Properties

Label 2175.2.a.bc.1.3
Level $2175$
Weight $2$
Character 2175.1
Self dual yes
Analytic conductor $17.367$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 12x^{6} + 23x^{5} + 36x^{4} - 62x^{3} - 15x^{2} + 14x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.64893\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.64893 q^{2} -1.00000 q^{3} +0.718971 q^{4} +1.64893 q^{6} -1.44112 q^{7} +2.11233 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.64893 q^{2} -1.00000 q^{3} +0.718971 q^{4} +1.64893 q^{6} -1.44112 q^{7} +2.11233 q^{8} +1.00000 q^{9} +0.191176 q^{11} -0.718971 q^{12} -5.14501 q^{13} +2.37631 q^{14} -4.92102 q^{16} +3.58379 q^{17} -1.64893 q^{18} +7.84780 q^{19} +1.44112 q^{21} -0.315236 q^{22} -7.39261 q^{23} -2.11233 q^{24} +8.48377 q^{26} -1.00000 q^{27} -1.03612 q^{28} +1.00000 q^{29} -7.18783 q^{31} +3.88977 q^{32} -0.191176 q^{33} -5.90942 q^{34} +0.718971 q^{36} +8.70773 q^{37} -12.9405 q^{38} +5.14501 q^{39} +2.33703 q^{41} -2.37631 q^{42} +3.67511 q^{43} +0.137450 q^{44} +12.1899 q^{46} -9.52376 q^{47} +4.92102 q^{48} -4.92317 q^{49} -3.58379 q^{51} -3.69911 q^{52} -10.9053 q^{53} +1.64893 q^{54} -3.04412 q^{56} -7.84780 q^{57} -1.64893 q^{58} +14.2051 q^{59} +8.45202 q^{61} +11.8522 q^{62} -1.44112 q^{63} +3.42809 q^{64} +0.315236 q^{66} -9.96623 q^{67} +2.57664 q^{68} +7.39261 q^{69} -4.72562 q^{71} +2.11233 q^{72} +9.06473 q^{73} -14.3584 q^{74} +5.64234 q^{76} -0.275508 q^{77} -8.48377 q^{78} -8.78711 q^{79} +1.00000 q^{81} -3.85361 q^{82} -15.8701 q^{83} +1.03612 q^{84} -6.06000 q^{86} -1.00000 q^{87} +0.403827 q^{88} -11.6085 q^{89} +7.41459 q^{91} -5.31507 q^{92} +7.18783 q^{93} +15.7040 q^{94} -3.88977 q^{96} +9.85482 q^{97} +8.11796 q^{98} +0.191176 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 8 q^{3} + 12 q^{4} + 2 q^{6} + 2 q^{7} - 3 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} - 8 q^{3} + 12 q^{4} + 2 q^{6} + 2 q^{7} - 3 q^{8} + 8 q^{9} + 6 q^{11} - 12 q^{12} + 6 q^{13} + 9 q^{14} + 32 q^{16} - 12 q^{17} - 2 q^{18} - 2 q^{21} + 3 q^{22} - 14 q^{23} + 3 q^{24} + 18 q^{26} - 8 q^{27} + 14 q^{28} + 8 q^{29} + 8 q^{31} + 2 q^{32} - 6 q^{33} - 13 q^{34} + 12 q^{36} + 4 q^{37} - 26 q^{38} - 6 q^{39} + 2 q^{41} - 9 q^{42} + 2 q^{43} - 15 q^{44} + 24 q^{46} - 12 q^{47} - 32 q^{48} + 38 q^{49} + 12 q^{51} + 49 q^{52} - 4 q^{53} + 2 q^{54} + 58 q^{56} - 2 q^{58} + 18 q^{59} + 12 q^{61} + 4 q^{62} + 2 q^{63} + 21 q^{64} - 3 q^{66} + 26 q^{67} - 81 q^{68} + 14 q^{69} + 24 q^{71} - 3 q^{72} - 14 q^{73} - 22 q^{74} + 26 q^{77} - 18 q^{78} + 10 q^{79} + 8 q^{81} + 48 q^{82} - 40 q^{83} - 14 q^{84} + 8 q^{86} - 8 q^{87} - 10 q^{88} + 34 q^{89} + 26 q^{91} + 18 q^{92} - 8 q^{93} - 43 q^{94} - 2 q^{96} + 30 q^{97} - 29 q^{98} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.64893 −1.16597 −0.582985 0.812483i \(-0.698115\pi\)
−0.582985 + 0.812483i \(0.698115\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.718971 0.359485
\(5\) 0 0
\(6\) 1.64893 0.673173
\(7\) −1.44112 −0.544693 −0.272346 0.962199i \(-0.587800\pi\)
−0.272346 + 0.962199i \(0.587800\pi\)
\(8\) 2.11233 0.746821
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.191176 0.0576418 0.0288209 0.999585i \(-0.490825\pi\)
0.0288209 + 0.999585i \(0.490825\pi\)
\(12\) −0.718971 −0.207549
\(13\) −5.14501 −1.42697 −0.713485 0.700671i \(-0.752884\pi\)
−0.713485 + 0.700671i \(0.752884\pi\)
\(14\) 2.37631 0.635095
\(15\) 0 0
\(16\) −4.92102 −1.23026
\(17\) 3.58379 0.869197 0.434598 0.900624i \(-0.356890\pi\)
0.434598 + 0.900624i \(0.356890\pi\)
\(18\) −1.64893 −0.388657
\(19\) 7.84780 1.80041 0.900205 0.435467i \(-0.143417\pi\)
0.900205 + 0.435467i \(0.143417\pi\)
\(20\) 0 0
\(21\) 1.44112 0.314479
\(22\) −0.315236 −0.0672086
\(23\) −7.39261 −1.54147 −0.770733 0.637158i \(-0.780110\pi\)
−0.770733 + 0.637158i \(0.780110\pi\)
\(24\) −2.11233 −0.431177
\(25\) 0 0
\(26\) 8.48377 1.66380
\(27\) −1.00000 −0.192450
\(28\) −1.03612 −0.195809
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −7.18783 −1.29097 −0.645486 0.763772i \(-0.723345\pi\)
−0.645486 + 0.763772i \(0.723345\pi\)
\(32\) 3.88977 0.687620
\(33\) −0.191176 −0.0332795
\(34\) −5.90942 −1.01346
\(35\) 0 0
\(36\) 0.718971 0.119828
\(37\) 8.70773 1.43154 0.715771 0.698335i \(-0.246075\pi\)
0.715771 + 0.698335i \(0.246075\pi\)
\(38\) −12.9405 −2.09922
\(39\) 5.14501 0.823861
\(40\) 0 0
\(41\) 2.33703 0.364983 0.182492 0.983207i \(-0.441584\pi\)
0.182492 + 0.983207i \(0.441584\pi\)
\(42\) −2.37631 −0.366672
\(43\) 3.67511 0.560449 0.280225 0.959934i \(-0.409591\pi\)
0.280225 + 0.959934i \(0.409591\pi\)
\(44\) 0.137450 0.0207214
\(45\) 0 0
\(46\) 12.1899 1.79730
\(47\) −9.52376 −1.38918 −0.694591 0.719404i \(-0.744415\pi\)
−0.694591 + 0.719404i \(0.744415\pi\)
\(48\) 4.92102 0.710288
\(49\) −4.92317 −0.703310
\(50\) 0 0
\(51\) −3.58379 −0.501831
\(52\) −3.69911 −0.512975
