# Properties

 Label 2166.2.a.u Level $2166$ Weight $2$ Character orbit 2166.a Self dual yes Analytic conductor $17.296$ Analytic rank $0$ Dimension $3$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2166 = 2 \cdot 3 \cdot 19^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2166.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$17.2955970778$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: $$\Q(\zeta_{18})^+$$ Defining polynomial: $$x^{3} - 3x - 1$$ x^3 - 3*x - 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 114) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{3} + q^{4} + ( - \beta_{2} - \beta_1) q^{5} + q^{6} + ( - \beta_1 - 1) q^{7} + q^{8} + q^{9}+O(q^{10})$$ q + q^2 + q^3 + q^4 + (-b2 - b1) * q^5 + q^6 + (-b1 - 1) * q^7 + q^8 + q^9 $$q + q^{2} + q^{3} + q^{4} + ( - \beta_{2} - \beta_1) q^{5} + q^{6} + ( - \beta_1 - 1) q^{7} + q^{8} + q^{9} + ( - \beta_{2} - \beta_1) q^{10} + (\beta_{2} - \beta_1) q^{11} + q^{12} + (\beta_{2} - \beta_1 + 2) q^{13} + ( - \beta_1 - 1) q^{14} + ( - \beta_{2} - \beta_1) q^{15} + q^{16} + (2 \beta_{2} + \beta_1 + 2) q^{17} + q^{18} + ( - \beta_{2} - \beta_1) q^{20} + ( - \beta_1 - 1) q^{21} + (\beta_{2} - \beta_1) q^{22} + ( - 3 \beta_{2} + 5 \beta_1 + 2) q^{23} + q^{24} + (3 \beta_1 + 1) q^{25} + (\beta_{2} - \beta_1 + 2) q^{26} + q^{27} + ( - \beta_1 - 1) q^{28} + ( - 3 \beta_{2} - 2 \beta_1 + 2) q^{29} + ( - \beta_{2} - \beta_1) q^{30} + ( - 3 \beta_{2} + 3) q^{31} + q^{32} + (\beta_{2} - \beta_1) q^{33} + (2 \beta_{2} + \beta_1 + 2) q^{34} + (2 \beta_{2} + 2 \beta_1 + 3) q^{35} + q^{36} + ( - 2 \beta_{2} + 6 \beta_1 + 3) q^{37} + (\beta_{2} - \beta_1 + 2) q^{39} + ( - \beta_{2} - \beta_1) q^{40} + (4 \beta_{2} - 3 \beta_1 + 3) q^{41} + ( - \beta_1 - 1) q^{42} + ( - 3 \beta_{2} + \beta_1 + 5) q^{43} + (\beta_{2} - \beta_1) q^{44} + ( - \beta_{2} - \beta_1) q^{45} + ( - 3 \beta_{2} + 5 \beta_1 + 2) q^{46} + (3 \beta_{2} + 1) q^{47} + q^{48} + (\beta_{2} + 2 \beta_1 - 4) q^{49} + (3 \beta_1 + 1) q^{50} + (2 \beta_{2} + \beta_1 + 2) q^{51} + (\beta_{2} - \beta_1 + 2) q^{52} + ( - 8 \beta_{2} + 6 \beta_1 - 1) q^{53} + q^{54} + (2 \beta_{2} - \beta_1) q^{55} + ( - \beta_1 - 1) q^{56} + ( - 3 \beta_{2} - 2 \beta_1 + 2) q^{58} + (6 \beta_{2} - 3 \beta_1 - 4) q^{59} + ( - \beta_{2} - \beta_1) q^{60} + ( - \beta_{2} - 11) q^{61} + ( - 3 \beta_{2} + 