Properties

Label 2160.4.h.a.431.3
Level $2160$
Weight $4$
Character 2160.431
Analytic conductor $127.444$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,4,Mod(431,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.431");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2160.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(127.444125612\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 431.3
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2160.431
Dual form 2160.4.h.a.431.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000i q^{5} -20.7846i q^{7} +O(q^{10})\) \(q+5.00000i q^{5} -20.7846i q^{7} -36.3731 q^{11} -47.0000 q^{13} -21.0000i q^{17} +62.3538i q^{19} -36.3731 q^{23} -25.0000 q^{25} +123.000i q^{29} -25.9808i q^{31} +103.923 q^{35} -178.000 q^{37} +342.000i q^{41} -233.827i q^{43} -306.573 q^{47} -89.0000 q^{49} +414.000i q^{53} -181.865i q^{55} +446.869 q^{59} +542.000 q^{61} -235.000i q^{65} -155.885i q^{67} +852.169 q^{71} +232.000 q^{73} +756.000i q^{77} -348.142i q^{79} +405.300 q^{83} +105.000 q^{85} -1356.00i q^{89} +976.877i q^{91} -311.769 q^{95} -1046.00 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 188 q^{13} - 100 q^{25} - 712 q^{37} - 356 q^{49} + 2168 q^{61} + 928 q^{73} + 420 q^{85} - 4184 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) − 20.7846i − 1.12226i −0.827727 0.561132i \(-0.810366\pi\)
0.827727 0.561132i \(-0.189634\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −36.3731 −0.996990 −0.498495 0.866893i \(-0.666114\pi\)
−0.498495 + 0.866893i \(0.666114\pi\)
\(12\) 0 0
\(13\) −47.0000 −1.00273 −0.501364 0.865237i \(-0.667168\pi\)
−0.501364 + 0.865237i \(0.667168\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 21.0000i − 0.299603i −0.988716 0.149801i \(-0.952137\pi\)
0.988716 0.149801i \(-0.0478634\pi\)
\(18\) 0 0
\(19\) 62.3538i 0.752892i 0.926439 + 0.376446i \(0.122854\pi\)
−0.926439 + 0.376446i \(0.877146\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −36.3731 −0.329753 −0.164876 0.986314i \(-0.552722\pi\)
−0.164876 + 0.986314i \(0.552722\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 123.000i 0.787604i 0.919195 + 0.393802i \(0.128841\pi\)
−0.919195 + 0.393802i \(0.871159\pi\)
\(30\) 0 0
\(31\) − 25.9808i − 0.150525i −0.997164 0.0752626i \(-0.976020\pi\)
0.997164 0.0752626i \(-0.0239795\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 103.923 0.501891
\(36\) 0 0
\(37\) −178.000 −0.790892 −0.395446 0.918489i \(-0.629410\pi\)
−0.395446 + 0.918489i \(0.629410\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 342.000i 1.30272i 0.758770 + 0.651359i \(0.225801\pi\)
−0.758770 + 0.651359i \(0.774199\pi\)
\(42\) 0 0
\(43\) − 233.827i − 0.829262i −0.909990 0.414631i \(-0.863911\pi\)
0.909990 0.414631i \(-0.136089\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −306.573 −0.951452 −0.475726 0.879593i \(-0.657815\pi\)
−0.475726 + 0.879593i \(0.657815\pi\)
\(48\) 0 0
\(49\) −89.0000 −0.259475
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 414.000i 1.07297i 0.843911 + 0.536484i \(0.180248\pi\)
−0.843911 + 0.536484i \(0.819752\pi\)
\(54\) 0 0
\(55\) − 181.865i − 0.445868i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 446.869 0.986058 0.493029 0.870013i \(-0.335890\pi\)
0.493029 + 0.870013i \(0.335890\pi\)
\(60\) 0 0
\(61\) 542.000 1.13764 0.568820 0.822462i \(-0.307400\pi\)
0.568820 + 0.822462i \(0.307400\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 235.000i − 0.448433i
\(66\) 0 0
\(67\) − 155.885i − 0.284244i −0.989849 0.142122i \(-0.954608\pi\)
0.989849 0.142122i \(-0.0453925\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 852.169 1.42442 0.712210 0.701966i \(-0.247694\pi\)
0.712210 + 0.701966i \(0.247694\pi\)
\(72\) 0 0
