Defining parameters
Level: | \( N \) | \(=\) | \( 2175 = 3 \cdot 5^{2} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2175.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 87 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(300\) | ||
Trace bound: | \(14\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2175, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 24 | 12 |
Cusp forms | 24 | 18 | 6 |
Eisenstein series | 12 | 6 | 6 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 18 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2175, [\chi])\) into newform subspaces
Decomposition of \(S_{1}^{\mathrm{old}}(2175, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2175, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)