3) q^{62} + ( - \beta_1 - 1) q^{63} + q^{64} - 3 \beta_1 q^{65} + (\beta_{2} - \beta_1) q^{66} + (3 \beta_{2} - 4 \beta_1 + 4) q^{67} + (2 \beta_{2} + \beta_1 + 2) q^{68} + ( - 3 \beta_{2} + 5 \beta_1 + 2) q^{69} + (2 \beta_{2} + 2 \beta_1 + 3) q^{70} + ( - \beta_{2} + 7 \beta_1 + 5) q^{71} + q^{72} + (5 \beta_{2} + 2 \beta_1 + 1) q^{73} + ( - 2 \beta_{2} + 6 \beta_1 + 3) q^{74} + (3 \beta_1 + 1) q^{75} + q^{77} + (\beta_{2} - \beta_1 + 2) q^{78} + (10 \beta_{2} - 5 \beta_1 + 5) q^{79} + ( - \beta_{2} - \beta_1) q^{80} + q^{81} + (4 \beta_{2} - 3 \beta_1 + 3) q^{82} + (3 \beta_{2} - \beta_1 + 9) q^{83} + ( - \beta_1 - 1) q^{84} + ( - \beta_{2} - 7 \beta_1 - 9) q^{85} + ( - 3 \beta_{2} + \beta_1 + 5) q^{86} + ( - 3 \beta_{2} - 2 \beta_1 + 2) q^{87} + (\beta_{2} - \beta_1) q^{88} + (7 \beta_{2} - 4 \beta_1 - 5) q^{89} + ( - \beta_{2} - \beta_1) q^{90} + ( - 2 \beta_1 - 1) q^{91} + ( - 3 \beta_{2} + 5 \beta_1 + 2) q^{92} + ( - 3 \beta_{2} + 3) q^{93} + (3 \beta_{2} + 1) q^{94} + q^{96} + ( - \beta_{2} + \beta_1 - 4) q^{97} + (\beta_{2} + 2 \beta_1 - 4) q^{98} + (\beta_{2} - \beta_1) q^{99}+O(q^{100})$$ q + q^2 + q^3 + q^4 + (-b2 - b1) * q^5 + q^6 + (-b1 - 1) * q^7 + q^8 + q^9 + (-b2 - b1) * q^10 + (b2 - b1) * q^11 + q^12 + (b2 - b1 + 2) * q^13 + (-b1 - 1) * q^14 + (-b2 - b1) * q^15 + q^16 + (2*b2 + b1 + 2) * q^17 + q^18 + (-b2 - b1) * q^20 + (-b1 - 1) * q^21 + (b2 - b1) * q^22 + (-3*b2 + 5*b1 + 2) * q^23 + q^24 + (3*b1 + 1) * q^25 + (b2 - b1 + 2) * q^26 + q^27 + (-b1 - 1) * q^28 + (-3*b2 - 2*b1 + 2) * q^29 + (-b2 - b1) * q^30 + (-3*b2 + 3) * q^31 + q^32 + (b2 - b1) * q^33 + (2*b2 + b1 + 2) * q^34 + (2*b2 + 2*b1 + 3) * q^35 + q^36 + (-2*b2 + 6*b1 + 3) * q^37 + (b2 - b1 + 2) * q^39 + (-b2 - b1) * q^40 + (4*b2 - 3*b1 + 3) * q^41 + (-b1 - 1) * q^42 + (-3*b2 + b1 + 5) * q^43 + (b2 - b1) * q^44 + (-b2 - b1) * q^45 + (-3*b2 + 5*b1 + 2) * q^46 + (3*b2 + 1) * q^47 + q^48 + (b2 + 2*b1 - 4) * q^49 + (3*b1 + 1) * q^50 + (2*b2 + b1 + 2) * q^51 + (b2 - b1 + 2) * q^52 + (-8*b2 + 6*b1 - 1) * q^53 + q^54 + (2*b2 - b1) * q^55 + (-b1 - 1) * q^56 + (-3*b2 - 2*b1 + 2) * q^58 + (6*b2 - 3*b1 - 4) * q^59 + (-b2 - b1) * q^60 + (-b2 - 11) * q^61 + (-3*b2 + 3) * q^62 + (-b1 - 1) * q^63 + q^64 - 3*b1 * q^65 + (b2 - b1) * q^66 + (3*b2 - 4*b1 + 4) * q^67 + (2*b2 + b1 + 2) * q^68 + (-3*b2 + 5*b1 + 2) * q^69 + (2*b2 + 2*b1 + 3) * q^70 + (-b2 + 7*b1 + 5) * q^71 + q^72 + (5*b2 + 2*b1 + 1) * q^73 + (-2*b2 + 6*b1 + 3) * q^74 + (3*b1 + 1) * q^75 + q^77 + (b2 - b1 + 2) * q^78 + (10*b2 - 5*b1 + 5) * q^79 + (-b2 - b1) * q^80 + q^81 + (4*b2 - 3*b1 + 3) * q^82 + (3*b2 - b1 + 9) * q^83 + (-b1 - 1) * q^84 + (-b2 - 7*b1 - 9) * q^85 + (-3*b2 + b1 + 5) * q^86 + (-3*b2 - 2*b1 + 2) * q^87 + (b2 - b1) * q^88 + (7*b2 - 4*b1 - 5) * q^89 + (-b2 - b1) * q^90 + (-2*b1 - 1) * q^91 + (-3*b2 + 5*b1 + 2) * q^92 + (-3*b2 + 3) * q^93 + (3*b2 + 1) * q^94 + q^96 + (-b2 + b1 - 4) * q^97 + (b2 + 2*b1 - 4) * q^98 + (b2 - b1) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q + 3 q^{2} + 3 q^{3} + 3 q^{4} + 3 q^{6} - 3 q^{7} + 3 q^{8} + 3 q^{9}+O(q^{10})$$ 3 * q + 3 * q^2 + 3 * q^3 + 3 * q^4 + 3 * q^6 - 3 * q^7 + 3 * q^8 + 3 * q^9 $$3 q + 3 q^{2} + 3 q^{3} + 3 q^{4} + 3 q^{6} - 3 q^{7} + 3 q^{8} + 3 q^{9} + 3 q^{12} + 6 q^{13} - 3 q^{14} + 3 q^{16} + 6 q^{17} + 3 q^{18} - 3 q^{21} + 6 q^{23} + 3 q^{24} + 3 q^{25} + 6 q^{26} + 3 q^{27} - 3 q^{28} + 6 q^{29} + 9 q^{31} + 3 q^{32} + 6 q^{34} + 9 q^{35} + 3 q^{36} + 9 q^{37} + 6 q^{39} + 9 q^{41} - 3 q^{42} + 15 q^{43} + 6 q^{46} + 3 q^{47} + 3 q^{48} - 12 q^{49} + 3 q^{50} + 6 q^{51} + 6 q^{52} - 3 q^{53} + 3 q^{54} - 3 q^{56} + 6 q^{58} - 12 q^{59} - 33 q^{61} + 9 q^{62} - 3 q^{63} + 3 q^{64} + 12 q^{67} + 6 q^{68} + 6 q^{69} + 9 q^{70} + 15 q^{71} + 3 q^{72} + 3 q^{73} + 9 q^{74} + 3 q^{75} + 3 q^{77} + 6 q^{78} + 15 q^{79} + 3 q^{81} + 9 q^{82} + 27 q^{83} - 3 q^{84} - 27 q^{85} + 15 q^{86} + 6 q^{87} - 15 q^{89} - 3 q^{91} + 6 q^{92} + 9 q^{93} + 3 q^{94} + 3 q^{96} - 12 q^{97} - 12 q^{98}+O(q^{100})$$ 3 * q + 3 * q^2 + 3 * q^3 + 3 * q^4 + 3 * q^6 - 3 * q^7 + 3 * q^8 + 3 * q^9 + 3 * q^12 + 6 * q^13 - 3 * q^14 + 3 * q^16 + 6 * q^17 + 3 * q^18 - 3 * q^21 + 6 * q^23 + 3 * q^24 + 3 * q^25 + 6 * q^26 + 3 * q^27 - 3 * q^28 + 6 * q^29 + 9 * q^31 + 3 * q^32 + 6 * q^34 + 9 * q^35 + 3 * q^36 + 9 * q^37 + 6 * q^39 + 9 * q^41 - 3 * q^42 + 15 * q^43 + 6 * q^46 + 3 * q^47 + 3 * q^48 - 12 * q^49 + 3 * q^50 + 6 * q^51 + 6 * q^52 - 3 * q^53 + 3 * q^54 - 3 * q^56 + 6 * q^58 - 12 * q^59 - 33 * q^61 + 9 * q^62 - 3 * q^63 + 3 * q^64 + 12 * q^67 + 6 * q^68 + 6 * q^69 + 9 * q^70 + 15 * q^71 + 3 * q^72 + 3 * q^73 + 9 * q^74 + 3 * q^75 + 3 * q^77 + 6 * q^78 + 15 * q^79 + 3 * q^81 + 9 * q^82 + 27 * q^83 - 3 * q^84 - 27 * q^85 + 15 * q^86 + 6 * q^87 - 15 * q^89 - 3 * q^91 + 6 * q^92 + 9 * q^93 + 3 * q^94 + 3 * q^96 - 12 * q^97 - 12 * q^98

