Properties

Label 217.2.a.c
Level $217$
Weight $2$
Character orbit 217.a
Self dual yes
Analytic conductor $1.733$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [217,2,Mod(1,217)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(217, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("217.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 217 = 7 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 217.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,3,2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.73275372386\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.6809.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{3} + 1) q^{3} + (\beta_{2} + 1) q^{4} + (\beta_1 + 1) q^{5} + ( - \beta_1 + 1) q^{6} + q^{7} + ( - \beta_{3} - \beta_1 - 1) q^{8} + (\beta_{3} - \beta_{2}) q^{9} + ( - \beta_{2} - \beta_1 - 3) q^{10}+ \cdots + (\beta_{3} - \beta_{2} - 2 \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} + 2 q^{4} + 4 q^{5} + 4 q^{6} + 4 q^{7} - 3 q^{8} + q^{9} - 10 q^{10} + 2 q^{11} + 4 q^{12} - q^{13} - q^{15} + 2 q^{16} + 8 q^{17} + 7 q^{18} + 5 q^{19} + 5 q^{20} + 3 q^{21} - 17 q^{22}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 5x^{2} - x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 5\nu - 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 5\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.29041
0.361989
−0.582772
−2.06963
−2.29041 0.563397 3.24598 3.29041 −1.29041 1.00000 −2.85381 −2.68258 −7.53639
1.2 −0.361989 −1.76251 −1.86896 1.36199 0.638011 1.00000 1.40052 0.106451 −0.493026
1.3 0.582772 2.71594 −1.66038 0.417228 1.58277 1.00000 −2.13317 4.37631 0.243149
1.4 2.06963 1.48318 2.28336 −1.06963 3.06963 1.00000 0.586449 −0.800181 −2.21373
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 217.2.a.c 4
3.b odd 2 1 1953.2.a.t 4
4.b odd 2 1 3472.2.a.v 4
5.b even 2 1 5425.2.a.u 4
7.b odd 2 1 1519.2.a.d 4
31.b odd 2 1 6727.2.a.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
217.2.a.c 4 1.a even 1 1 trivial
1519.2.a.d 4 7.b odd 2 1
1953.2.a.t 4 3.b odd 2 1
3472.2.a.v 4 4.b odd 2 1
5425.2.a.u 4 5.b even 2 1
6727.2.a.g 4 31.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(217))\):

\( T_{2}^{4} - 5T_{2}^{2} + T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{4} - 3T_{3}^{3} - 2T_{3}^{2} + 9T_{3} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 5T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - 3 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$5$ \( T^{4} - 4 T^{3} + \cdots - 2 \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 2 T^{3} + \cdots - 68 \) Copy content Toggle raw display
$13$ \( T^{4} + T^{3} - 18 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$17$ \( T^{4} - 8 T^{3} + \cdots + 214 \) Copy content Toggle raw display
$19$ \( T^{4} - 5 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$23$ \( T^{4} - 20 T^{3} + \cdots - 160 \) Copy content Toggle raw display
$29$ \( T^{4} + 7 T^{3} + \cdots - 110 \) Copy content Toggle raw display
$31$ \( (T + 1)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 179 T^{2} + \cdots + 7058 \) Copy content Toggle raw display
$41$ \( T^{4} - 5 T^{3} + \cdots - 254 \) Copy content Toggle raw display
$43$ \( T^{4} + 15 T^{3} + \cdots + 116 \) Copy content Toggle raw display
$47$ \( T^{4} - 19 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$53$ \( T^{4} - 3 T^{3} + \cdots + 2390 \) Copy content Toggle raw display
$59$ \( T^{4} - 5 T^{3} + \cdots - 556 \) Copy content Toggle raw display
$61$ \( T^{4} + 5 T^{3} + \cdots + 22 \) Copy content Toggle raw display
$67$ \( T^{4} + 14 T^{3} + \cdots - 10076 \) Copy content Toggle raw display
$71$ \( T^{4} + 5 T^{3} + \cdots + 1720 \) Copy content Toggle raw display
$73$ \( T^{4} + 9 T^{3} + \cdots - 1766 \) Copy content Toggle raw display
$79$ \( T^{4} + 4 T^{3} + \cdots - 1088 \) Copy content Toggle raw display
$83$ \( T^{4} - 25 T^{3} + \cdots - 5732 \) Copy content Toggle raw display
$89$ \( T^{4} - 21 T^{3} + \cdots - 118 \) Copy content Toggle raw display
$97$ \( T^{4} + 15 T^{3} + \cdots - 1298 \) Copy content Toggle raw display
show more
show less