Properties

Label 2175.1
Level 2175
Weight 1
Dimension 34
Nonzero newspaces 2
Newform subspaces 11
Sturm bound 336000
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 11 \)
Sturm bound: \(336000\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(2175))\).

Total New Old
Modular forms 3208 1140 2068
Cusp forms 72 34 38
Eisenstein series 3136 1106 2030

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 34 0 0 0

Trace form

\( 34 q + 4 q^{4} - 2 q^{6} + 2 q^{7} - 2 q^{9} + O(q^{10}) \) \( 34 q + 4 q^{4} - 2 q^{6} + 2 q^{7} - 2 q^{9} + 2 q^{13} + 14 q^{16} - 2 q^{22} - 2 q^{24} + 2 q^{33} + 6 q^{34} + 24 q^{36} - 2 q^{42} - 4 q^{49} - 2 q^{51} - 2 q^{54} + 2 q^{58} + 2 q^{63} - 6 q^{64} + 2 q^{67} - 2 q^{78} + 26 q^{81} + 4 q^{82} - 2 q^{87} + 2 q^{88} - 18 q^{91} - 10 q^{94} - 28 q^{96} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(2175))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2175.1.b \(\chi_{2175}(2174, \cdot)\) 2175.1.b.a 2 1
2175.1.b.b 2
2175.1.b.c 6
2175.1.b.d 6
2175.1.e \(\chi_{2175}(1451, \cdot)\) None 0 1
2175.1.g \(\chi_{2175}(1799, \cdot)\) None 0 1
2175.1.h \(\chi_{2175}(1826, \cdot)\) 2175.1.h.a 1 1
2175.1.h.b 1
2175.1.h.c 3
2175.1.h.d 3
2175.1.h.e 3
2175.1.h.f 3
2175.1.h.g 4
2175.1.i \(\chi_{2175}(1757, \cdot)\) None 0 2
2175.1.k \(\chi_{2175}(1549, \cdot)\) None 0 2
2175.1.n \(\chi_{2175}(1507, \cdot)\) None 0 2
2175.1.o \(\chi_{2175}(1132, \cdot)\) None 0 2
2175.1.r \(\chi_{2175}(1201, \cdot)\) None 0 2
2175.1.t \(\chi_{2175}(1607, \cdot)\) None 0 2
2175.1.w \(\chi_{2175}(59, \cdot)\) None 0 4
2175.1.y \(\chi_{2175}(86, \cdot)\) None 0 4
2175.1.ba \(\chi_{2175}(434, \cdot)\) None 0 4
2175.1.bb \(\chi_{2175}(146, \cdot)\) None 0 4
2175.1.bd \(\chi_{2175}(701, \cdot)\) None 0 6
2175.1.be \(\chi_{2175}(74, \cdot)\) None 0 6
2175.1.bg \(\chi_{2175}(326, \cdot)\) None 0 6
2175.1.bj \(\chi_{2175}(149, \cdot)\) None 0 6
2175.1.bk \(\chi_{2175}(278, \cdot)\) None 0 8
2175.1.bn \(\chi_{2175}(244, \cdot)\) None 0 8
2175.1.bp \(\chi_{2175}(88, \cdot)\) None 0 8
2175.1.bq \(\chi_{2175}(28, \cdot)\) None 0 8
2175.1.bs \(\chi_{2175}(46, \cdot)\) None 0 8
2175.1.bv \(\chi_{2175}(17, \cdot)\) None 0 8
2175.1.bw \(\chi_{2175}(182, \cdot)\) None 0 12
2175.1.by \(\chi_{2175}(76, \cdot)\) None 0 12
2175.1.cb \(\chi_{2175}(7, \cdot)\) None 0 12
2175.1.cc \(\chi_{2175}(382, \cdot)\) None 0 12
2175.1.cf \(\chi_{2175}(124, \cdot)\) None 0 12
2175.1.ch \(\chi_{2175}(32, \cdot)\) None 0 12
2175.1.ck \(\chi_{2175}(161, \cdot)\) None 0 24
2175.1.cl \(\chi_{2175}(179, \cdot)\) None 0 24
2175.1.cn \(\chi_{2175}(71, \cdot)\) None 0 24
2175.1.cp \(\chi_{2175}(194, \cdot)\) None 0 24
2175.1.cq \(\chi_{2175}(2, \cdot)\) None 0 48
2175.1.ct \(\chi_{2175}(31, \cdot)\) None 0 48
2175.1.cv \(\chi_{2175}(13, \cdot)\) None 0 48
2175.1.cw \(\chi_{2175}(52, \cdot)\) None 0 48
2175.1.cy \(\chi_{2175}(19, \cdot)\) None 0 48
2175.1.db \(\chi_{2175}(47, \cdot)\) None 0 48

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(2175))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(2175)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(87))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(145))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(435))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(725))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2175))\)\(^{\oplus 1}\)