Properties

Label 2175.1.h.d.1826.3
Level $2175$
Weight $1$
Character 2175.1826
Self dual yes
Analytic conductor $1.085$
Analytic rank $0$
Dimension $3$
Projective image $D_{9}$
CM discriminant -87
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,1,Mod(1826,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1826");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2175.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.08546640248\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.895152515625.1

Embedding invariants

Embedding label 1826.3
Root \(-1.53209\) of defining polynomial
Character \(\chi\) \(=\) 2175.1826

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.87939 q^{2} -1.00000 q^{3} +2.53209 q^{4} -1.87939 q^{6} +1.53209 q^{7} +2.87939 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.87939 q^{2} -1.00000 q^{3} +2.53209 q^{4} -1.87939 q^{6} +1.53209 q^{7} +2.87939 q^{8} +1.00000 q^{9} -0.347296 q^{11} -2.53209 q^{12} -1.87939 q^{13} +2.87939 q^{14} +2.87939 q^{16} -0.347296 q^{17} +1.87939 q^{18} -1.53209 q^{21} -0.652704 q^{22} -2.87939 q^{24} -3.53209 q^{26} -1.00000 q^{27} +3.87939 q^{28} -1.00000 q^{29} +2.53209 q^{32} +0.347296 q^{33} -0.652704 q^{34} +2.53209 q^{36} +1.87939 q^{39} +1.00000 q^{41} -2.87939 q^{42} -0.879385 q^{44} -1.53209 q^{47} -2.87939 q^{48} +1.34730 q^{49} +0.347296 q^{51} -4.75877 q^{52} -1.87939 q^{54} +4.41147 q^{56} -1.87939 q^{58} +1.53209 q^{63} +1.87939 q^{64} +0.652704 q^{66} +0.347296 q^{67} -0.879385 q^{68} +2.87939 q^{72} -0.532089 q^{77} +3.53209 q^{78} +1.00000 q^{81} +1.87939 q^{82} -3.87939 q^{84} +1.00000 q^{87} -1.00000 q^{88} +1.87939 q^{89} -2.87939 q^{91} -2.87939 q^{94} -2.53209 q^{96} +2.53209 q^{98} -0.347296 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 3 q^{4} + 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{3} + 3 q^{4} + 3 q^{8} + 3 q^{9} - 3 q^{12} + 3 q^{14} + 3 q^{16} - 3 q^{22} - 3 q^{24} - 6 q^{26} - 3 q^{27} + 6 q^{28} - 3 q^{29} + 3 q^{32} - 3 q^{34} + 3 q^{36} + 3 q^{41} - 3 q^{42} + 3 q^{44} - 3 q^{48} + 3 q^{49} - 3 q^{52} + 3 q^{56} + 3 q^{66} + 3 q^{68} + 3 q^{72} + 3 q^{77} + 6 q^{78} + 3 q^{81} - 6 q^{84} + 3 q^{87} - 3 q^{88} - 3 q^{91} - 3 q^{94} - 3 q^{96} + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(3\) −1.00000 −1.00000
\(4\) 2.53209 2.53209
\(5\) 0 0
\(6\) −1.87939 −1.87939
\(7\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(8\) 2.87939 2.87939
\(9\) 1.00000 1.00000
\(10\) 0 0
\(11\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(12\) −2.53209 −2.53209
\(13\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(14\) 2.87939 2.87939
\(15\) 0 0
\(16\) 2.87939 2.87939
\(17\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(18\) 1.87939 1.87939
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) −1.53209 −1.53209
\(22\) −0.652704 −0.652704
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −2.87939 −2.87939
\(25\) 0 0
\(26\) −3.53209 −3.53209
\(27\) −1.00000 −1.00000
\(28\) 3.87939 3.87939
\(29\) −1.00000 −1.00000
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 2.53209 2.53209
\(33\) 0.347296 0.347296
\(34\) −0.652704 −0.652704
\(35\) 0 0
\(36\) 2.53209 2.53209
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 1.87939 1.87939
\(40\) 0 0
\(41\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(42\) −2.87939 −2.87939
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −0.879385 −0.879385
\(45\) 0 0
\(46\) 0 0
\(47\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(48\) −2.87939 −2.87939
\(49\) 1.34730 1.34730
\(50\) 0 0
\(51\) 0.347296 0.347296
\(52\) −4.75877 −4.75877
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −1.87939 −1.87939
\(55\) 0 0
\(56\) 4.41147 4.41147
\(57\) 0 0
\(58\) −1.87939 −1.87939
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 1.53209 1.53209
\(64\) 1.87939 1.87939
\(65\) 0 0
\(66\) 0.652704 0.652704
\(67\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(68\) −0.879385 −0.879385
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 2.87939 2.87939
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.532089 −0.532089
\(78\) 3.53209 3.53209
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 1.00000 1.00000
\(82\) 1.87939 1.87939
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) −3.87939 −3.87939
\(85\) 0 0
\(86\) 0 0
\(87\) 1.00000 1.00000
\(88\) −1.00000 −1.00000
\(89\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(90\) 0 0
