Properties

Label 2175.1.h.e
Level $2175$
Weight $1$
Character orbit 2175.h
Self dual yes
Analytic conductor $1.085$
Analytic rank $0$
Dimension $3$
Projective image $D_{9}$
CM discriminant -87
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2175,1,Mod(1826,2175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2175.1826"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2175.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,3,0,0,0,-3,3,0,0,3,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.08546640248\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.895152515625.1
Artin image: $D_9$
Artin field: Galois closure of 9.1.895152515625.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + \beta_1) q^{2} + q^{3} + ( - \beta_1 + 1) q^{4} + ( - \beta_{2} + \beta_1) q^{6} - \beta_1 q^{7} + ( - \beta_{2} + \beta_1 - 1) q^{8} + q^{9} + \beta_{2} q^{11} + ( - \beta_1 + 1) q^{12}+ \cdots + \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 3 q^{4} - 3 q^{8} + 3 q^{9} + 3 q^{12} - 3 q^{14} + 3 q^{16} - 3 q^{22} - 3 q^{24} + 6 q^{26} + 3 q^{27} + 6 q^{28} + 3 q^{29} - 3 q^{32} - 3 q^{34} + 3 q^{36} - 3 q^{41} - 3 q^{42} - 3 q^{44}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1826.1
−1.53209
1.87939
−0.347296
−1.87939 1.00000 2.53209 0 −1.87939 1.53209 −2.87939 1.00000 0
1826.2 0.347296 1.00000 −0.879385 0 0.347296 −1.87939 −0.652704 1.00000 0
1826.3 1.53209 1.00000 1.34730 0 1.53209 0.347296 0.532089 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
87.d odd 2 1 CM by \(\Q(\sqrt{-87}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2175.1.h.e yes 3
3.b odd 2 1 2175.1.h.d yes 3
5.b even 2 1 2175.1.h.c 3
5.c odd 4 2 2175.1.b.d 6
15.d odd 2 1 2175.1.h.f yes 3
15.e even 4 2 2175.1.b.c 6
29.b even 2 1 2175.1.h.d yes 3
87.d odd 2 1 CM 2175.1.h.e yes 3
145.d even 2 1 2175.1.h.f yes 3
145.h odd 4 2 2175.1.b.c 6
435.b odd 2 1 2175.1.h.c 3
435.p even 4 2 2175.1.b.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2175.1.b.c 6 15.e even 4 2
2175.1.b.c 6 145.h odd 4 2
2175.1.b.d 6 5.c odd 4 2
2175.1.b.d 6 435.p even 4 2
2175.1.h.c 3 5.b even 2 1
2175.1.h.c 3 435.b odd 2 1
2175.1.h.d yes 3 3.b odd 2 1
2175.1.h.d yes 3 29.b even 2 1
2175.1.h.e yes 3 1.a even 1 1 trivial
2175.1.h.e yes 3 87.d odd 2 1 CM
2175.1.h.f yes 3 15.d odd 2 1
2175.1.h.f yes 3 145.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2175, [\chi])\):

\( T_{2}^{3} - 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{3} - 3T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$11$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$13$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$17$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$19$ \( T^{3} \) Copy content Toggle raw display
$23$ \( T^{3} \) Copy content Toggle raw display
$29$ \( (T - 1)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} \) Copy content Toggle raw display
$37$ \( T^{3} \) Copy content Toggle raw display
$41$ \( (T + 1)^{3} \) Copy content Toggle raw display
$43$ \( T^{3} \) Copy content Toggle raw display
$47$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$53$ \( T^{3} \) Copy content Toggle raw display
$59$ \( T^{3} \) Copy content Toggle raw display
$61$ \( T^{3} \) Copy content Toggle raw display
$67$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$71$ \( T^{3} \) Copy content Toggle raw display
$73$ \( T^{3} \) Copy content Toggle raw display
$79$ \( T^{3} \) Copy content Toggle raw display
$83$ \( T^{3} \) Copy content Toggle raw display
$89$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$97$ \( T^{3} \) Copy content Toggle raw display
show more
show less