\) −27.6185 −1.03215
\(717\) 7.00563 0.261630
\(718\) 10.2918 0.384087
\(719\) −29.9688 −1.11765 −0.558824 0.829286i \(-0.688747\pi\)
−0.558824 + 0.829286i \(0.688747\pi\)
\(720\) 0 0
\(721\) −2.00508 −0.0746730
\(722\) 2.15033 0.0800271
\(723\) 14.3596 0.534038
\(724\) 10.1445 0.377016
\(725\) 0 0
\(726\) −8.31236 −0.308501
\(727\) 49.4790 1.83507 0.917537 0.397649i \(-0.130174\pi\)
0.917537 + 0.397649i \(0.130174\pi\)
\(728\) −21.3769 −0.792279
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −11.7806 −0.435722
\(732\) 27.2911 1.00871
\(733\) 10.8422 0.400466 0.200233 0.979748i \(-0.435830\pi\)
0.200233 + 0.979748i \(0.435830\pi\)
\(734\) −6.41894 −0.236927
\(735\) 0 0
\(736\) 15.7856 0.581864
\(737\) 77.6873 2.86165
\(738\) −0.363953 −0.0133973
\(739\) 29.5649 1.08756 0.543782 0.839227i \(-0.316992\pi\)
0.543782 + 0.839227i \(0.316992\pi\)
\(740\) 0 0
\(741\) −29.0497 −1.06717
\(742\) −4.20873 −0.154507
\(743\) 13.0605 0.479142 0.239571 0.970879i \(-0.422993\pi\)
0.239571 + 0.970879i \(0.422993\pi\)
\(744\) −9.08003 −0.332890
\(745\) 0 0
\(746\) −5.61336 −0.205520
\(747\) −11.1873 −0.409324
\(748\) 17.7226 0.648002
\(749\) 9.37843 0.342680
\(750\) 0 0
\(751\) −35.6084 −1.29937 −0.649685 0.760204i \(-0.725099\pi\)
−0.649685 + 0.760204i \(0.725099\pi\)
\(752\) 25.5573 0.931977
\(753\) −21.7642 −0.793132
\(754\) −2.91352 −0.106104
\(755\) 0 0
\(756\) −3.43888 −0.125071
\(757\) 14.8369 0.539256 0.269628 0.962964i \(-0.413099\pi\)
0.269628 + 0.962964i \(0.413099\pi\)
\(758\) 11.8026 0.428690
\(759\) −16.9552 −0.615435
\(760\) 0 0
\(761\) 33.9733 1.23153 0.615766 0.787929i \(-0.288847\pi\)
0.615766 + 0.787929i \(0.288847\pi\)
\(762\) −1.73255 −0.0627635
\(763\) 0.980100 0.0354820
\(764\) 27.5147 0.995449
\(765\) 0 0
\(766\) −0.618104 −0.0223330
\(767\) −89.1478 −3.21894
\(768\) −0.298356 −0.0107660
\(769\) −37.9334 −1.36791 −0.683957 0.729523i \(-0.739742\pi\)
−0.683957 + 0.729523i \(0.739742\pi\)
\(770\) 0 0
\(771\) 10.1732 0.366380
\(772\) −25.9514 −0.934012
\(773\) −6.15453 −0.221363 −0.110681 0.993856i \(-0.535303\pi\)
−0.110681 + 0.993856i \(0.535303\pi\)
\(774\) 3.01928 0.108526
\(775\) 0 0
\(776\) −13.0514 −0.468518
\(777\) −21.3816 −0.767062
\(778\) 13.8017 0.494814
\(779\) 3.62885 0.130017
\(780\) 0 0
\(781\) 28.4797 1.01908
\(782\) −2.94006 −0.105136
\(783\) −1.00000 −0.0357371
\(784\) −8.45525 −0.301973
\(785\) 0 0
\(786\) 8.84180 0.315377
\(787\) −51.4731 −1.83482 −0.917409 0.397945i \(-0.869724\pi\)
−0.917409 + 0.397945i \(0.869724\pi\)
\(788\) −6.50426 −0.231705