\(91\) −2.87939 −2.87939
\(92\) 0 0
\(93\) 0 0
\(94\) −2.87939 −2.87939
\(95\) 0 0
\(96\) −2.53209 −2.53209
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 2.53209 2.53209
\(99\) −0.347296 −0.347296
\(100\) 0 0
\(101\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(102\) 0.652704 0.652704
\(103\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) −5.41147 −5.41147
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) −2.53209 −2.53209
\(109\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 4.41147 4.41147
\(113\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.53209 −2.53209
\(117\) −1.87939 −1.87939
\(118\) 0 0
\(119\) −0.532089 −0.532089
\(120\) 0 0
\(121\) −0.879385 −0.879385
\(122\) 0 0
\(123\) −1.00000 −1.00000
\(124\) 0 0
\(125\) 0 0
\(126\) 2.87939 2.87939
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 1.00000 1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(132\) 0.879385 0.879385
\(133\) 0 0
\(134\) 0.652704 0.652704
\(135\) 0 0
\(136\) −1.00000 −1.00000
\(137\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(138\) 0 0
\(139\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(140\) 0 0
\(141\) 1.53209 1.53209
\(142\) 0 0
\(143\) 0.652704 0.652704
\(144\) 2.87939 2.87939
\(145\) 0 0
\(146\) 0 0
\(147\) −1.34730 −1.34730
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) −0.347296 −0.347296
\(154\) −1.00000 −1.00000
\(155\) 0 0
\(156\) 4.75877 4.75877
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 1.87939 1.87939
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 2.53209 2.53209
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) −4.41147 −4.41147
\(169\) 2.53209 2.53209
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 1.87939 1.87939
\(175\) 0 0
\(176\) −1.00000 −1.00000
\(177\) 0 0
\(178\) 3.53209 3.53209
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(182\) −5.41147 −5.41147
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.120615 0.120615
\(188\) −3.87939 −3.87939
\(189\) −1.53209 −1.53209
\(190\) 0 0
\(191\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(192\) −1.87939 −1.87939
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 3.41147 3.41147
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −0.652704 −0.652704
\(199\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(200\) 0 0
\(201\) −0.347296 −0.347296
\(202\) 3.53209 3.53209
\(203\) −1.53209 −1.53209
\(204\) 0.879385 0.879385
\(205\) 0 0
\(206\) −1.87939 −1.87939
\(207\) 0 0
\(208\) −5.41147 −5.41147
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) −2.87939 −2.87939
\(217\) 0 0
\(218\) −3.53209 −3.53209
\(219\) 0 0
\(220\) 0 0
\(221\) 0.652704 0.652704
\(222\) 0 0
\(223\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(224\) 3.87939 3.87939
\(225\) 0 0
\(226\) −2.87939 −2.87939
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0.532089 0.532089
\(232\) −2.87939 −2.87939
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) −3.53209 −3.53209
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) −1.00000 −1.00000
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(242\) −1.65270 −1.65270
\(243\) −1.00000 −1.00000
\(244\) 0 0
\(245\) 0 0
\(246\) −1.87939 −1.87939
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(252\) 3.87939 3.87939
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.00000 −1.00000
\(262\) −2.87939 −2.87939
\(263\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 1.00000 1.00000
\(265\) 0 0
\(266\) 0 0
\(267\) −1.87939 −1.87939
\(268\) 0.879385 0.879385
\(269\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −1.00000 −1.00000
\(273\) 2.87939 2.87939
\(274\) 1.87939 1.87939
\(275\) 0 0
\(276\) 0 0
\(277\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(278\) 2.87939 2.87939
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 2.87939 2.87939
\(283\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 1.22668 1.22668
\(287\) 1.53209 1.53209
\(288\) 2.53209 2.53209
\(289\) −0.879385 −0.879385
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(294\) −2.53209 −2.53209
\(295\) 0 0
\(296\) 0 0
\(297\) 0.347296 0.347296
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −1.87939 −1.87939
\(303\) −1.87939 −1.87939
\(304\) 0 0
\(305\) 0 0
\(306\) −0.652704 −0.652704
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) −1.34730 −1.34730
\(309\) 1.00000 1.00000
\(310\) 0 0
\(311\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(312\) 5.41147 5.41147