\(53\) −10.9053 −1.49796 −0.748981 0.662591i \(-0.769457\pi\)
−0.748981 + 0.662591i \(0.769457\pi\)
\(54\) 1.64893 0.224391
\(55\) 0 0
\(56\) −3.04412 −0.406788
\(57\) −7.84780 −1.03947
\(58\) −1.64893 −0.216515
\(59\) 14.2051 1.84934 0.924672 0.380766i \(-0.124340\pi\)
0.924672 + 0.380766i \(0.124340\pi\)
\(60\) 0 0
\(61\) 8.45202 1.08217 0.541085 0.840968i \(-0.318014\pi\)
0.541085 + 0.840968i \(0.318014\pi\)
\(62\) 11.8522 1.50523
\(63\) −1.44112 −0.181564
\(64\) 3.42809 0.428511
\(65\) 0 0
\(66\) 0.315236 0.0388029
\(67\) −9.96623 −1.21757 −0.608785 0.793336i \(-0.708343\pi\)
−0.608785 + 0.793336i \(0.708343\pi\)
\(68\) 2.57664 0.312464
\(69\) 7.39261 0.889966
\(70\) 0 0
\(71\) −4.72562 −0.560828 −0.280414 0.959879i \(-0.590472\pi\)
−0.280414 + 0.959879i \(0.590472\pi\)
\(72\) 2.11233 0.248940
\(73\) 9.06473 1.06095 0.530473 0.847702i \(-0.322014\pi\)
0.530473 + 0.847702i \(0.322014\pi\)
\(74\) −14.3584 −1.66913
\(75\) 0 0
\(76\) 5.64234 0.647221
\(77\) −0.275508 −0.0313971
\(78\) −8.48377 −0.960598
\(79\) −8.78711 −0.988627 −0.494314 0.869284i \(-0.664581\pi\)
−0.494314 + 0.869284i \(0.664581\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −3.85361 −0.425560
\(83\) −15.8701 −1.74197 −0.870986 0.491308i \(-0.836519\pi\)
−0.870986 + 0.491308i \(0.836519\pi\)
\(84\) 1.03612 0.113050
\(85\) 0 0
\(86\) −6.06000 −0.653467
\(87\) −1.00000 −0.107211
\(88\) 0.403827 0.0430481
\(89\) −11.6085 −1.23050 −0.615250 0.788332i \(-0.710945\pi\)
−0.615250 + 0.788332i \(0.710945\pi\)
\(90\) 0 0
\(91\) 7.41459 0.777260
\(92\) −5.31507 −0.554135
\(93\) 7.18783 0.745343
\(94\) 15.7040 1.61975
\(95\) 0 0
\(96\) −3.88977 −0.396998
\(97\) 9.85482 1.00061 0.500303 0.865851i \(-0.333222\pi\)
0.500303 + 0.865851i \(0.333222\pi\)
\(98\) 8.11796 0.820038
\(99\) 0.191176 0.0192139
\(100\) 0 0
\(101\) −5.33326 −0.530679 −0.265340 0.964155i \(-0.585484\pi\)
−0.265340 + 0.964155i \(0.585484\pi\)
\(102\) 5.90942 0.585120
\(103\) 13.1476 1.29547 0.647736 0.761865i \(-0.275716\pi\)
0.647736 + 0.761865i \(0.275716\pi\)
\(104\) −10.8680 −1.06569
\(105\) 0 0
\(106\) 17.9821 1.74658
\(107\) 15.2800 1.47717 0.738586 0.674159i \(-0.235494\pi\)
0.738586 + 0.674159i \(0.235494\pi\)
\(108\) −0.718971 −0.0691830
\(109\) 9.88042 0.946372 0.473186 0.880962i \(-0.343104\pi\)
0.473186 + 0.880962i \(0.343104\pi\)
\(110\) 0 0
\(111\) −8.70773 −0.826501
\(112\) 7.09179 0.670111
\(113\) −6.30656 −0.593271 −0.296636 0.954991i \(-0.595865\pi\)
−0.296636 + 0.954991i \(0.595865\pi\)
\(114\) 12.9405 1.21199
\(115\) 0 0
\(116\) 0.718971 0.0667548
\(117\) −5.14501 −0.475657
\(118\) −23.4232 −2.15628
\(119\) −5.16468 −0.473445
\(120\) 0 0
\(121\) −10.9635 −0.996677
\(122\) −13.9368 −1.26178
\(123\) −2.33703 −0.210723
\(124\) −5.16784 −0.464086
\(125\) 0 0
\(126\) 2.37631 0.211698
\(127\) 19.4653 1.72727 0.863635 0.504118i \(-0.168182\pi\)
0.863635 + 0.504118i \(0.168182\pi\)
\(128\) −13.4322 −1.18725
\(129\) −3.67511 −0.323575
\(130\) 0 0
\(131\) 11.8940 1.03919 0.519594 0.854413i \(-0.326083\pi\)
0.519594 + 0.854413i \(0.326083\pi\)
\(132\) −0.137450 −0.0119635
\(133\) −11.3096 −0.980670
\(134\) 16.4336 1.41965
\(135\) 0 0
\(136\) 7.57014 0.649134
\(137\) 16.2830 1.39115 0.695574 0.718454i \(-0.255150\pi\)
0.695574 + 0.718454i \(0.255150\pi\)
\(138\) −12.1899 −1.03767
\(139\) 8.78796 0.745385 0.372692 0.927955i \(-0.378435\pi\)
0.372692 + 0.927955i \(0.378435\pi\)
\(140\) 0 0
\(141\) 9.52376 0.802045
\(142\) 7.79222 0.653909
\(143\) −0.983604 −0.0822531
\(144\) −4.92102 −0.410085
\(145\) 0 0
\(146\) −14.9471 −1.23703
\(147\) 4.92317 0.406056
\(148\) 6.26060 0.514618
\(149\) 3.09748 0.253755 0.126878 0.991918i \(-0.459504\pi\)
0.126878 + 0.991918i \(0.459504\pi\)
\(150\) 0 0
\(151\) −7.39067 −0.601444 −0.300722 0.953712i \(-0.597228\pi\)
−0.300722 + 0.953712i \(0.597228\pi\)
\(152\) 16.5771 1.34458
\(153\) 3.58379 0.289732
\(154\) 0.454294 0.0366080
\(155\) 0 0
\(156\) 3.69911 0.296166
\(157\) 9.63295 0.768793 0.384396 0.923168i \(-0.374410\pi\)
0.384396 + 0.923168i \(0.374410\pi\)
\(158\) 14.4893 1.15271
\(159\) 10.9053 0.864849
\(160\) 0 0
\(161\) 10.6537 0.839626
\(162\) −1.64893 −0.129552
\(163\) 19.6807 1.54151 0.770756 0.637131i \(-0.219879\pi\)
0.770756 + 0.637131i \(0.219879\pi\)
\(164\) 1.68026 0.131206
\(165\) 0 0
\(166\) 26.1687 2.03109
\(167\) 3.69350 0.285811 0.142906 0.989736i \(-0.454355\pi\)
0.142906 + 0.989736i \(0.454355\pi\)
\(168\) 3.04412 0.234859
\(169\) 13.4712 1.03624
\(170\) 0 0
\(171\) 7.84780 0.600136
\(172\) 2.64230 0.201473
\(173\) 8.10495 0.616208 0.308104 0.951353i \(-0.400306\pi\)
0.308104 + 0.951353i \(0.400306\pi\)
\(174\) 1.64893 0.125005
\(175\) 0 0
\(176\) −0.940782 −0.0709141
\(177\) −14.2051 −1.06772
\(178\) 19.1416 1.43473
\(179\) −7.63453 −0.570631 −0.285316 0.958434i \(-0.592098\pi\)
−0.285316 + 0.958434i \(0.592098\pi\)
\(180\) 0 0
