Properties

Label 2175.1.h.g
Level $2175$
Weight $1$
Character orbit 2175.h
Analytic conductor $1.085$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
RM discriminant 145
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,1,Mod(1826,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1826");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2175.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.08546640248\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{8}^{3} - \zeta_{8}) q^{2} - \zeta_{8} q^{3} + q^{4} + (\zeta_{8}^{2} + 1) q^{6} + \zeta_{8}^{2} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{8}^{3} - \zeta_{8}) q^{2} - \zeta_{8} q^{3} + q^{4} + (\zeta_{8}^{2} + 1) q^{6} + \zeta_{8}^{2} q^{9} - \zeta_{8} q^{12} - q^{16} + (\zeta_{8}^{3} - \zeta_{8}) q^{17} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{18} - \zeta_{8}^{3} q^{27} - \zeta_{8}^{2} q^{29} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{32} + 2 q^{34} + \zeta_{8}^{2} q^{36} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{37} + (\zeta_{8}^{3} + \zeta_{8}) q^{43} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{47} + \zeta_{8} q^{48} - q^{49} + (\zeta_{8}^{2} + 1) q^{51} + (\zeta_{8}^{2} - 1) q^{54} + (\zeta_{8}^{3} + \zeta_{8}) q^{58} - 2 \zeta_{8}^{2} q^{59} - q^{64} + (\zeta_{8}^{3} - \zeta_{8}) q^{68} - 2 \zeta_{8}^{2} q^{71} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{73} + 2 \zeta_{8}^{2} q^{74} - q^{81} - 2 \zeta_{8}^{2} q^{86} + \zeta_{8}^{3} q^{87} - 2 q^{94} + ( - \zeta_{8}^{2} - 1) q^{96} + (\zeta_{8}^{3} + \zeta_{8}) q^{97} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} + 4 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{4} + 4 q^{6} - 4 q^{16} + 8 q^{34} - 4 q^{49} + 4 q^{51} - 4 q^{54} - 4 q^{64} - 4 q^{81} - 8 q^{94} - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1826.1
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
−0.707107 0.707107i
−1.41421 −0.707107 0.707107i 1.00000 0 1.00000 + 1.00000i 0 0 1.00000i 0
1826.2 −1.41421 −0.707107 + 0.707107i 1.00000 0 1.00000 1.00000i 0 0 1.00000i 0
1826.3 1.41421 0.707107 0.707107i 1.00000 0 1.00000 1.00000i 0 0 1.00000i 0
1826.4 1.41421 0.707107 + 0.707107i 1.00000 0 1.00000 + 1.00000i 0 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
145.d even 2 1 RM by \(\Q(\sqrt{145}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner
29.b even 2 1 inner
87.d odd 2 1 inner
435.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2175.1.h.g 4
3.b odd 2 1 inner 2175.1.h.g 4
5.b even 2 1 inner 2175.1.h.g 4
5.c odd 4 2 435.1.b.a 4
15.d odd 2 1 inner 2175.1.h.g 4
15.e even 4 2 435.1.b.a 4
29.b even 2 1 inner 2175.1.h.g 4
87.d odd 2 1 inner 2175.1.h.g 4
145.d even 2 1 RM 2175.1.h.g 4
145.h odd 4 2 435.1.b.a 4
435.b odd 2 1 inner 2175.1.h.g 4
435.p even 4 2 435.1.b.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.1.b.a 4 5.c odd 4 2
435.1.b.a 4 15.e even 4 2
435.1.b.a 4 145.h odd 4 2
435.1.b.a 4 435.p even 4 2
2175.1.h.g 4 1.a even 1 1 trivial
2175.1.h.g 4 3.b odd 2 1 inner
2175.1.h.g 4 5.b even 2 1 inner
2175.1.h.g 4 15.d odd 2 1 inner
2175.1.h.g 4 29.b even 2 1 inner
2175.1.h.g 4 87.d odd 2 1 inner
2175.1.h.g 4 145.d even 2 1 RM
2175.1.h.g 4 435.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2175, [\chi])\):

\( T_{2}^{2} - 2 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
show more
show less