Properties

Label 2166.4.a.e
Level $2166$
Weight $4$
Character orbit 2166.a
Self dual yes
Analytic conductor $127.798$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2166 = 2 \cdot 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2166.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(127.798137072\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{2} - 3q^{3} + 4q^{4} - 6q^{5} - 6q^{6} + 19q^{7} + 8q^{8} + 9q^{9} + O(q^{10}) \) \( q + 2q^{2} - 3q^{3} + 4q^{4} - 6q^{5} - 6q^{6} + 19q^{7} + 8q^{8} + 9q^{9} - 12q^{10} + 32q^{11} - 12q^{12} - 81q^{13} + 38q^{14} + 18q^{15} + 16q^{16} - 124q^{17} + 18q^{18} - 24q^{20} - 57q^{21} + 64q^{22} + 98q^{23} - 24q^{24} - 89q^{25} - 162q^{26} - 27q^{27} + 76q^{28} + 300q^{29} + 36q^{30} + 225q^{31} + 32q^{32} - 96q^{33} - 248q^{34} - 114q^{35} + 36q^{36} + 293q^{37} + 243q^{39} - 48q^{40} - 176q^{41} - 114q^{42} - 111q^{43} + 128q^{44} - 54q^{45} + 196q^{46} - 550q^{47} - 48q^{48} + 18q^{49} - 178q^{50} + 372q^{51} - 324q^{52} + 482q^{53} - 54q^{54} - 192q^{55} + 152q^{56} + 600q^{58} + 496q^{59} + 72q^{60} + 155q^{61} + 450q^{62} + 171q^{63} + 64q^{64} + 486q^{65} - 192q^{66} - 465q^{67} - 496q^{68} - 294q^{69} - 228q^{70} + 110q^{71} + 72q^{72} + 817q^{73} + 586q^{74} + 267q^{75} + 608q^{77} + 486q^{78} - 259q^{79} - 96q^{80} + 81q^{81} - 352q^{82} - 56q^{83} - 228q^{84} + 744q^{85} - 222q^{86} - 900q^{87} + 256q^{88} - 308q^{89} - 108q^{90} - 1539q^{91} + 392q^{92} - 675q^{93} - 1100q^{94} - 96q^{96} + 1150q^{97} + 36q^{98} + 288q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 −3.00000 4.00000 −6.00000 −6.00000 19.0000 8.00000 9.00000 −12.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2166.4.a.e 1
19.b odd 2 1 2166.4.a.b 1
19.d odd 6 2 114.4.e.b 2
57.f even 6 2 342.4.g.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.4.e.b 2 19.d odd 6 2
342.4.g.a 2 57.f even 6 2
2166.4.a.b 1 19.b odd 2 1
2166.4.a.e 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2166))\):

\( T_{5} + 6 \)
\( T_{13} + 81 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -2 + T \)
$3$ \( 3 + T \)
$5$ \( 6 + T \)
$7$ \( -19 + T \)
$11$ \( -32 + T \)
$13$ \( 81 + T \)
$17$ \( 124 + T \)
$19$ \( T \)
$23$ \( -98 + T \)
$29$ \( -300 + T \)
$31$ \( -225 + T \)
$37$ \( -293 + T \)
$41$ \( 176 + T \)
$43$ \( 111 + T \)
$47$ \( 550 + T \)
$53$ \( -482 + T \)
$59$ \( -496 + T \)
$61$ \( -155 + T \)
$67$ \( 465 + T \)
$71$ \( -110 + T \)
$73$ \( -817 + T \)
$79$ \( 259 + T \)
$83$ \( 56 + T \)
$89$ \( 308 + T \)
$97$ \( -1150 + T \)
show more
show less