\(789\) 16.8078 0.598375
\(790\) 0 0
\(791\) −37.5018 −1.33341
\(792\) −9.69106 −0.344357
\(793\) −92.8332 −3.29660
\(794\) 4.31948 0.153293
\(795\) 0 0
\(796\) 24.1366 0.855498
\(797\) 34.9078 1.23650 0.618249 0.785982i \(-0.287842\pi\)
0.618249 + 0.785982i \(0.287842\pi\)
\(798\) −4.58011 −0.162134
\(799\) −18.3268 −0.648356
\(800\) 0 0
\(801\) 15.2850 0.540070
\(802\) 3.15384 0.111366
\(803\) −66.4828 −2.34613
\(804\) 25.8465 0.911535
\(805\) 0 0
\(806\) 14.4764 0.509911
\(807\) −24.1896 −0.851516
\(808\) −25.5674 −0.899460
\(809\) −5.72847 −0.201402 −0.100701 0.994917i \(-0.532109\pi\)
−0.100701 + 0.994917i \(0.532109\pi\)
\(810\) 0 0
\(811\) −4.09859 −0.143921 −0.0719605 0.997407i \(-0.522926\pi\)
−0.0719605 + 0.997407i \(0.522926\pi\)
\(812\) 3.43888 0.120681
\(813\) 4.46984 0.156764
\(814\) −28.2415 −0.989863
\(815\) 0 0
\(816\) 5.00346 0.175156
\(817\) −30.1042 −1.05321
\(818\) 19.3273 0.675765
\(819\) 11.6977 0.408750
\(820\) 0 0
\(821\) 26.9013 0.938862 0.469431 0.882969i \(-0.344459\pi\)
0.469431 + 0.882969i \(0.344459\pi\)
\(822\) −4.73190 −0.165044
\(823\) −14.7883 −0.515489 −0.257744 0.966213i \(-0.582979\pi\)
−0.257744 + 0.966213i \(0.582979\pi\)
\(824\) −1.87991 −0.0654898
\(825\) 0 0
\(826\) −14.0555 −0.489052
\(827\) 20.3841 0.708826 0.354413 0.935089i \(-0.384681\pi\)
0.354413 + 0.935089i \(0.384681\pi\)
\(828\) −5.64098 −0.196038
\(829\) 10.9727 0.381097 0.190548 0.981678i \(-0.438973\pi\)
0.190548 + 0.981678i \(0.438973\pi\)
\(830\) 0 0
\(831\) −1.88450 −0.0653725
\(832\) 17.3211 0.600503
\(833\) 6.06317 0.210076
\(834\) 0.570780 0.0197645
\(835\) 0 0
\(836\) 45.2883 1.56633
\(837\) 4.96870 0.171744
\(838\) 5.19445 0.179439
\(839\) −52.7098 −1.81974 −0.909872 0.414889i \(-0.863821\pi\)
−0.909872 + 0.414889i \(0.863821\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −8.89220 −0.306445
\(843\) −15.0159 −0.517175
\(844\) 26.7908 0.922178
\(845\) 0 0
\(846\) 4.69702 0.161487
\(847\) −33.3738 −1.14674
\(848\) 11.7491 0.403466
\(849\) −20.2576 −0.695240
\(850\) 0 0
\(851\) −35.0735 −1.20230
\(852\) 9.47518 0.324614
\(853\) −39.8561 −1.36465 −0.682324 0.731050i \(-0.739031\pi\)
−0.682324 + 0.731050i \(0.739031\pi\)
\(854\) −14.6365 −0.500851
\(855\) 0 0
\(856\) 8.79299 0.300538
\(857\) 30.1101 1.02854 0.514271 0.857628i \(-0.328062\pi\)
0.514271 + 0.857628i \(0.328062\pi\)
\(858\) 15.4506 0.527475
\(859\) 19.8331 0.676697 0.338349 0.941021i \(-0.390132\pi\)
0.338349 + 0.941021i \(0.390132\pi\)
\(860\) 0 0
\(861\) −1.46125 −0.0497994
\(862\) 0.558069 0.0190079