\(181\) −7.18140 −0.533790 −0.266895 0.963726i \(-0.585998\pi\)
−0.266895 + 0.963726i \(0.585998\pi\)
\(182\) −12.2261 −0.906262
\(183\) −8.45202 −0.624792
\(184\) −15.6156 −1.15120
\(185\) 0 0
\(186\) −11.8522 −0.869047
\(187\) 0.685135 0.0501020
\(188\) −6.84730 −0.499391
\(189\) 1.44112 0.104826
\(190\) 0 0
\(191\) 5.24617 0.379600 0.189800 0.981823i \(-0.439216\pi\)
0.189800 + 0.981823i \(0.439216\pi\)
\(192\) −3.42809 −0.247401
\(193\) 22.9175 1.64964 0.824818 0.565399i \(-0.191278\pi\)
0.824818 + 0.565399i \(0.191278\pi\)
\(194\) −16.2499 −1.16668
\(195\) 0 0
\(196\) −3.53961 −0.252830
\(197\) −3.56991 −0.254346 −0.127173 0.991881i \(-0.540590\pi\)
−0.127173 + 0.991881i \(0.540590\pi\)
\(198\) −0.315236 −0.0224029
\(199\) 0.652738 0.0462714 0.0231357 0.999732i \(-0.492635\pi\)
0.0231357 + 0.999732i \(0.492635\pi\)
\(200\) 0 0
\(201\) 9.96623 0.702964
\(202\) 8.79418 0.618756
\(203\) −1.44112 −0.101147
\(204\) −2.57664 −0.180401
\(205\) 0 0
\(206\) −21.6795 −1.51048
\(207\) −7.39261 −0.513822
\(208\) 25.3187 1.75554
\(209\) 1.50031 0.103779
\(210\) 0 0
\(211\) 8.86583 0.610349 0.305175 0.952296i \(-0.401285\pi\)
0.305175 + 0.952296i \(0.401285\pi\)
\(212\) −7.84061 −0.538496
\(213\) 4.72562 0.323794
\(214\) −25.1956 −1.72234
\(215\) 0 0
\(216\) −2.11233 −0.143726
\(217\) 10.3585 0.703183
\(218\) −16.2921 −1.10344
\(219\) −9.06473 −0.612538
\(220\) 0 0
\(221\) −18.4386 −1.24032
\(222\) 14.3584 0.963675
\(223\) −8.04069 −0.538444 −0.269222 0.963078i \(-0.586767\pi\)
−0.269222 + 0.963078i \(0.586767\pi\)
\(224\) −5.60563 −0.374542
\(225\) 0 0
\(226\) 10.3991 0.691736
\(227\) 24.5188 1.62737 0.813684 0.581307i \(-0.197458\pi\)
0.813684 + 0.581307i \(0.197458\pi\)
\(228\) −5.64234 −0.373673
\(229\) 24.6405 1.62829 0.814145 0.580661i \(-0.197206\pi\)
0.814145 + 0.580661i \(0.197206\pi\)
\(230\) 0 0
\(231\) 0.275508 0.0181271
\(232\) 2.11233 0.138681
\(233\) 4.19800 0.275020 0.137510 0.990500i \(-0.456090\pi\)
0.137510 + 0.990500i \(0.456090\pi\)
\(234\) 8.48377 0.554601
\(235\) 0 0
\(236\) 10.2130 0.664812
\(237\) 8.78711 0.570784
\(238\) 8.51619 0.552023
\(239\) 9.04541 0.585099 0.292549 0.956250i \(-0.405496\pi\)
0.292549 + 0.956250i \(0.405496\pi\)
\(240\) 0 0
\(241\) 4.83690 0.311572 0.155786 0.987791i \(-0.450209\pi\)
0.155786 + 0.987791i \(0.450209\pi\)
\(242\) 18.0780 1.16210
\(243\) −1.00000 −0.0641500
\(244\) 6.07676 0.389025
\(245\) 0 0
\(246\) 3.85361 0.245697
\(247\) −40.3770 −2.56913
\(248\) −15.1830 −0.964124
\(249\) 15.8701 1.00573
\(250\) 0 0
\(251\) −3.88015 −0.244913 −0.122456 0.992474i \(-0.539077\pi\)
−0.122456 + 0.992474i \(0.539077\pi\)
\(252\) −1.03612 −0.0652697
\(253\) −1.41329 −0.0888529
\(254\) −32.0970 −2.01394
\(255\) 0 0
\(256\) 15.2926 0.955788
\(257\) −16.6439 −1.03822 −0.519109 0.854708i \(-0.673736\pi\)
−0.519109 + 0.854708i \(0.673736\pi\)
\(258\) 6.06000 0.377279
\(259\) −12.5489 −0.779751
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) −19.6125 −1.21166
\(263\) 10.2587 0.632580 0.316290 0.948663i \(-0.397563\pi\)
0.316290 + 0.948663i \(0.397563\pi\)
\(264\) −0.403827 −0.0248538
\(265\) 0 0
\(266\) 18.6488 1.14343
\(267\) 11.6085 0.710430
\(268\) −7.16543 −0.437698
\(269\) 3.35149 0.204344 0.102172 0.994767i \(-0.467421\pi\)
0.102172 + 0.994767i \(0.467421\pi\)
\(270\) 0 0
\(271\) 12.5730 0.763754 0.381877 0.924213i \(-0.375278\pi\)
0.381877 + 0.924213i \(0.375278\pi\)
\(272\) −17.6359 −1.06933
\(273\) −7.41459 −0.448751
\(274\) −26.8495 −1.62204
\(275\) 0 0
\(276\) 5.31507 0.319930
\(277\) −6.65219 −0.399692 −0.199846 0.979827i \(-0.564044\pi\)
−0.199846 + 0.979827i \(0.564044\pi\)
\(278\) −14.4907 −0.869096
\(279\) −7.18783 −0.430324
\(280\) 0 0
\(281\) 29.6058 1.76613 0.883067 0.469246i \(-0.155474\pi\)
0.883067 + 0.469246i \(0.155474\pi\)
\(282\) −15.7040 −0.935160
\(283\) 18.4403 1.09616 0.548082 0.836425i \(-0.315358\pi\)
0.548082 + 0.836425i \(0.315358\pi\)
\(284\) −3.39759 −0.201610
\(285\) 0 0
\(286\) 1.62189 0.0959046
\(287\) −3.36795 −0.198804
\(288\) 3.88977 0.229207
\(289\) −4.15645 −0.244497
\(290\) 0 0
\(291\) −9.85482 −0.577700
\(292\) 6.51728 0.381395
\(293\) 14.8320 0.866495 0.433248 0.901275i \(-0.357368\pi\)
0.433248 + 0.901275i \(0.357368\pi\)
\(294\) −8.11796 −0.473449
\(295\) 0 0
\(296\) 18.3936 1.06911
\(297\) −0.191176 −0.0110932
\(298\) −5.10752 −0.295871
\(299\) 38.0351 2.19963
\(300\) 0 0
\(301\) −5.29628 −0.305273
\(302\) 12.1867 0.701265
\(303\) 5.33326 0.306388
\(304\) −38.6192 −2.21496
\(305\) 0 0
\(306\) −5.90942 −0.337819
\(307\) −17.8595 −1.01929 −0.509647 0.860383i \(-0.670224\pi\)
−0.509647 + 0.860383i \(0.670224\pi\)
\(308\) −0.198082 −0.0112868
\(309\) −13.1476 −0.747941
\(310\) 0 0
\(311\) −22.8466 −1.29551 −0.647756 0.761848i \(-0.724292\pi\)
−0.647756 + 0.761848i \(0.724292\pi\)
\(312\) 10.8680 0.615277
\(313\) 27.4021 1.54886 0.774428 0.632662i \(-0.218038\pi\)