\(73\) 232.000 0.371966 0.185983 0.982553i \(-0.440453\pi\)
0.185983 + 0.982553i \(0.440453\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 756.000i 1.11889i
\(78\) 0 0
\(79\) − 348.142i − 0.495811i −0.968784 0.247905i \(-0.920258\pi\)
0.968784 0.247905i \(-0.0797422\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 405.300 0.535993 0.267997 0.963420i \(-0.413638\pi\)
0.267997 + 0.963420i \(0.413638\pi\)
\(84\) 0 0
\(85\) 105.000 0.133986
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 1356.00i − 1.61501i −0.589862 0.807504i \(-0.700818\pi\)
0.589862 0.807504i \(-0.299182\pi\)
\(90\) 0 0
\(91\) 976.877i 1.12532i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −311.769 −0.336704
\(96\) 0 0
\(97\) −1046.00 −1.09490 −0.547450 0.836839i \(-0.684401\pi\)
−0.547450 + 0.836839i \(0.684401\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 333.000i − 0.328067i −0.986455 0.164033i \(-0.947550\pi\)
0.986455 0.164033i \(-0.0524505\pi\)
\(102\) 0 0
\(103\) − 1111.98i − 1.06375i −0.846823 0.531875i \(-0.821488\pi\)
0.846823 0.531875i \(-0.178512\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1392.57 1.25817 0.629087 0.777335i \(-0.283429\pi\)
0.629087 + 0.777335i \(0.283429\pi\)
\(108\) 0 0
\(109\) 1474.00 1.29526 0.647631 0.761954i \(-0.275760\pi\)
0.647631 + 0.761954i \(0.275760\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 255.000i − 0.212287i −0.994351 0.106143i \(-0.966150\pi\)
0.994351 0.106143i \(-0.0338502\pi\)
\(114\) 0 0
\(115\) − 181.865i − 0.147470i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −436.477 −0.336233
\(120\) 0 0
\(121\) −8.00000 −0.00601052
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 125.000i − 0.0894427i
\(126\) 0 0
\(127\) 1444.53i 1.00930i 0.863323 + 0.504651i \(0.168379\pi\)
−0.863323 + 0.504651i \(0.831621\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −192.258 −0.128226 −0.0641131 0.997943i \(-0.520422\pi\)
−0.0641131 + 0.997943i \(0.520422\pi\)
\(132\) 0 0
\(133\) 1296.00 0.844943
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 1734.00i − 1.08135i −0.841230 0.540677i \(-0.818168\pi\)
0.841230 0.540677i \(-0.181832\pi\)
\(138\) 0 0
\(139\) 872.954i 0.532683i 0.963879 + 0.266342i \(0.0858149\pi\)
−0.963879 + 0.266342i \(0.914185\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1709.53 0.999709
\(144\) 0 0
\(145\) −615.000 −0.352227
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 1407.00i − 0.773597i −0.922164 0.386798i \(-0.873581\pi\)
0.922164 0.386798i \(-0.126419\pi\)
\(150\) 0 0
\(151\) − 223.435i − 0.120416i −0.998186 0.0602081i \(-0.980824\pi\)
0.998186 0.0602081i \(-0.0191764\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 129.904 0.0673169
\(156\) 0 0
\(157\) −3301.00 −1.67802 −0.839008 0.544119i \(-0.816864\pi\)
−0.839008 + 0.544119i \(0.816864\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 756.000i 0.370069i
\(162\) 0 0
\(163\) − 2114.83i − 1.01624i −0.861287 0.508118i \(-0.830341\pi\)
0.861287 0.508118i \(-0.169659\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −72.7461 −0.0337082 −0.0168541 0.999858i \(-0.505365\pi\)
−0.0168541 + 0.999858i \(0.505365\pi\)
\(168\) 0 0
\(169\) 12.0000 0.00546199
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2112.00i 0.928164i 0.885792 + 0.464082i \(0.153616\pi\)
−0.885792 + 0.464082i \(0.846384\pi\)
\(174\) 0 0
\(175\) 519.615i 0.224453i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3315.15 1.38428 0.692139 0.721765i \(-0.256669\pi\)
0.692139 + 0.721765i \(0.256669\pi\)
\(180\) 0 0
\(181\) −704.000 −0.289104 −0.144552 0.989497i \(-0.546174\pi\)
−0.144552 + 0.989497i \(0.546174\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 890.000i − 0.353698i
\(186\) 0 0
\(187\) 763.834i 0.298701i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1434.14 0.543302 0.271651 0.962396i \(-0.412430\pi\)