\(863\) 19.8047 0.674161 0.337080 0.941476i \(-0.390561\pi\)
0.337080 + 0.941476i \(0.390561\pi\)
\(864\) −4.93724 −0.167968
\(865\) 0 0
\(866\) 12.7292 0.432557
\(867\) 13.4121 0.455498
\(868\) −17.0868 −0.579962
\(869\) −41.7804 −1.41730
\(870\) 0 0
\(871\) −87.9194 −2.97903
\(872\) 0.918918 0.0311185
\(873\) 7.14188 0.241716
\(874\) −7.51302 −0.254132
\(875\) 0 0
\(876\) −22.1188 −0.747324
\(877\) −9.17766 −0.309908 −0.154954 0.987922i \(-0.549523\pi\)
−0.154954 + 0.987922i \(0.549523\pi\)
\(878\) −2.87490 −0.0970231
\(879\) 5.25806 0.177350
\(880\) 0 0
\(881\) −19.0970 −0.643393 −0.321697 0.946843i \(-0.604253\pi\)
−0.321697 + 0.946843i \(0.604253\pi\)
\(882\) −1.55394 −0.0523239
\(883\) 20.3991 0.686484 0.343242 0.939247i \(-0.388475\pi\)
0.343242 + 0.939247i \(0.388475\pi\)
\(884\) −20.0568 −0.674583
\(885\) 0 0
\(886\) 6.01974 0.202237
\(887\) 51.3290 1.72346 0.861730 0.507367i \(-0.169381\pi\)
0.861730 + 0.507367i \(0.169381\pi\)
\(888\) −20.0469 −0.672730
\(889\) −6.95610 −0.233300
\(890\) 0 0
\(891\) 5.30306 0.177659
\(892\) −42.1446 −1.41111
\(893\) −46.8324 −1.56719
\(894\) −5.75980 −0.192636
\(895\) 0 0
\(896\) 21.9775 0.734215
\(897\) 19.1883 0.640680
\(898\) −17.2579 −0.575902
\(899\) −4.96870 −0.165716
\(900\) 0 0
\(901\) −8.42515 −0.280683
\(902\) −1.93006 −0.0642641
\(903\) 12.1223 0.403404
\(904\) −35.1608 −1.16943
\(905\) 0 0
\(906\) −3.90181 −0.129629
\(907\) 5.19249 0.172414 0.0862068 0.996277i \(-0.472525\pi\)
0.0862068 + 0.996277i \(0.472525\pi\)
\(908\) 42.0984 1.39709
\(909\) 13.9908 0.464046
\(910\) 0 0
\(911\) 35.9052 1.18959 0.594795 0.803877i \(-0.297233\pi\)
0.594795 + 0.803877i \(0.297233\pi\)
\(912\) 12.7859 0.423382
\(913\) −59.3272 −1.96344
\(914\) 5.72208 0.189269
\(915\) 0 0
\(916\) 22.7645 0.752161
\(917\) 35.4994 1.17229
\(918\) 0.919558 0.0303499
\(919\) −16.2745 −0.536845 −0.268423 0.963301i \(-0.586502\pi\)
−0.268423 + 0.963301i \(0.586502\pi\)
\(920\) 0 0
\(921\) 18.0575 0.595014
\(922\) −4.14279 −0.136435
\(923\) −32.2307 −1.06089
\(924\) −18.2366 −0.599940
\(925\) 0 0
\(926\) 1.82521 0.0599800
\(927\) 1.02871 0.0337873
\(928\) 4.93724 0.162073
\(929\) 44.8694 1.47212 0.736059 0.676918i \(-0.236685\pi\)
0.736059 + 0.676918i \(0.236685\pi\)
\(930\) 0 0
\(931\) 15.4938 0.507789
\(932\) −18.5727 −0.608368
\(933\) 3.28065 0.107404
\(934\) −0.645130 −0.0211093
\(935\) 0 0
\(936\) 10.9675 0.358482
\(937\) 42.5002 1.38842 0.694210 0.719772i \(-0.255754\pi\)
0.694210 + 0.719772i \(0.255754\pi\)
\(938\) −13.8618 −0.452603