0.774428 + 0.632662i \(0.218038\pi\)
\(314\) −15.8841 −0.896389
\(315\) 0 0
\(316\) −6.31768 −0.355397
\(317\) 11.5466 0.648519 0.324260 0.945968i \(-0.394885\pi\)
0.324260 + 0.945968i \(0.394885\pi\)
\(318\) −17.9821 −1.00839
\(319\) 0.191176 0.0107038
\(320\) 0 0
\(321\) −15.2800 −0.852846
\(322\) −17.5671 −0.978978
\(323\) 28.1249 1.56491
\(324\) 0.718971 0.0399428
\(325\) 0 0
\(326\) −32.4521 −1.79736
\(327\) −9.88042 −0.546388
\(328\) 4.93658 0.272577
\(329\) 13.7249 0.756678
\(330\) 0 0
\(331\) −26.0804 −1.43351 −0.716753 0.697327i \(-0.754373\pi\)
−0.716753 + 0.697327i \(0.754373\pi\)
\(332\) −11.4102 −0.626213
\(333\) 8.70773 0.477181
\(334\) −6.09032 −0.333248
\(335\) 0 0
\(336\) −7.09179 −0.386889
\(337\) 7.08114 0.385734 0.192867 0.981225i \(-0.438221\pi\)
0.192867 + 0.981225i \(0.438221\pi\)
\(338\) −22.2130 −1.20823
\(339\) 6.30656 0.342525
\(340\) 0 0
\(341\) −1.37414 −0.0744139
\(342\) −12.9405 −0.699741
\(343\) 17.1827 0.927781
\(344\) 7.76304 0.418555
\(345\) 0 0
\(346\) −13.3645 −0.718480
\(347\) 11.1830 0.600333 0.300167 0.953887i \(-0.402958\pi\)
0.300167 + 0.953887i \(0.402958\pi\)
\(348\) −0.718971 −0.0385409
\(349\) 12.9183 0.691499 0.345749 0.938327i \(-0.387625\pi\)
0.345749 + 0.938327i \(0.387625\pi\)
\(350\) 0 0
\(351\) 5.14501 0.274620
\(352\) 0.743631 0.0396357
\(353\) 15.7409 0.837805 0.418903 0.908031i \(-0.362415\pi\)
0.418903 + 0.908031i \(0.362415\pi\)
\(354\) 23.4232 1.24493
\(355\) 0 0
\(356\) −8.34618 −0.442347
\(357\) 5.16468 0.273344
\(358\) 12.5888 0.665339
\(359\) 16.7472 0.883881 0.441941 0.897044i \(-0.354290\pi\)
0.441941 + 0.897044i \(0.354290\pi\)
\(360\) 0 0
\(361\) 42.5880 2.24147
\(362\) 11.8416 0.622382
\(363\) 10.9635 0.575432
\(364\) 5.33087 0.279414
\(365\) 0 0
\(366\) 13.9368 0.728488
\(367\) 12.2086 0.637282 0.318641 0.947875i \(-0.396774\pi\)
0.318641 + 0.947875i \(0.396774\pi\)
\(368\) 36.3792 1.89640
\(369\) 2.33703 0.121661
\(370\) 0 0
\(371\) 15.7159 0.815929
\(372\) 5.16784 0.267940
\(373\) −11.7029 −0.605953 −0.302976 0.952998i \(-0.597980\pi\)
−0.302976 + 0.952998i \(0.597980\pi\)
\(374\) −1.12974 −0.0584175
\(375\) 0 0
\(376\) −20.1173 −1.03747
\(377\) −5.14501 −0.264982
\(378\) −2.37631 −0.122224
\(379\) −30.8446 −1.58438 −0.792191 0.610273i \(-0.791060\pi\)
−0.792191 + 0.610273i \(0.791060\pi\)
\(380\) 0 0
\(381\) −19.4653 −0.997239
\(382\) −8.65057 −0.442602
\(383\) −10.4576 −0.534356 −0.267178 0.963647i \(-0.586091\pi\)
−0.267178 + 0.963647i \(0.586091\pi\)
\(384\) 13.4322 0.685460
\(385\) 0 0
\(386\) −37.7893 −1.92342
\(387\) 3.67511 0.186816
\(388\) 7.08533 0.359703
\(389\) −34.4133 −1.74483 −0.872413 0.488770i \(-0.837446\pi\)
−0.872413 + 0.488770i \(0.837446\pi\)
\(390\) 0 0
\(391\) −26.4936 −1.33984
\(392\) −10.3993 −0.525246
\(393\) −11.8940 −0.599975
\(394\) 5.88653 0.296559
\(395\) 0 0
\(396\) 0.137450 0.00690713
\(397\) −15.7312 −0.789525 −0.394762 0.918783i \(-0.629173\pi\)
−0.394762 + 0.918783i \(0.629173\pi\)
\(398\) −1.07632 −0.0539510
\(399\) 11.3096 0.566190
\(400\) 0 0
\(401\) −1.02583 −0.0512274 −0.0256137 0.999672i \(-0.508154\pi\)
−0.0256137 + 0.999672i \(0.508154\pi\)
\(402\) −16.4336 −0.819635
\(403\) 36.9815 1.84218
\(404\) −3.83446 −0.190771
\(405\) 0 0
\(406\) 2.37631 0.117934
\(407\) 1.66471 0.0825166
\(408\) −7.57014 −0.374778
\(409\) 12.6252 0.624274 0.312137 0.950037i \(-0.398955\pi\)
0.312137 + 0.950037i \(0.398955\pi\)
\(410\) 0 0
\(411\) −16.2830 −0.803180
\(412\) 9.45275 0.465703
\(413\) −20.4712 −1.00732
\(414\) 12.1899 0.599101
\(415\) 0 0
\(416\) −20.0129 −0.981213
\(417\) −8.78796 −0.430348
\(418\) −2.47391 −0.121003
\(419\) 4.86499 0.237670 0.118835 0.992914i \(-0.462084\pi\)
0.118835 + 0.992914i \(0.462084\pi\)
\(420\) 0 0
\(421\) 31.7766 1.54870 0.774349 0.632759i \(-0.218078\pi\)
0.774349 + 0.632759i \(0.218078\pi\)
\(422\) −14.6191 −0.711649
\(423\) −9.52376 −0.463061
\(424\) −23.0356 −1.11871
\(425\) 0 0
\(426\) −7.79222 −0.377534
\(427\) −12.1804 −0.589451
\(428\) 10.9859 0.531022
\(429\) 0.983604 0.0474888
\(430\) 0 0
\(431\) −4.92223 −0.237095 −0.118548 0.992948i \(-0.537824\pi\)
−0.118548 + 0.992948i \(0.537824\pi\)
\(432\) 4.92102 0.236763
\(433\) −17.0581 −0.819762 −0.409881 0.912139i \(-0.634430\pi\)
−0.409881 + 0.912139i \(0.634430\pi\)
\(434\) −17.0805 −0.819890
\(435\) 0 0
\(436\) 7.10373 0.340207
\(437\) −58.0158 −2.77527
\(438\) 14.9471 0.714201
\(439\) −0.213932 −0.0102104 −0.00510520 0.999987i \(-0.501625\pi\)
−0.00510520 + 0.999987i \(0.501625\pi\)
\(440\) 0 0
\(441\) −4.92317 −0.234437
\(442\) 30.4040 1.44617
\(443\) −24.1909 −1.14935 −0.574673 0.818383i \(-0.694871\pi\)
−0.574673 + 0.818383i \(0.694871\pi\)
\(444\) −6.26060 −0.297115
\(445\) 0 0
\(446\) 13.2585 0.627810
\(447\) −3.09748 −0.146506
\(448\) −4.94029 −0.233407
\(449\) 6.64235 0.313472 0.156736 0.987641i \(-0.449903\pi\)