0.271651 + 0.962396i \(0.412430\pi\)
\(192\) 0 0
\(193\) −1168.00 −0.435619 −0.217810 0.975991i \(-0.569891\pi\)
−0.217810 + 0.975991i \(0.569891\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 456.000i 0.164917i 0.996594 + 0.0824585i \(0.0262772\pi\)
−0.996594 + 0.0824585i \(0.973723\pi\)
\(198\) 0 0
\(199\) 743.050i 0.264690i 0.991204 + 0.132345i \(0.0422508\pi\)
−0.991204 + 0.132345i \(0.957749\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2556.51 0.883900
\(204\) 0 0
\(205\) −1710.00 −0.582593
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 2268.00i − 0.750626i
\(210\) 0 0
\(211\) 2816.31i 0.918877i 0.888210 + 0.459439i \(0.151949\pi\)
−0.888210 + 0.459439i \(0.848051\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1169.13 0.370857
\(216\) 0 0
\(217\) −540.000 −0.168929
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 987.000i 0.300420i
\(222\) 0 0
\(223\) 1641.98i 0.493074i 0.969133 + 0.246537i \(0.0792926\pi\)
−0.969133 + 0.246537i \(0.920707\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5591.06 1.63477 0.817383 0.576095i \(-0.195424\pi\)
0.817383 + 0.576095i \(0.195424\pi\)
\(228\) 0 0
\(229\) 6298.00 1.81740 0.908698 0.417455i \(-0.137078\pi\)
0.908698 + 0.417455i \(0.137078\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2766.00i 0.777711i 0.921299 + 0.388856i \(0.127129\pi\)
−0.921299 + 0.388856i \(0.872871\pi\)
\(234\) 0 0
\(235\) − 1532.86i − 0.425502i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5757.34 1.55821 0.779103 0.626896i \(-0.215675\pi\)
0.779103 + 0.626896i \(0.215675\pi\)
\(240\) 0 0
\(241\) 1807.00 0.482984 0.241492 0.970403i \(-0.422363\pi\)
0.241492 + 0.970403i \(0.422363\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 445.000i − 0.116041i
\(246\) 0 0
\(247\) − 2930.63i − 0.754945i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2769.55 0.696464 0.348232 0.937408i \(-0.386782\pi\)
0.348232 + 0.937408i \(0.386782\pi\)
\(252\) 0 0
\(253\) 1323.00 0.328760
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1227.00i 0.297814i 0.988851 + 0.148907i \(0.0475755\pi\)
−0.988851 + 0.148907i \(0.952425\pi\)
\(258\) 0 0
\(259\) 3699.66i 0.887590i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 883.346 0.207108 0.103554 0.994624i \(-0.466979\pi\)
0.103554 + 0.994624i \(0.466979\pi\)
\(264\) 0 0
\(265\) −2070.00 −0.479846
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4071.00i 0.922726i 0.887212 + 0.461363i \(0.152639\pi\)
−0.887212 + 0.461363i \(0.847361\pi\)
\(270\) 0 0
\(271\) − 3190.44i − 0.715149i −0.933885 0.357574i \(-0.883604\pi\)
0.933885 0.357574i \(-0.116396\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 909.327 0.199398
\(276\) 0 0
\(277\) −1370.00 −0.297167 −0.148584 0.988900i \(-0.547471\pi\)
−0.148584 + 0.988900i \(0.547471\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 1866.00i − 0.396143i −0.980188 0.198072i \(-0.936532\pi\)
0.980188 0.198072i \(-0.0634678\pi\)
\(282\) 0 0
\(283\) 4063.39i 0.853511i 0.904367 + 0.426755i \(0.140343\pi\)
−0.904367 + 0.426755i \(0.859657\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7108.34 1.46199
\(288\) 0 0
\(289\) 4472.00 0.910238
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1632.00i 0.325401i 0.986676 + 0.162700i \(0.0520204\pi\)
−0.986676 + 0.162700i \(0.947980\pi\)
\(294\) 0 0
\(295\) 2234.35i 0.440978i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1709.53 0.330652
\(300\) 0 0
\(301\) −4860.00 −0.930650
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2710.00i 0.508768i
\(306\) 0 0
\(307\) − 1273.06i − 0.236668i −0.992974 0.118334i \(-0.962245\pi\)
0.992974 0.118334i \(-0.0377554\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9176.41 1.67314 0.836569 0.547861i \(-0.184558\pi\)
