Properties

Label 2175.1.b.d
Level $2175$
Weight $1$
Character orbit 2175.b
Analytic conductor $1.085$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -87
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,1,Mod(2174,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.2174");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.08546640248\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.419904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 6x^{4} + 9x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.895152515625.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{3} q^{3} + (\beta_{2} - 1) q^{4} + ( - \beta_{4} + \beta_{2}) q^{6} + ( - \beta_{5} - \beta_1) q^{7} + (\beta_{3} - \beta_1) q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} - \beta_{3} q^{3} + (\beta_{2} - 1) q^{4} + ( - \beta_{4} + \beta_{2}) q^{6} + ( - \beta_{5} - \beta_1) q^{7} + (\beta_{3} - \beta_1) q^{8} - q^{9} + \beta_{4} q^{11} + ( - \beta_{5} + \beta_{3} - \beta_1) q^{12} - \beta_1 q^{13} + (\beta_{4} - \beta_{2} + 1) q^{14} + (\beta_{4} - \beta_{2} + 1) q^{16} + \beta_{5} q^{17} - \beta_1 q^{18} - \beta_{2} q^{21} + (\beta_{5} - \beta_{3}) q^{22} + (\beta_{4} - \beta_{2} + 1) q^{24} + ( - \beta_{2} + 2) q^{26} + \beta_{3} q^{27} + ( - 2 \beta_{3} + \beta_1) q^{28} - q^{29} + (\beta_{5} - \beta_{3} + \beta_1) q^{32} - \beta_{5} q^{33} + ( - \beta_{4} + 1) q^{34} + ( - \beta_{2} + 1) q^{36} + (\beta_{4} - \beta_{2}) q^{39} - q^{41} + ( - \beta_{3} + \beta_1) q^{42} + ( - \beta_{4} + \beta_{2} + 1) q^{44} + ( - \beta_{5} - \beta_1) q^{47} + ( - \beta_{3} + \beta_1) q^{48} + ( - \beta_{4} - 1) q^{49} + \beta_{4} q^{51} + ( - \beta_{3} + 2 \beta_1) q^{52} + (\beta_{4} - \beta_{2}) q^{54} + ( - \beta_{4} + 2 \beta_{2} - 1) q^{56} - \beta_1 q^{58} + (\beta_{5} + \beta_1) q^{63} + ( - \beta_{4} + \beta_{2}) q^{64} + (\beta_{4} - 1) q^{66} + \beta_{5} q^{67} + (\beta_{3} + \beta_1) q^{68} + ( - \beta_{3} + \beta_1) q^{72} + ( - \beta_{5} - \beta_{3} - \beta_1) q^{77} + (\beta_{5} - 2 \beta_{3} + \beta_1) q^{78} + q^{81} - \beta_1 q^{82} + ( - \beta_{4} + \beta_{2} - 2) q^{84} + \beta_{3} q^{87} + \beta_{3} q^{88} + (\beta_{4} - \beta_{2}) q^{89} + ( - \beta_{4} + \beta_{2} - 1) q^{91} + (\beta_{4} - \beta_{2} + 1) q^{94} + (\beta_{2} - 1) q^{96} + ( - \beta_{5} + \beta_{3} - \beta_1) q^{98} - \beta_{4} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{4} - 6 q^{9} + 6 q^{14} + 6 q^{16} + 6 q^{24} + 12 q^{26} - 6 q^{29} + 6 q^{34} + 6 q^{36} - 6 q^{41} + 6 q^{44} - 6 q^{49} - 6 q^{56} - 6 q^{66} + 6 q^{81} - 12 q^{84} - 6 q^{91} + 6 q^{94} - 6 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 6x^{4} + 9x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 4\nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + 5\nu^{3} + 5\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 4\beta_{2} + 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 5\beta_{3} + 10\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2174.1
1.87939i
1.53209i
0.347296i
0.347296i
1.53209i
1.87939i
1.87939i 1.00000i −2.53209 0 −1.87939 1.53209i 2.87939i −1.00000 0
2174.2 1.53209i 1.00000i −1.34730 0 1.53209 0.347296i 0.532089i −1.00000 0
2174.3 0.347296i 1.00000i 0.879385 0 0.347296 1.87939i 0.652704i −1.00000 0
2174.4 0.347296i 1.00000i 0.879385 0 0.347296 1.87939i 0.652704i −1.00000 0
2174.5 1.53209i 1.00000i −1.34730 0 1.53209 0.347296i 0.532089i −1.00000 0
2174.6 1.87939i 1.00000i −2.53209 0 −1.87939 1.53209i 2.87939i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2174.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
87.d odd 2 1 CM by \(\Q(\sqrt{-87}) \)
5.b even 2 1 inner
435.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2175.1.b.d 6
3.b odd 2 1 2175.1.b.c 6
5.b even 2 1 inner 2175.1.b.d 6
5.c odd 4 1 2175.1.h.c 3
5.c odd 4 1 2175.1.h.e yes 3
15.d odd 2 1 2175.1.b.c 6
15.e even 4 1 2175.1.h.d yes 3
15.e even 4 1 2175.1.h.f yes 3
29.b even 2 1 2175.1.b.c 6
87.d odd 2 1 CM 2175.1.b.d 6
145.d even 2 1 2175.1.b.c 6
145.h odd 4 1 2175.1.h.d yes 3
145.h odd 4 1 2175.1.h.f yes 3
435.b odd 2 1 inner 2175.1.b.d 6
435.p even 4 1 2175.1.h.c 3
435.p even 4 1 2175.1.h.e yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2175.1.b.c 6 3.b odd 2 1
2175.1.b.c 6 15.d odd 2 1
2175.1.b.c 6 29.b even 2 1
2175.1.b.c 6 145.d even 2 1
2175.1.b.d 6 1.a even 1 1 trivial
2175.1.b.d 6 5.b even 2 1 inner
2175.1.b.d 6 87.d odd 2 1 CM
2175.1.b.d 6 435.b odd 2 1 inner
2175.1.h.c 3 5.c odd 4 1
2175.1.h.c 3 435.p even 4 1
2175.1.h.d yes 3 15.e even 4 1
2175.1.h.d yes 3 145.h odd 4 1
2175.1.h.e yes 3 5.c odd 4 1
2175.1.h.e yes 3 435.p even 4 1
2175.1.h.f yes 3 15.e even 4 1
2175.1.h.f yes 3 145.h odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2175, [\chi])\):

\( T_{2}^{6} + 6T_{2}^{4} + 9T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{3} - 3T_{11} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( (T^{3} - 3 T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{6} \) Copy content Toggle raw display
$23$ \( T^{6} \) Copy content Toggle raw display
$29$ \( (T + 1)^{6} \) Copy content Toggle raw display
$31$ \( T^{6} \) Copy content Toggle raw display
$37$ \( T^{6} \) Copy content Toggle raw display
$41$ \( (T + 1)^{6} \) Copy content Toggle raw display
$43$ \( T^{6} \) Copy content Toggle raw display
$47$ \( T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{6} \) Copy content Toggle raw display
$59$ \( T^{6} \) Copy content Toggle raw display
$61$ \( T^{6} \) Copy content Toggle raw display
$67$ \( T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{6} \) Copy content Toggle raw display
$73$ \( T^{6} \) Copy content Toggle raw display
$79$ \( T^{6} \) Copy content Toggle raw display
$83$ \( T^{6} \) Copy content Toggle raw display
$89$ \( (T^{3} - 3 T - 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} \) Copy content Toggle raw display
show more
show less