0.156736 + 0.987641i \(0.449903\pi\)
\(450\) 0 0
\(451\) 0.446785 0.0210383
\(452\) −4.53423 −0.213272
\(453\) 7.39067 0.347244
\(454\) −40.4298 −1.89746
\(455\) 0 0
\(456\) −16.5771 −0.776295
\(457\) 25.7984 1.20680 0.603400 0.797438i \(-0.293812\pi\)
0.603400 + 0.797438i \(0.293812\pi\)
\(458\) −40.6305 −1.89854
\(459\) −3.58379 −0.167277
\(460\) 0 0
\(461\) −9.89153 −0.460695 −0.230347 0.973108i \(-0.573986\pi\)
−0.230347 + 0.973108i \(0.573986\pi\)
\(462\) −0.454294 −0.0211356
\(463\) −17.9312 −0.833335 −0.416667 0.909059i \(-0.636802\pi\)
−0.416667 + 0.909059i \(0.636802\pi\)
\(464\) −4.92102 −0.228453
\(465\) 0 0
\(466\) −6.92220 −0.320665
\(467\) −29.7640 −1.37731 −0.688657 0.725087i \(-0.741799\pi\)
−0.688657 + 0.725087i \(0.741799\pi\)
\(468\) −3.69911 −0.170992
\(469\) 14.3626 0.663201
\(470\) 0 0
\(471\) −9.63295 −0.443863
\(472\) 30.0058 1.38113
\(473\) 0.702594 0.0323053
\(474\) −14.4893 −0.665517
\(475\) 0 0
\(476\) −3.71325 −0.170197
\(477\) −10.9053 −0.499321
\(478\) −14.9153 −0.682208
\(479\) −24.3451 −1.11236 −0.556178 0.831063i \(-0.687733\pi\)
−0.556178 + 0.831063i \(0.687733\pi\)
\(480\) 0 0
\(481\) −44.8014 −2.04277
\(482\) −7.97571 −0.363284
\(483\) −10.6537 −0.484758
\(484\) −7.88240 −0.358291
\(485\) 0 0
\(486\) 1.64893 0.0747970
\(487\) −1.76708 −0.0800740 −0.0400370 0.999198i \(-0.512748\pi\)
−0.0400370 + 0.999198i \(0.512748\pi\)
\(488\) 17.8534 0.808188
\(489\) −19.6807 −0.889992
\(490\) 0 0
\(491\) −2.47556 −0.111720 −0.0558602 0.998439i \(-0.517790\pi\)
−0.0558602 + 0.998439i \(0.517790\pi\)
\(492\) −1.68026 −0.0757519
\(493\) 3.58379 0.161406
\(494\) 66.5789 2.99553
\(495\) 0 0
\(496\) 35.3715 1.58823
\(497\) 6.81020 0.305479
\(498\) −26.1687 −1.17265
\(499\) −6.82406 −0.305487 −0.152743 0.988266i \(-0.548811\pi\)
−0.152743 + 0.988266i \(0.548811\pi\)
\(500\) 0 0
\(501\) −3.69350 −0.165013
\(502\) 6.39810 0.285561
\(503\) −22.1554 −0.987861 −0.493930 0.869501i \(-0.664440\pi\)
−0.493930 + 0.869501i \(0.664440\pi\)
\(504\) −3.04412 −0.135596
\(505\) 0 0
\(506\) 2.33042 0.103600
\(507\) −13.4712 −0.598275
\(508\) 13.9950 0.620928
\(509\) 17.4284 0.772499 0.386250 0.922394i \(-0.373770\pi\)
0.386250 + 0.922394i \(0.373770\pi\)
\(510\) 0 0
\(511\) −13.0634 −0.577890
\(512\) 1.64799 0.0728316
\(513\) −7.84780 −0.346489
\(514\) 27.4446 1.21053
\(515\) 0 0
\(516\) −2.64230 −0.116321
\(517\) −1.82072 −0.0800750
\(518\) 20.6923 0.909166
\(519\) −8.10495 −0.355768
\(520\) 0 0
\(521\) −8.50733 −0.372713 −0.186356 0.982482i \(-0.559668\pi\)
−0.186356 + 0.982482i \(0.559668\pi\)
\(522\) −1.64893 −0.0721717
\(523\) −29.8852 −1.30679 −0.653395 0.757017i \(-0.726656\pi\)
−0.653395 + 0.757017i \(0.726656\pi\)
\(524\) 8.55147 0.373573
\(525\) 0 0
\(526\) −16.9159 −0.737569
\(527\) −25.7597 −1.12211
\(528\) 0.940782 0.0409423
\(529\) 31.6507 1.37612
\(530\) 0 0
\(531\) 14.2051 0.616448
\(532\) −8.13130 −0.352537
\(533\) −12.0241 −0.520820
\(534\) −19.1416 −0.828339
\(535\) 0 0
\(536\) −21.0520 −0.909306
\(537\) 7.63453 0.329454
\(538\) −5.52638 −0.238259
\(539\) −0.941192 −0.0405400
\(540\) 0 0
\(541\) −18.8846 −0.811913 −0.405957 0.913892i \(-0.633062\pi\)
−0.405957 + 0.913892i \(0.633062\pi\)
\(542\) −20.7320 −0.890514
\(543\) 7.18140 0.308184
\(544\) 13.9401 0.597677
\(545\) 0 0
\(546\) 12.2261 0.523230
\(547\) −13.1168 −0.560834 −0.280417 0.959878i \(-0.590473\pi\)
−0.280417 + 0.959878i \(0.590473\pi\)
\(548\) 11.7070 0.500098
\(549\) 8.45202 0.360724
\(550\) 0 0
\(551\) 7.84780 0.334328
\(552\) 15.6156 0.664645
\(553\) 12.6633 0.538498
\(554\) 10.9690 0.466028
\(555\) 0 0
\(556\) 6.31828 0.267955
\(557\) 16.7574 0.710034 0.355017 0.934860i \(-0.384475\pi\)
0.355017 + 0.934860i \(0.384475\pi\)
\(558\) 11.8522 0.501745
\(559\) −18.9085 −0.799744
\(560\) 0 0
\(561\) −0.685135 −0.0289264
\(562\) −48.8179 −2.05926
\(563\) −2.10791 −0.0888379 −0.0444190 0.999013i \(-0.514144\pi\)
−0.0444190 + 0.999013i \(0.514144\pi\)
\(564\) 6.84730 0.288324
\(565\) 0 0
\(566\) −30.4068 −1.27809
\(567\) −1.44112 −0.0605214
\(568\) −9.98206 −0.418838
\(569\) 32.9090 1.37962 0.689809 0.723991i \(-0.257694\pi\)
0.689809 + 0.723991i \(0.257694\pi\)
\(570\) 0 0
\(571\) −21.5951 −0.903725 −0.451863 0.892088i \(-0.649240\pi\)
−0.451863 + 0.892088i \(0.649240\pi\)
\(572\) −0.707182 −0.0295688
\(573\) −5.24617 −0.219162
\(574\) 5.55351 0.231799
\(575\) 0 0
\(576\) 3.42809 0.142837
\(577\) 35.1630 1.46385 0.731927 0.681384i \(-0.238621\pi\)
0.731927 + 0.681384i \(0.238621\pi\)
\(578\) 6.85370 0.285076
\(579\) −22.9175 −0.952417
\(580\) 0 0
\(581\) 22.8708 0.948839
\(582\) 16.2499 0.673580
\(583\) −2.08484 −0.0863452
\(584\) 19.1477 0.792337
\(585\) 0 0
\(586\) −24.4570 −1.01031
\(587\) −43.1149 −1.77954 −0.889771 0.456407i \(-0.849136\pi\)
−0.889771 + 0.456407i \(0.849136\pi\)
\(588\) 3.53961 0.145971
\(589\) −56.4086 −2.32428
\(590\) 0 0