\(939\) 8.87479 0.289618
\(940\) 0 0
\(941\) 16.3907 0.534323 0.267161 0.963652i \(-0.413914\pi\)
0.267161 + 0.963652i \(0.413914\pi\)
\(942\) 1.24311 0.0405027
\(943\) −2.39698 −0.0780563
\(944\) 39.2372 1.27706
\(945\) 0 0
\(946\) 16.0114 0.520577
\(947\) −6.23282 −0.202539 −0.101270 0.994859i \(-0.532291\pi\)
−0.101270 + 0.994859i \(0.532291\pi\)
\(948\) −13.9003 −0.451461
\(949\) 75.2392 2.44237
\(950\) 0 0
\(951\) −18.1311 −0.587943
\(952\) −6.74690 −0.218668
\(953\) 32.3834 1.04900 0.524500 0.851410i \(-0.324252\pi\)
0.524500 + 0.851410i \(0.324252\pi\)
\(954\) 2.15930 0.0699099
\(955\) 0 0
\(956\) 12.3602 0.399757
\(957\) −5.30306 −0.171424
\(958\) −3.81383 −0.123219
\(959\) −18.9984 −0.613490
\(960\) 0 0
\(961\) −6.31198 −0.203612
\(962\) 31.9611 1.03047
\(963\) −4.81163 −0.155053
\(964\) 25.3349 0.815983
\(965\) 0 0
\(966\) 3.02532 0.0973381
\(967\) −47.7887 −1.53678 −0.768390 0.639981i \(-0.778942\pi\)
−0.768390 + 0.639981i \(0.778942\pi\)
\(968\) −31.2904 −1.00571
\(969\) −9.16860 −0.294538
\(970\) 0 0
\(971\) 20.9352 0.671843 0.335921 0.941890i \(-0.390952\pi\)
0.335921 + 0.941890i \(0.390952\pi\)
\(972\) 1.76432 0.0565907
\(973\) 2.29166 0.0734671
\(974\) −7.45211 −0.238781
\(975\) 0 0
\(976\) 40.8593 1.30787
\(977\) 42.3745 1.35568 0.677840 0.735210i \(-0.262916\pi\)
0.677840 + 0.735210i \(0.262916\pi\)
\(978\) 0.835712 0.0267231
\(979\) 81.0575 2.59061
\(980\) 0 0
\(981\) −0.502843 −0.0160545
\(982\) −18.1060 −0.577787
\(983\) 48.3116 1.54090 0.770451 0.637499i \(-0.220031\pi\)
0.770451 + 0.637499i \(0.220031\pi\)
\(984\) −1.37004 −0.0436751
\(985\) 0 0
\(986\) −0.919558 −0.0292847
\(987\) 18.8583 0.600267
\(988\) −51.2532 −1.63058
\(989\) 19.8848 0.632301
\(990\) 0 0
\(991\) 41.7003 1.32465 0.662327 0.749215i \(-0.269569\pi\)
0.662327 + 0.749215i \(0.269569\pi\)
\(992\) −24.5317 −0.778882
\(993\) −9.86489 −0.313053
\(994\) −5.08164 −0.161180
\(995\) 0 0
\(996\) −19.7381 −0.625426
\(997\) 12.2642 0.388411 0.194206 0.980961i \(-0.437787\pi\)
0.194206 + 0.980961i \(0.437787\pi\)
\(998\) 11.2941 0.357507
\(999\) 10.9699 0.347072
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.a.bc.1.6 8
3.2 odd 2 6525.2.a.bz.1.3 8
5.2 odd 4 2175.2.c.p.349.10 16
5.3 odd 4 2175.2.c.p.349.7 16
5.4 even 2 2175.2.a.bd.1.3 yes 8
15.14 odd 2 6525.2.a.by.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.bc.1.6 8 1.1 even 1 trivial
2175.2.a.bd.1.3 yes 8 5.4 even 2
2175.2.c.p.349.7 16 5.3 odd 4
2175.2.c.p.349.10 16 5.2 odd 4
6525.2.a.by.1.6 8 15.14 odd 2
6525.2.a.bz.1.3 8 3.2 odd 2