0.836569 + 0.547861i \(0.184558\pi\)
\(312\) 0 0
\(313\) 8426.00 1.52162 0.760808 0.648977i \(-0.224803\pi\)
0.760808 + 0.648977i \(0.224803\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5034.00i 0.891917i 0.895054 + 0.445958i \(0.147137\pi\)
−0.895054 + 0.445958i \(0.852863\pi\)
\(318\) 0 0
\(319\) − 4473.89i − 0.785234i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1309.43 0.225569
\(324\) 0 0
\(325\) 1175.00 0.200545
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6372.00i 1.06778i
\(330\) 0 0
\(331\) − 8396.98i − 1.39438i −0.716886 0.697190i \(-0.754433\pi\)
0.716886 0.697190i \(-0.245567\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 779.423 0.127118
\(336\) 0 0
\(337\) −2414.00 −0.390205 −0.195102 0.980783i \(-0.562504\pi\)
−0.195102 + 0.980783i \(0.562504\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 945.000i 0.150072i
\(342\) 0 0
\(343\) − 5279.29i − 0.831064i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5580.67 −0.863360 −0.431680 0.902027i \(-0.642079\pi\)
−0.431680 + 0.902027i \(0.642079\pi\)
\(348\) 0 0
\(349\) −4300.00 −0.659524 −0.329762 0.944064i \(-0.606968\pi\)
−0.329762 + 0.944064i \(0.606968\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 11619.0i − 1.75189i −0.482411 0.875945i \(-0.660239\pi\)
0.482411 0.875945i \(-0.339761\pi\)
\(354\) 0 0
\(355\) 4260.84i 0.637020i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8802.28 −1.29406 −0.647029 0.762466i \(-0.723989\pi\)
−0.647029 + 0.762466i \(0.723989\pi\)
\(360\) 0 0
\(361\) 2971.00 0.433154
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1160.00i 0.166348i
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8604.83 1.20415
\(372\) 0 0
\(373\) −2149.00 −0.298314 −0.149157 0.988814i \(-0.547656\pi\)
−0.149157 + 0.988814i \(0.547656\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 5781.00i − 0.789752i
\(378\) 0 0
\(379\) 7711.09i 1.04510i 0.852609 + 0.522549i \(0.175019\pi\)
−0.852609 + 0.522549i \(0.824981\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10262.4 1.36915 0.684575 0.728943i \(-0.259988\pi\)
0.684575 + 0.728943i \(0.259988\pi\)
\(384\) 0 0
\(385\) −3780.00 −0.500381
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 6399.00i − 0.834042i −0.908897 0.417021i \(-0.863074\pi\)
0.908897 0.417021i \(-0.136926\pi\)
\(390\) 0 0
\(391\) 763.834i 0.0987948i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1740.71 0.221733
\(396\) 0 0
\(397\) −7873.00 −0.995301 −0.497651 0.867378i \(-0.665804\pi\)
−0.497651 + 0.867378i \(0.665804\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4098.00i 0.510335i 0.966897 + 0.255168i \(0.0821306\pi\)
−0.966897 + 0.255168i \(0.917869\pi\)
\(402\) 0 0
\(403\) 1221.10i 0.150936i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6474.41 0.788512
\(408\) 0 0
\(409\) 1519.00 0.183642 0.0918212 0.995776i \(-0.470731\pi\)
0.0918212 + 0.995776i \(0.470731\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 9288.00i − 1.10662i
\(414\) 0 0
\(415\) 2026.50i 0.239703i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14014.0 1.63396 0.816981 0.576665i \(-0.195646\pi\)
0.816981 + 0.576665i \(0.195646\pi\)
\(420\) 0 0
\(421\) −2162.00 −0.250284 −0.125142 0.992139i \(-0.539939\pi\)
−0.125142 + 0.992139i \(0.539939\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 525.000i 0.0599206i
\(426\) 0 0
\(427\) − 11265.3i − 1.27673i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6495.19 −0.725899 −0.362949 0.931809i \(-0.618230\pi\)
−0.362949 + 0.931809i \(0.618230\pi\)
\(432\) 0 0
\(433\) −9574.00 −1.06258 −0.531290 0.847190i \(-0.678293\pi\)
−0.531290 + 0.847190i \(0.678293\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 2268.00i − 0.248268i
\(438\) 0 0