\(313\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(318\) 0 0
\(319\) 0.347296 0.347296
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 2.53209 2.53209
\(325\) 0 0
\(326\) 0 0
\(327\) 1.87939 1.87939
\(328\) 2.87939 2.87939
\(329\) −2.34730 −2.34730
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −4.41147 −4.41147
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 4.75877 4.75877
\(339\) 1.53209 1.53209
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.532089 0.532089
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 2.53209 2.53209
\(349\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) 1.87939 1.87939
\(352\) −0.879385 −0.879385
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 4.75877 4.75877
\(357\) 0.532089 0.532089
\(358\) 0 0
\(359\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0.652704 0.652704
\(363\) 0.879385 0.879385
\(364\) −7.29086 −7.29086
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 1.00000 1.00000
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(374\) 0.226682 0.226682
\(375\) 0 0
\(376\) −4.41147 −4.41147
\(377\) 1.87939 1.87939
\(378\) −2.87939 −2.87939
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −3.75877 −3.75877
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) −1.00000 −1.00000
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.87939 3.87939
\(393\) 1.53209 1.53209
\(394\) 0 0
\(395\) 0 0
\(396\) −0.879385 −0.879385
\(397\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) −3.53209 −3.53209
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) −0.652704 −0.652704
\(403\) 0 0
\(404\) 4.75877 4.75877
\(405\) 0 0
\(406\) −2.87939 −2.87939
\(407\) 0 0
\(408\) 1.00000 1.00000
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) −1.00000 −1.00000
\(412\) −2.53209 −2.53209
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −4.75877 −4.75877
\(417\) −1.53209 −1.53209
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) −1.53209 −1.53209
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −0.652704 −0.652704
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −2.87939 −2.87939
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4.75877 −4.75877
\(437\) 0 0
\(438\) 0 0
\(439\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(440\) 0 0
\(441\) 1.34730 1.34730
\(442\) 1.22668 1.22668
\(443\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0.652704 0.652704
\(447\) 0 0
\(448\) 2.87939 2.87939
\(449\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(450\) 0 0
\(451\) −0.347296 −0.347296
\(452\) −3.87939 −3.87939
\(453\) 1.00000 1.00000
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(458\) 0 0
\(459\) 0.347296 0.347296
\(460\) 0 0
\(461\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(462\) 1.00000 1.00000
\(463\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(464\) −2.87939 −2.87939
\(465\) 0 0
\(466\) 0 0
\(467\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) −4.75877 −4.75877
\(469\) 0.532089 0.532089
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −1.34730 −1.34730
\(477\) 0 0
\(478\) 0 0
\(479\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 2.87939 2.87939
\(483\) 0 0
\(484\) −2.22668 −2.22668
\(485\) 0 0
\(486\) −1.87939 −1.87939
\(487\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(492\) −2.53209 −2.53209
\(493\) 0.347296 0.347296
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 3.53209 3.53209
\(503\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(504\) 4.41147 4.41147
\(505\) 0 0
\(506\) 0 0
\(507\) −2.53209 −2.53209
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0.532089 0.532089
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) −1.87939 −1.87939
\(523\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(524\) −3.87939 −3.87939
\(525\) 0 0
\(526\) 1.87939 1.87939
\(527\) 0 0
\(528\) 1.00000 1.00000
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.87939 −1.87939
\(534\) −3.53209 −3.53209
\(535\) 0 0
\(536\) 1.00000 1.00000
\(537\) 0 0
\(538\) −0.652704 −0.652704
\(539\) −0.467911 −0.467911
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −0.347296 −0.347296
\(544\) −0.879385 −0.879385
\(545\) 0 0
\(546\) 5.41147 5.41147
\(547\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(548\) 2.53209 2.53209
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0.652704 0.652704
\(555\) 0 0
\(556\) 3.87939 3.87939