Basis of coefficient ring in terms of $$\nu = \zeta_{18} + \zeta_{18}^{-1}$$:

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} - 2$$ v^2 - 2
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} + 2$$ b2 + 2

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 1.87939 −1.53209 −0.347296
1.00000 1.00000 1.00000 −3.41147 1.00000 −2.87939 1.00000 1.00000 −3.41147
1.2 1.00000 1.00000 1.00000 1.18479 1.00000 0.532089 1.00000 1.00000 1.18479
1.3 1.00000 1.00000 1.00000 2.22668 1.00000 −0.652704 1.00000 1.00000 2.22668
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$19$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2166.2.a.u 3
3.b odd 2 1 6498.2.a.bn 3
19.b odd 2 1 2166.2.a.o 3
19.f odd 18 2 114.2.i.d 6
57.d even 2 1 6498.2.a.bs 3
57.j even 18 2 342.2.u.a 6
76.k even 18 2 912.2.bo.f 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.2.i.d 6 19.f odd 18 2
342.2.u.a 6 57.j even 18 2
912.2.bo.f 6 76.k even 18 2
2166.2.a.o 3 19.b odd 2 1
2166.2.a.u 3 1.a even 1 1 trivial
6498.2.a.bn 3 3.b odd 2 1
6498.2.a.bs 3 57.d even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2166))$$:

 $$T_{5}^{3} - 9T_{5} + 9$$ T5^3 - 9*T5 + 9 $$T_{7}^{3} + 3T_{7}^{2} - 1$$ T7^3 + 3*T7^2 - 1 $$T_{13}^{3} - 6T_{13}^{2} + 9T_{13} - 3$$ T13^3 - 6*T13^2 + 9*T13 - 3 $$T_{29}^{3} - 6T_{29}^{2} - 45T_{29} + 213$$ T29^3 - 6*T29^2 - 45*T29 + 213

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T - 1)^{3}$$
$3$ $$(T - 1)^{3}$$
$5$ $$T^{3} - 9T + 9$$
$7$ $$T^{3} + 3T^{2} - 1$$
$11$ $$T^{3} - 3T - 1$$
$13$ $$T^{3} - 6 T^{2} + 9 T - 3$$
$17$ $$T^{3} - 6 T^{2} - 9 T + 17$$
$19$ $$T^{3}$$
$23$ $$T^{3} - 6 T^{2} - 45 T + 269$$
$29$ $$T^{3} - 6 T^{2} - 45 T + 213$$
$31$ $$T^{3} - 9T^{2} + 27$$
$37$ $$T^{3} - 9 T^{2} - 57 T + 361$$
$41$ $$T^{3} - 9 T^{2} - 12 T + 109$$
$43$ $$T^{3} - 15 T^{2} + 54 T - 57$$
$47$ $$T^{3} - 3 T^{2} - 24 T + 53$$
$53$ $$T^{3} + 3 T^{2} - 153 T - 307$$
$59$ $$T^{3} + 12 T^{2} - 33 T - 17$$
$61$ $$T^{3} + 33 T^{2} + 360 T + 1297$$
$67$ $$T^{3} - 12 T^{2} + 9 T + 3$$
$71$ $$T^{3} - 15 T^{2} - 54 T + 449$$
$73$ $$T^{3} - 3 T^{2} - 114 T - 37$$
$79$ $$T^{3} - 15 T^{2} - 150 T + 2125$$
$83$ $$T^{3} - 27 T^{2} + 222 T - 503$$
$89$ $$T^{3} + 15 T^{2} - 36 T - 107$$
$97$ $$T^{3} + 12 T^{2} + 45 T + 53$$