\(591\) 3.56991 0.146847
\(592\) −42.8509 −1.76116
\(593\) −4.03925 −0.165872 −0.0829361 0.996555i \(-0.526430\pi\)
−0.0829361 + 0.996555i \(0.526430\pi\)
\(594\) 0.315236 0.0129343
\(595\) 0 0
\(596\) 2.22700 0.0912213
\(597\) −0.652738 −0.0267148
\(598\) −62.7172 −2.56470
\(599\) −21.7899 −0.890312 −0.445156 0.895453i \(-0.646852\pi\)
−0.445156 + 0.895453i \(0.646852\pi\)
\(600\) 0 0
\(601\) 22.4489 0.915710 0.457855 0.889027i \(-0.348618\pi\)
0.457855 + 0.889027i \(0.348618\pi\)
\(602\) 8.73320 0.355939
\(603\) −9.96623 −0.405856
\(604\) −5.31367 −0.216210
\(605\) 0 0
\(606\) −8.79418 −0.357239
\(607\) −4.28567 −0.173950 −0.0869750 0.996210i \(-0.527720\pi\)
−0.0869750 + 0.996210i \(0.527720\pi\)
\(608\) 30.5261 1.23800
\(609\) 1.44112 0.0583972
\(610\) 0 0
\(611\) 48.9999 1.98232
\(612\) 2.57664 0.104155
\(613\) −2.41278 −0.0974514 −0.0487257 0.998812i \(-0.515516\pi\)
−0.0487257 + 0.998812i \(0.515516\pi\)
\(614\) 29.4490 1.18847
\(615\) 0 0
\(616\) −0.581963 −0.0234480
\(617\) 25.3384 1.02008 0.510042 0.860150i \(-0.329630\pi\)
0.510042 + 0.860150i \(0.329630\pi\)
\(618\) 21.6795 0.872077
\(619\) 48.4512 1.94742 0.973708 0.227798i \(-0.0731527\pi\)
0.973708 + 0.227798i \(0.0731527\pi\)
\(620\) 0 0
\(621\) 7.39261 0.296655
\(622\) 37.6724 1.51053
\(623\) 16.7293 0.670245
\(624\) −25.3187 −1.01356
\(625\) 0 0
\(626\) −45.1841 −1.80592
\(627\) −1.50031 −0.0599167
\(628\) 6.92581 0.276370
\(629\) 31.2067 1.24429
\(630\) 0 0
\(631\) 18.0190 0.717325 0.358662 0.933467i \(-0.383233\pi\)
0.358662 + 0.933467i \(0.383233\pi\)
\(632\) −18.5613 −0.738327
\(633\) −8.86583 −0.352385
\(634\) −19.0395 −0.756154
\(635\) 0 0
\(636\) 7.84061 0.310901
\(637\) 25.3298 1.00360
\(638\) −0.315236 −0.0124803
\(639\) −4.72562 −0.186943
\(640\) 0 0
\(641\) 50.3755 1.98971 0.994855 0.101306i \(-0.0323020\pi\)
0.994855 + 0.101306i \(0.0323020\pi\)
\(642\) 25.1956 0.994392
\(643\) 12.6433 0.498602 0.249301 0.968426i \(-0.419799\pi\)
0.249301 + 0.968426i \(0.419799\pi\)
\(644\) 7.65967 0.301833
\(645\) 0 0
\(646\) −46.3760 −1.82464
\(647\) 9.38392 0.368920 0.184460 0.982840i \(-0.440946\pi\)
0.184460 + 0.982840i \(0.440946\pi\)
\(648\) 2.11233 0.0829801
\(649\) 2.71567 0.106599
\(650\) 0 0
\(651\) −10.3585 −0.405983
\(652\) 14.1499 0.554151
\(653\) −0.265477 −0.0103889 −0.00519446 0.999987i \(-0.501653\pi\)
−0.00519446 + 0.999987i \(0.501653\pi\)
\(654\) 16.2921 0.637072
\(655\) 0 0
\(656\) −11.5006 −0.449023
\(657\) 9.06473 0.353649
\(658\) −22.6314 −0.882263
\(659\) −43.9795 −1.71320 −0.856598 0.515984i \(-0.827426\pi\)
−0.856598 + 0.515984i \(0.827426\pi\)
\(660\) 0 0
\(661\) −7.73684 −0.300928 −0.150464 0.988615i \(-0.548077\pi\)
−0.150464 + 0.988615i \(0.548077\pi\)
\(662\) 43.0047 1.67142
\(663\) 18.4386 0.716098
\(664\) −33.5229 −1.30094
\(665\) 0 0
\(666\) −14.3584 −0.556378
\(667\) −7.39261 −0.286243
\(668\) 2.65552 0.102745
\(669\) 8.04069 0.310871
\(670\) 0 0
\(671\) 1.61583 0.0623782
\(672\) 5.60563 0.216242
\(673\) 19.1293 0.737380 0.368690 0.929552i \(-0.379806\pi\)
0.368690 + 0.929552i \(0.379806\pi\)
\(674\) −11.6763 −0.449755
\(675\) 0 0
\(676\) 9.68537 0.372514
\(677\) 29.2009 1.12228 0.561141 0.827720i \(-0.310362\pi\)
0.561141 + 0.827720i \(0.310362\pi\)
\(678\) −10.3991 −0.399374
\(679\) −14.2020 −0.545022
\(680\) 0 0
\(681\) −24.5188 −0.939562
\(682\) 2.26586 0.0867644
\(683\) −31.7459 −1.21472 −0.607362 0.794425i \(-0.707772\pi\)
−0.607362 + 0.794425i \(0.707772\pi\)
\(684\) 5.64234 0.215740
\(685\) 0 0
\(686\) −28.3331 −1.08176
\(687\) −24.6405 −0.940094
\(688\) −18.0853 −0.689496
\(689\) 56.1081 2.13755
\(690\) 0 0
\(691\) −37.7635 −1.43659 −0.718296 0.695737i \(-0.755078\pi\)
−0.718296 + 0.695737i \(0.755078\pi\)
\(692\) 5.82722 0.221518
\(693\) −0.275508 −0.0104657
\(694\) −18.4399 −0.699971
\(695\) 0 0
\(696\) −2.11233 −0.0800676
\(697\) 8.37544 0.317242
\(698\) −21.3013 −0.806267
\(699\) −4.19800 −0.158783
\(700\) 0 0
\(701\) −7.91040 −0.298772 −0.149386 0.988779i \(-0.547730\pi\)
−0.149386 + 0.988779i \(0.547730\pi\)
\(702\) −8.48377 −0.320199
\(703\) 68.3365 2.57736
\(704\) 0.655369 0.0247002
\(705\) 0 0
\(706\) −25.9557 −0.976856
\(707\) 7.68588 0.289057
\(708\) −10.2130 −0.383829
\(709\) 23.5795 0.885548 0.442774 0.896633i \(-0.353994\pi\)
0.442774 + 0.896633i \(0.353994\pi\)
\(710\) 0 0
\(711\) −8.78711 −0.329542
\(712\) −24.5210 −0.918963
\(713\) 53.1368 1.98999
\(714\) −8.51619 −0.318710
\(715\) 0 0
\(716\) −5.48900 −0.205134
\(717\) −9.04541 −0.337807
\(718\) −27.6149 −1.03058
\(719\) −16.8365 −0.627895 −0.313948 0.949440i \(-0.601652\pi\)
−0.313948 + 0.949440i \(0.601652\pi\)
\(720\) 0 0
\(721\) −18.9473 −0.705634
\(722\) −70.2246 −2.61349
\(723\) −4.83690 −0.179886
\(724\) −5.16322 −0.191890
\(725\) 0 0
\(726\) −18.0780 −0.670936
\(727\) −19.7661 −0.733086 −0.366543 0.930401i \(-0.619459\pi\)
−0.366543 + 0.930401i \(0.619459\pi\)