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −0.120615 −0.120615
\(562\) 0 0
\(563\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(564\) 3.87939 3.87939
\(565\) 0 0
\(566\) −1.87939 −1.87939
\(567\) 1.53209 1.53209
\(568\) 0 0
\(569\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(570\) 0 0
\(571\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 1.65270 1.65270
\(573\) 2.00000 2.00000
\(574\) 2.87939 2.87939
\(575\) 0 0
\(576\) 1.87939 1.87939
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −1.65270 −1.65270
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 3.53209 3.53209
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −3.41147 −3.41147
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0.652704 0.652704
\(595\) 0 0
\(596\) 0 0
\(597\) 1.87939 1.87939
\(598\) 0 0
\(599\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0.347296 0.347296
\(604\) −2.53209 −2.53209
\(605\) 0 0
\(606\) −3.53209 −3.53209
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 1.53209 1.53209
\(610\) 0 0
\(611\) 2.87939 2.87939
\(612\) −0.879385 −0.879385
\(613\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −1.53209 −1.53209
\(617\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(618\) 1.87939 1.87939
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −2.87939 −2.87939
\(623\) 2.87939 2.87939
\(624\) 5.41147 5.41147
\(625\) 0 0
\(626\) 2.87939 2.87939
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 3.53209 3.53209
\(635\) 0 0
\(636\) 0 0
\(637\) −2.53209 −2.53209
\(638\) 0.652704 0.652704
\(639\) 0 0
\(640\) 0 0
\(641\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(642\) 0 0
\(643\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 2.87939 2.87939
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(654\) 3.53209 3.53209
\(655\) 0 0
\(656\) 2.87939 2.87939
\(657\) 0 0
\(658\) −4.41147 −4.41147
\(659\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(660\) 0 0
\(661\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(662\) 0 0
\(663\) −0.652704 −0.652704
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −0.347296 −0.347296
\(670\) 0 0
\(671\) 0 0
\(672\) −3.87939 −3.87939
\(673\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 6.41147 6.41147
\(677\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(678\) 2.87939 2.87939
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.00000 1.00000
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(692\) 0 0
\(693\) −0.532089 −0.532089
\(694\) 0 0
\(695\) 0 0
\(696\) 2.87939 2.87939
\(697\) −0.347296 −0.347296
\(698\) −1.87939 −1.87939
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 3.53209 3.53209
\(703\) 0 0
\(704\) −0.652704 −0.652704
\(705\) 0 0
\(706\) 0 0
\(707\) 2.87939 2.87939
\(708\) 0 0
\(709\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 5.41147 5.41147
\(713\) 0 0
\(714\) 1.00000 1.00000
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 1.87939 1.87939
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) −1.53209 −1.53209
\(722\) 1.87939 1.87939
\(723\) −1.53209 −1.53209
\(724\) 0.879385 0.879385
\(725\) 0 0
\(726\) 1.65270 1.65270
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) −8.29086 −8.29086
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.120615 −0.120615
\(738\) 1.87939 1.87939
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 3.75877 3.75877
\(747\) 0 0
\(748\) 0.305407 0.305407
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) −4.41147 −4.41147
\(753\) −1.87939 −1.87939
\(754\) 3.53209 3.53209
\(755\) 0 0
\(756\) −3.87939 −3.87939
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) −2.87939 −2.87939
\(764\) −5.06418 −5.06418
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 3.53209 3.53209
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 1.00000 1.00000
\(784\) 3.87939 3.87939
\(785\) 0 0
\(786\) 2.87939 2.87939
\(787\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 0 0
\(789\) −1.00000 −1.00000
\(790\) 0 0
\(791\) −2.34730 −2.34730
\(792\) −1.00000 −1.00000
\(793\) 0 0
\(794\) −1.87939 −1.87939
\(795\) 0 0
\(796\) −4.75877 −4.75877
\(797\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(798\) 0 0
\(799\) 0.532089 0.532089
\(800\) 0 0
\(801\) 1.87939 1.87939
\(802\) 0 0
\(803\) 0 0
\(804\) −0.879385 −0.879385
\(805\) 0 0
\(806\) 0 0
\(807\) 0.347296 0.347296
\(808\) 5.41147 5.41147
\(809\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(810\) 0 0