\(439\) 197.454i 0.0214669i 0.999942 + 0.0107334i \(0.00341662\pi\)
−0.999942 + 0.0107334i \(0.996583\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16409.4 1.75990 0.879951 0.475065i \(-0.157575\pi\)
0.879951 + 0.475065i \(0.157575\pi\)
\(444\) 0 0
\(445\) 6780.00 0.722254
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2160.00i 0.227031i 0.993536 + 0.113515i \(0.0362111\pi\)
−0.993536 + 0.113515i \(0.963789\pi\)
\(450\) 0 0
\(451\) − 12439.6i − 1.29880i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4884.38 −0.503260
\(456\) 0 0
\(457\) 1186.00 0.121398 0.0606988 0.998156i \(-0.480667\pi\)
0.0606988 + 0.998156i \(0.480667\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 19026.0i − 1.92219i −0.276220 0.961095i \(-0.589082\pi\)
0.276220 0.961095i \(-0.410918\pi\)
\(462\) 0 0
\(463\) − 6183.42i − 0.620665i −0.950628 0.310333i \(-0.899560\pi\)
0.950628 0.310333i \(-0.100440\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10922.3 1.08228 0.541140 0.840933i \(-0.317993\pi\)
0.541140 + 0.840933i \(0.317993\pi\)
\(468\) 0 0
\(469\) −3240.00 −0.318996
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8505.00i 0.826766i
\(474\) 0 0
\(475\) − 1558.85i − 0.150578i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10194.9 0.972473 0.486237 0.873827i \(-0.338369\pi\)
0.486237 + 0.873827i \(0.338369\pi\)
\(480\) 0 0
\(481\) 8366.00 0.793049
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 5230.00i − 0.489654i
\(486\) 0 0
\(487\) 18373.6i 1.70962i 0.518938 + 0.854812i \(0.326328\pi\)
−0.518938 + 0.854812i \(0.673672\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3211.22 0.295154 0.147577 0.989051i \(-0.452853\pi\)
0.147577 + 0.989051i \(0.452853\pi\)
\(492\) 0 0
\(493\) 2583.00 0.235968
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 17712.0i − 1.59858i
\(498\) 0 0
\(499\) 2047.28i 0.183665i 0.995774 + 0.0918327i \(0.0292725\pi\)
−0.995774 + 0.0918327i \(0.970728\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12174.6 −1.07920 −0.539600 0.841921i \(-0.681425\pi\)
−0.539600 + 0.841921i \(0.681425\pi\)
\(504\) 0 0
\(505\) 1665.00 0.146716
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 18063.0i 1.57294i 0.617626 + 0.786472i \(0.288095\pi\)
−0.617626 + 0.786472i \(0.711905\pi\)
\(510\) 0 0
\(511\) − 4822.03i − 0.417444i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5559.88 0.475724
\(516\) 0 0
\(517\) 11151.0 0.948589
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9270.00i 0.779513i 0.920918 + 0.389756i \(0.127441\pi\)
−0.920918 + 0.389756i \(0.872559\pi\)
\(522\) 0 0
\(523\) 8599.63i 0.718997i 0.933146 + 0.359499i \(0.117052\pi\)
−0.933146 + 0.359499i \(0.882948\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −545.596 −0.0450978
\(528\) 0 0
\(529\) −10844.0 −0.891263
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 16074.0i − 1.30627i
\(534\) 0 0
\(535\) 6962.84i 0.562673i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3237.20 0.258694
\(540\) 0 0
\(541\) −416.000 −0.0330596 −0.0165298 0.999863i \(-0.505262\pi\)
−0.0165298 + 0.999863i \(0.505262\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7370.00i 0.579259i
\(546\) 0 0
\(547\) − 4245.26i − 0.331836i −0.986140 0.165918i \(-0.946941\pi\)
0.986140 0.165918i \(-0.0530586\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7669.52 −0.592981
\(552\) 0 0
\(553\) −7236.00 −0.556430
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19050.0i 1.44915i 0.689198 + 0.724573i \(0.257963\pi\)
−0.689198 + 0.724573i \(0.742037\pi\)
\(558\) 0 0
\(559\) 10989.9i 0.831524i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1101.58 −0.0824622 −0.0412311 0.999150i \(-0.513128\pi\)
−0.0412311 + 0.999150i \(0.513128\pi\)
\(564\) 0 0
\(565\) 1275.00 0.0949374