\(728\) 15.6620 0.580474
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 13.1708 0.487141
\(732\) −6.07676 −0.224603
\(733\) 10.5624 0.390130 0.195065 0.980790i \(-0.437508\pi\)
0.195065 + 0.980790i \(0.437508\pi\)
\(734\) −20.1311 −0.743052
\(735\) 0 0
\(736\) −28.7555 −1.05994
\(737\) −1.90531 −0.0701829
\(738\) −3.85361 −0.141853
\(739\) 27.8049 1.02282 0.511410 0.859337i \(-0.329123\pi\)
0.511410 + 0.859337i \(0.329123\pi\)
\(740\) 0 0
\(741\) 40.3770 1.48329
\(742\) −25.9144 −0.951349
\(743\) 1.43047 0.0524789 0.0262395 0.999656i \(-0.491647\pi\)
0.0262395 + 0.999656i \(0.491647\pi\)
\(744\) 15.1830 0.556637
\(745\) 0 0
\(746\) 19.2972 0.706522
\(747\) −15.8701 −0.580657
\(748\) 0.492592 0.0180110
\(749\) −22.0203 −0.804605
\(750\) 0 0
\(751\) 9.87670 0.360406 0.180203 0.983629i \(-0.442325\pi\)
0.180203 + 0.983629i \(0.442325\pi\)
\(752\) 46.8666 1.70905
\(753\) 3.88015 0.141401
\(754\) 8.48377 0.308961
\(755\) 0 0
\(756\) 1.03612 0.0376835
\(757\) −34.4041 −1.25044 −0.625219 0.780449i \(-0.714990\pi\)
−0.625219 + 0.780449i \(0.714990\pi\)
\(758\) 50.8606 1.84734
\(759\) 1.41329 0.0512992
\(760\) 0 0
\(761\) −8.06456 −0.292340 −0.146170 0.989259i \(-0.546695\pi\)
−0.146170 + 0.989259i \(0.546695\pi\)
\(762\) 32.0970 1.16275
\(763\) −14.2389 −0.515482
\(764\) 3.77185 0.136461
\(765\) 0 0
\(766\) 17.2438 0.623043
\(767\) −73.0853 −2.63896
\(768\) −15.2926 −0.551824
\(769\) −3.51646 −0.126807 −0.0634034 0.997988i \(-0.520195\pi\)
−0.0634034 + 0.997988i \(0.520195\pi\)
\(770\) 0 0
\(771\) 16.6439 0.599415
\(772\) 16.4770 0.593020
\(773\) 15.6759 0.563822 0.281911 0.959441i \(-0.409032\pi\)
0.281911 + 0.959441i \(0.409032\pi\)
\(774\) −6.06000 −0.217822
\(775\) 0 0
\(776\) 20.8166 0.747273
\(777\) 12.5489 0.450189
\(778\) 56.7452 2.03441
\(779\) 18.3406 0.657119
\(780\) 0 0
\(781\) −0.903426 −0.0323271
\(782\) 43.6861 1.56221
\(783\) −1.00000 −0.0357371
\(784\) 24.2270 0.865251
\(785\) 0 0
\(786\) 19.6125 0.699553
\(787\) 18.3318 0.653458 0.326729 0.945118i \(-0.394054\pi\)
0.326729 + 0.945118i \(0.394054\pi\)
\(788\) −2.56666 −0.0914336
\(789\) −10.2587 −0.365220
\(790\) 0 0
\(791\) 9.08852 0.323150
\(792\) 0.403827 0.0143494
\(793\) −43.4858 −1.54423
\(794\) 25.9396 0.920562
\(795\) 0 0
\(796\) 0.469300 0.0166339
\(797\) 43.7461 1.54957 0.774784 0.632226i \(-0.217859\pi\)
0.774784 + 0.632226i \(0.217859\pi\)
\(798\) −18.6488 −0.660160
\(799\) −34.1311 −1.20747
\(800\) 0 0
\(801\) −11.6085 −0.410167
\(802\) 1.69152 0.0597296
\(803\) 1.73296 0.0611549
\(804\) 7.16543 0.252705
\(805\) 0 0
\(806\) −60.9798 −2.14792
\(807\) −3.35149 −0.117978
\(808\) −11.2656 −0.396322
\(809\) 22.7075 0.798354 0.399177 0.916874i \(-0.369296\pi\)
0.399177 + 0.916874i \(0.369296\pi\)
\(810\) 0 0
\(811\) 39.3558 1.38197 0.690985 0.722869i \(-0.257177\pi\)
0.690985 + 0.722869i \(0.257177\pi\)
\(812\) −1.03612 −0.0363608
\(813\) −12.5730 −0.440953
\(814\) −2.74499 −0.0962119
\(815\) 0 0
\(816\) 17.6359 0.617380
\(817\) 28.8415 1.00904
\(818\) −20.8180 −0.727885
\(819\) 7.41459 0.259087
\(820\) 0 0
\(821\) 44.0845 1.53856 0.769280 0.638912i \(-0.220615\pi\)
0.769280 + 0.638912i \(0.220615\pi\)
\(822\) 26.8495 0.936484
\(823\) 50.4379 1.75815 0.879077 0.476681i \(-0.158160\pi\)
0.879077 + 0.476681i \(0.158160\pi\)
\(824\) 27.7721 0.967486
\(825\) 0 0
\(826\) 33.7556 1.17451
\(827\) −39.9104 −1.38782 −0.693910 0.720062i \(-0.744113\pi\)
−0.693910 + 0.720062i \(0.744113\pi\)
\(828\) −5.31507 −0.184712
\(829\) 17.1048 0.594075 0.297038 0.954866i \(-0.404001\pi\)
0.297038 + 0.954866i \(0.404001\pi\)
\(830\) 0 0
\(831\) 6.65219 0.230762
\(832\) −17.6376 −0.611473
\(833\) −17.6436 −0.611315
\(834\) 14.4907 0.501773
\(835\) 0 0
\(836\) 1.07868 0.0373070
\(837\) 7.18783 0.248448
\(838\) −8.02202 −0.277116
\(839\) 1.88147 0.0649557 0.0324778 0.999472i \(-0.489660\pi\)
0.0324778 + 0.999472i \(0.489660\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −52.3974 −1.80573
\(843\) −29.6058 −1.01968
\(844\) 6.37428 0.219412
\(845\) 0 0
\(846\) 15.7040 0.539915
\(847\) 15.7997 0.542883
\(848\) 53.6654 1.84288
\(849\) −18.4403 −0.632871
\(850\) 0 0
\(851\) −64.3729 −2.20667
\(852\) 3.39759 0.116399
\(853\) −42.5766 −1.45780 −0.728898 0.684622i \(-0.759967\pi\)
−0.728898 + 0.684622i \(0.759967\pi\)
\(854\) 20.0846 0.687282
\(855\) 0 0
\(856\) 32.2763 1.10318
\(857\) −3.22361 −0.110116 −0.0550582 0.998483i \(-0.517534\pi\)
−0.0550582 + 0.998483i \(0.517534\pi\)
\(858\) −1.62189 −0.0553705
\(859\) 6.60992 0.225527 0.112764 0.993622i \(-0.464030\pi\)
0.112764 + 0.993622i \(0.464030\pi\)
\(860\) 0 0
\(861\) 3.36795 0.114779
\(862\) 8.11641 0.276446
\(863\) 48.2625 1.64287 0.821437 0.570299i \(-0.193173\pi\)
0.821437 + 0.570299i \(0.193173\pi\)
\(864\) −3.88977 −0.132333
\(865\) 0 0
\(866\) 28.1277 0.955818
\(867\) 4.15645 0.141160
\(868\) 7.44748 0.252784