\(811\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(812\) −3.87939 −3.87939
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 1.00000 1.00000
\(817\) 0 0
\(818\) 0 0
\(819\) −2.87939 −2.87939
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) −1.87939 −1.87939
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) −2.87939 −2.87939
\(825\) 0 0
\(826\) 0 0
\(827\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) −0.347296 −0.347296
\(832\) −3.53209 −3.53209
\(833\) −0.467911 −0.467911
\(834\) −2.87939 −2.87939
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) −2.87939 −2.87939
\(847\) −1.34730 −1.34730
\(848\) 0 0
\(849\) 1.00000 1.00000
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) −1.22668 −1.22668
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) −1.53209 −1.53209
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) −2.53209 −2.53209
\(865\) 0 0
\(866\) 0 0
\(867\) 0.879385 0.879385
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −0.652704 −0.652704
\(872\) −5.41147 −5.41147
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(878\) 0.652704 0.652704
\(879\) −1.87939 −1.87939
\(880\) 0 0
\(881\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(882\) 2.53209 2.53209
\(883\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(884\) 1.65270 1.65270
\(885\) 0 0
\(886\) 3.53209 3.53209
\(887\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −0.347296 −0.347296
\(892\) 0.879385 0.879385
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 1.53209 1.53209
\(897\) 0 0
\(898\) −2.87939 −2.87939
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) −0.652704 −0.652704
\(903\) 0 0
\(904\) −4.41147 −4.41147
\(905\) 0 0
\(906\) 1.87939 1.87939
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 1.87939 1.87939
\(910\) 0 0
\(911\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 2.87939 2.87939
\(915\) 0 0
\(916\) 0 0
\(917\) −2.34730 −2.34730
\(918\) 0.652704 0.652704
\(919\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.87939 1.87939
\(923\) 0 0
\(924\) 1.34730 1.34730
\(925\) 0 0
\(926\) −3.53209 −3.53209
\(927\) −1.00000 −1.00000
\(928\) −2.53209 −2.53209
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.53209 1.53209
\(934\) 1.87939 1.87939
\(935\) 0 0
\(936\) −5.41147 −5.41147
\(937\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(938\) 1.00000 1.00000
\(939\) −1.53209 −1.53209
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.87939 −1.87939
\(952\) −1.53209 −1.53209
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −0.347296 −0.347296
\(958\) 1.87939 1.87939
\(959\) 1.53209 1.53209
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 3.87939 3.87939
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −2.53209 −2.53209
\(969\) 0 0
\(970\) 0 0
\(971\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(972\) −2.53209 −2.53209
\(973\) 2.34730 2.34730
\(974\) 3.75877 3.75877
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) −0.652704 −0.652704
\(980\) 0 0
\(981\) −1.87939 −1.87939
\(982\) 1.87939 1.87939
\(983\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(984\) −2.87939 −2.87939
\(985\) 0 0
\(986\) 0.652704 0.652704
\(987\) 2.34730 2.34730
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) −3.53209 −3.53209
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.1.h.d.1826.3 yes 3
3.2 odd 2 2175.1.h.e.1826.1 yes 3
5.2 odd 4 2175.1.b.c.2174.6 6
5.3 odd 4 2175.1.b.c.2174.1 6
5.4 even 2 2175.1.h.f.1826.1 yes 3
15.2 even 4 2175.1.b.d.2174.1 6
15.8 even 4 2175.1.b.d.2174.6 6
15.14 odd 2 2175.1.h.c.1826.3 3
29.28 even 2 2175.1.h.e.1826.1 yes 3
87.86 odd 2 CM 2175.1.h.d.1826.3 yes 3
145.28 odd 4 2175.1.b.d.2174.6 6
145.57 odd 4 2175.1.b.d.2174.1 6
145.144 even 2 2175.1.h.c.1826.3 3
435.173 even 4 2175.1.b.c.2174.1 6
435.347 even 4 2175.1.b.c.2174.6 6
435.434 odd 2 2175.1.h.f.1826.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.1.b.c.2174.1 6 5.3 odd 4
2175.1.b.c.2174.1 6 435.173 even 4
2175.1.b.c.2174.6 6 5.2 odd 4
2175.1.b.c.2174.6 6 435.347 even 4
2175.1.b.d.2174.1 6 15.2 even 4
2175.1.b.d.2174.1 6 145.57 odd 4
2175.1.b.d.2174.6 6 15.8 even 4
2175.1.b.d.2174.6 6 145.28 odd 4
2175.1.h.c.1826.3 3 15.14 odd 2
2175.1.h.c.1826.3 3 145.144 even 2
2175.1.h.d.1826.3 yes 3 1.1 even 1 trivial
2175.1.h.d.1826.3 yes 3 87.86 odd 2 CM
2175.1.h.e.1826.1 yes 3 3.2 odd 2
2175.1.h.e.1826.1 yes 3 29.28 even 2
2175.1.h.f.1826.1 yes 3 5.4 even 2
2175.1.h.f.1826.1 yes 3 435.434 odd 2