Properties

Label 2175.1.h
Level $2175$
Weight $1$
Character orbit 2175.h
Rep. character $\chi_{2175}(1826,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $7$
Sturm bound $300$
Trace bound $14$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2175.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 87 \)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(300\)
Trace bound: \(14\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2175, [\chi])\).

Total New Old
Modular forms 36 24 12
Cusp forms 24 18 6
Eisenstein series 12 6 6

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 18 0 0 0

Trace form

\( 18 q + 16 q^{4} + 2 q^{6} + 2 q^{7} + 14 q^{9} + O(q^{10}) \) \( 18 q + 16 q^{4} + 2 q^{6} + 2 q^{7} + 14 q^{9} + 2 q^{13} + 6 q^{16} - 2 q^{22} - 10 q^{24} + 2 q^{33} - 2 q^{34} + 12 q^{36} - 2 q^{42} + 8 q^{49} + 2 q^{51} - 6 q^{54} + 2 q^{58} + 2 q^{63} - 2 q^{64} + 2 q^{67} - 2 q^{78} + 10 q^{81} + 4 q^{82} - 2 q^{87} + 2 q^{88} - 10 q^{91} - 18 q^{94} - 16 q^{96} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(2175, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2175.1.h.a 2175.h 87.d $1$ $1.085$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-87}) \) None 87.1.d.a \(-1\) \(1\) \(0\) \(1\) \(q-q^{2}+q^{3}-q^{6}+q^{7}+q^{8}+q^{9}+\cdots\)
2175.1.h.b 2175.h 87.d $1$ $1.085$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-87}) \) None 87.1.d.a \(1\) \(-1\) \(0\) \(1\) \(q+q^{2}-q^{3}-q^{6}+q^{7}-q^{8}+q^{9}+\cdots\)
2175.1.h.c 2175.h 87.d $3$ $1.085$ \(\Q(\zeta_{18})^+\) $D_{9}$ \(\Q(\sqrt{-87}) \) None 2175.1.h.c \(0\) \(-3\) \(0\) \(0\) \(q+(-\beta _{1}+\beta _{2})q^{2}-q^{3}+(1-\beta _{1})q^{4}+\cdots\)
2175.1.h.d 2175.h 87.d $3$ $1.085$ \(\Q(\zeta_{18})^+\) $D_{9}$ \(\Q(\sqrt{-87}) \) None 2175.1.h.c \(0\) \(-3\) \(0\) \(0\) \(q+(-\beta _{1}+\beta _{2})q^{2}-q^{3}+(1-\beta _{1})q^{4}+\cdots\)
2175.1.h.e 2175.h 87.d $3$ $1.085$ \(\Q(\zeta_{18})^+\) $D_{9}$ \(\Q(\sqrt{-87}) \) None 2175.1.h.c \(0\) \(3\) \(0\) \(0\) \(q+(\beta _{1}-\beta _{2})q^{2}+q^{3}+(1-\beta _{1})q^{4}+(\beta _{1}+\cdots)q^{6}+\cdots\)
2175.1.h.f 2175.h 87.d $3$ $1.085$ \(\Q(\zeta_{18})^+\) $D_{9}$ \(\Q(\sqrt{-87}) \) None 2175.1.h.c \(0\) \(3\) \(0\) \(0\) \(q+(\beta _{1}-\beta _{2})q^{2}+q^{3}+(1-\beta _{1})q^{4}+(\beta _{1}+\cdots)q^{6}+\cdots\)
2175.1.h.g 2175.h 87.d $4$ $1.085$ \(\Q(\zeta_{8})\) $D_{4}$ None \(\Q(\sqrt{145}) \) 435.1.b.a \(0\) \(0\) \(0\) \(0\) \(q+(-\zeta_{8}+\zeta_{8}^{3})q^{2}-\zeta_{8}q^{3}+q^{4}+(1+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2175, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2175, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)