\(869\) −1.67989 −0.0569862
\(870\) 0 0
\(871\) 51.2764 1.73743
\(872\) 20.8707 0.706770
\(873\) 9.85482 0.333535
\(874\) 95.6640 3.23588
\(875\) 0 0
\(876\) −6.51728 −0.220198
\(877\) 12.7497 0.430525 0.215263 0.976556i \(-0.430939\pi\)
0.215263 + 0.976556i \(0.430939\pi\)
\(878\) 0.352758 0.0119050
\(879\) −14.8320 −0.500271
\(880\) 0 0
\(881\) −30.7457 −1.03585 −0.517924 0.855427i \(-0.673295\pi\)
−0.517924 + 0.855427i \(0.673295\pi\)
\(882\) 8.11796 0.273346
\(883\) −8.68913 −0.292413 −0.146206 0.989254i \(-0.546706\pi\)
−0.146206 + 0.989254i \(0.546706\pi\)
\(884\) −13.2568 −0.445876
\(885\) 0 0
\(886\) 39.8892 1.34010
\(887\) 13.4294 0.450916 0.225458 0.974253i \(-0.427612\pi\)
0.225458 + 0.974253i \(0.427612\pi\)
\(888\) −18.3936 −0.617248
\(889\) −28.0519 −0.940831
\(890\) 0 0
\(891\) 0.191176 0.00640464
\(892\) −5.78102 −0.193563
\(893\) −74.7406 −2.50110
\(894\) 5.10752 0.170821
\(895\) 0 0
\(896\) 19.3575 0.646687
\(897\) −38.0351 −1.26995
\(898\) −10.9528 −0.365499
\(899\) −7.18783 −0.239727
\(900\) 0 0
\(901\) −39.0824 −1.30202
\(902\) −0.736718 −0.0245300
\(903\) 5.29628 0.176249
\(904\) −13.3215 −0.443067
\(905\) 0 0
\(906\) −12.1867 −0.404876
\(907\) 16.1270 0.535488 0.267744 0.963490i \(-0.413722\pi\)
0.267744 + 0.963490i \(0.413722\pi\)
\(908\) 17.6283 0.585015
\(909\) −5.33326 −0.176893
\(910\) 0 0
\(911\) 16.7310 0.554323 0.277162 0.960823i \(-0.410606\pi\)
0.277162 + 0.960823i \(0.410606\pi\)
\(912\) 38.6192 1.27881
\(913\) −3.03399 −0.100410
\(914\) −42.5398 −1.40709
\(915\) 0 0
\(916\) 17.7158 0.585347
\(917\) −17.1408 −0.566038
\(918\) 5.90942 0.195040
\(919\) −21.0522 −0.694448 −0.347224 0.937782i \(-0.612876\pi\)
−0.347224 + 0.937782i \(0.612876\pi\)
\(920\) 0 0
\(921\) 17.8595 0.588490
\(922\) 16.3105 0.537156
\(923\) 24.3134 0.800285
\(924\) 0.198082 0.00651643
\(925\) 0 0
\(926\) 29.5673 0.971643
\(927\) 13.1476 0.431824
\(928\) 3.88977 0.127688
\(929\) −14.9033 −0.488961 −0.244481 0.969654i \(-0.578617\pi\)
−0.244481 + 0.969654i \(0.578617\pi\)
\(930\) 0 0
\(931\) −38.6361 −1.26625
\(932\) 3.01824 0.0988656
\(933\) 22.8466 0.747964
\(934\) 49.0788 1.60591
\(935\) 0 0
\(936\) −10.8680 −0.355230
\(937\) 7.56849 0.247252 0.123626 0.992329i \(-0.460548\pi\)
0.123626 + 0.992329i \(0.460548\pi\)
\(938\) −23.6829 −0.773272
\(939\) −27.4021 −0.894232
\(940\) 0 0
\(941\) 27.8686 0.908490 0.454245 0.890877i \(-0.349909\pi\)
0.454245 + 0.890877i \(0.349909\pi\)
\(942\) 15.8841 0.517531
\(943\) −17.2768 −0.562610
\(944\) −69.9035 −2.27516
\(945\) 0 0
\(946\) −1.15853 −0.0376670
\(947\) −6.21467 −0.201950 −0.100975 0.994889i \(-0.532196\pi\)
−0.100975 + 0.994889i \(0.532196\pi\)
\(948\) 6.31768 0.205189
\(949\) −46.6382 −1.51394
\(950\) 0 0
\(951\) −11.5466 −0.374423
\(952\) −10.9095 −0.353579
\(953\) −41.5221 −1.34503 −0.672517 0.740082i \(-0.734787\pi\)
−0.672517 + 0.740082i \(0.734787\pi\)
\(954\) 17.9821 0.582193
\(955\) 0 0
\(956\) 6.50339 0.210335
\(957\) −0.191176 −0.00617985
\(958\) 40.1434 1.29697
\(959\) −23.4657 −0.757749
\(960\) 0 0
\(961\) 20.6649 0.666608
\(962\) 73.8744 2.38180
\(963\) 15.2800 0.492391
\(964\) 3.47759 0.112006
\(965\) 0 0
\(966\) 17.5671 0.565213
\(967\) 27.9230 0.897942 0.448971 0.893546i \(-0.351791\pi\)
0.448971 + 0.893546i \(0.351791\pi\)
\(968\) −23.1584 −0.744339
\(969\) −28.1249 −0.903501
\(970\) 0 0
\(971\) −3.57298 −0.114663 −0.0573313 0.998355i \(-0.518259\pi\)
−0.0573313 + 0.998355i \(0.518259\pi\)
\(972\) −0.718971 −0.0230610
\(973\) −12.6645 −0.406006
\(974\) 2.91379 0.0933639
\(975\) 0 0
\(976\) −41.5926 −1.33135
\(977\) −16.8174 −0.538037 −0.269019 0.963135i \(-0.586699\pi\)
−0.269019 + 0.963135i \(0.586699\pi\)
\(978\) 32.4521 1.03770
\(979\) −2.21927 −0.0709282
\(980\) 0 0
\(981\) 9.88042 0.315457
\(982\) 4.08202 0.130263
\(983\) 39.7389 1.26747 0.633737 0.773549i \(-0.281520\pi\)
0.633737 + 0.773549i \(0.281520\pi\)
\(984\) −4.93658 −0.157372
\(985\) 0 0
\(986\) −5.90942 −0.188194
\(987\) −13.7249 −0.436868
\(988\) −29.0299 −0.923565
\(989\) −27.1687 −0.863914
\(990\) 0 0
\(991\) 0.836771 0.0265809 0.0132905 0.999912i \(-0.495769\pi\)
0.0132905 + 0.999912i \(0.495769\pi\)
\(992\) −27.9590 −0.887698
\(993\) 26.0804 0.827635
\(994\) −11.2295 −0.356179
\(995\) 0 0
\(996\) 11.4102 0.361544
\(997\) −48.1571 −1.52515 −0.762576 0.646899i \(-0.776066\pi\)
−0.762576 + 0.646899i \(0.776066\pi\)
\(998\) 11.2524 0.356188
\(999\) −8.70773 −0.275500
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.a.bc.1.3 8
3.2 odd 2 6525.2.a.bz.1.6 8
5.2 odd 4 2175.2.c.p.349.5 16
5.3 odd 4 2175.2.c.p.349.12 16
5.4 even 2 2175.2.a.bd.1.6 yes 8
15.14 odd 2 6525.2.a.by.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.bc.1.3 8 1.1 even 1 trivial
2175.2.a.bd.1.6 yes 8 5.4 even 2
2175.2.c.p.349.5 16 5.2 odd 4
2175.2.c.p.349.12 16 5.3 odd 4
6525.2.a.by.1.3 8 15.14 odd 2
6525.2.a.bz.1.6 8 3.2 odd 2