Defining parameters
| Level: | \( N \) | \(=\) | \( 2175 = 3 \cdot 5^{2} \cdot 29 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2175.h (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 87 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(300\) | ||
| Trace bound: | \(14\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2175, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 36 | 24 | 12 |
| Cusp forms | 24 | 18 | 6 |
| Eisenstein series | 12 | 6 | 6 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 18 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2175, [\chi])\) into newform subspaces
Decomposition of \(S_{1}^{\mathrm{old}}(2175, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2175, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 3}\)