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3156.00i 0.232524i 0.993219 + 0.116262i \(0.0370913\pi\)
−0.993219 + 0.116262i \(0.962909\pi\)
\(570\) 0 0
\(571\) 23122.9i 1.69468i 0.531051 + 0.847340i \(0.321797\pi\)
−0.531051 + 0.847340i \(0.678203\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 909.327 0.0659505
\(576\) 0 0
\(577\) 14348.0 1.03521 0.517604 0.855620i \(-0.326824\pi\)
0.517604 + 0.855620i \(0.326824\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 8424.00i − 0.601526i
\(582\) 0 0
\(583\) − 15058.4i − 1.06974i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4770.07 0.335403 0.167702 0.985838i \(-0.446365\pi\)
0.167702 + 0.985838i \(0.446365\pi\)
\(588\) 0 0
\(589\) 1620.00 0.113329
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7617.00i 0.527475i 0.964594 + 0.263738i \(0.0849553\pi\)
−0.964594 + 0.263738i \(0.915045\pi\)
\(594\) 0 0
\(595\) − 2182.38i − 0.150368i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4053.00 0.276463 0.138231 0.990400i \(-0.455858\pi\)
0.138231 + 0.990400i \(0.455858\pi\)
\(600\) 0 0
\(601\) 15365.0 1.04285 0.521424 0.853298i \(-0.325401\pi\)
0.521424 + 0.853298i \(0.325401\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 40.0000i − 0.00268799i
\(606\) 0 0
\(607\) − 15494.9i − 1.03611i −0.855347 0.518056i \(-0.826656\pi\)
0.855347 0.518056i \(-0.173344\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14408.9 0.954047
\(612\) 0 0
\(613\) 6131.00 0.403962 0.201981 0.979389i \(-0.435262\pi\)
0.201981 + 0.979389i \(0.435262\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22305.0i 1.45537i 0.685910 + 0.727687i \(0.259405\pi\)
−0.685910 + 0.727687i \(0.740595\pi\)
\(618\) 0 0
\(619\) 26074.3i 1.69308i 0.532328 + 0.846538i \(0.321317\pi\)
−0.532328 + 0.846538i \(0.678683\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −28183.9 −1.81246
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3738.00i 0.236954i
\(630\) 0 0
\(631\) − 9779.16i − 0.616961i −0.951231 0.308480i \(-0.900180\pi\)
0.951231 0.308480i \(-0.0998204\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7222.65 −0.451374
\(636\) 0 0
\(637\) 4183.00 0.260183
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10884.0i 0.670659i 0.942101 + 0.335329i \(0.108848\pi\)
−0.942101 + 0.335329i \(0.891152\pi\)
\(642\) 0 0
\(643\) − 29696.0i − 1.82130i −0.413178 0.910650i \(-0.635581\pi\)
0.413178 0.910650i \(-0.364419\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23891.9 −1.45176 −0.725879 0.687822i \(-0.758567\pi\)
−0.725879 + 0.687822i \(0.758567\pi\)
\(648\) 0 0
\(649\) −16254.0 −0.983090
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11790.0i 0.706552i 0.935519 + 0.353276i \(0.114932\pi\)
−0.935519 + 0.353276i \(0.885068\pi\)
\(654\) 0 0
\(655\) − 961.288i − 0.0573445i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −13063.1 −0.772181 −0.386090 0.922461i \(-0.626175\pi\)
−0.386090 + 0.922461i \(0.626175\pi\)
\(660\) 0 0
\(661\) −8998.00 −0.529473 −0.264736 0.964321i \(-0.585285\pi\)
−0.264736 + 0.964321i \(0.585285\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6480.00i 0.377870i
\(666\) 0 0
\(667\) − 4473.89i − 0.259715i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −19714.2 −1.13422
\(672\) 0 0
\(673\) −18898.0 −1.08241 −0.541207 0.840890i \(-0.682032\pi\)
−0.541207 + 0.840890i \(0.682032\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 24948.0i − 1.41629i −0.706066 0.708146i \(-0.749532\pi\)
0.706066 0.708146i \(-0.250468\pi\)
\(678\) 0 0
\(679\) 21740.7i 1.22877i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21688.7 1.21508 0.607538 0.794291i \(-0.292157\pi\)
0.607538 + 0.794291i \(0.292157\pi\)
\(684\) 0 0
\(685\) 8670.00 0.483597
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 19458.0i − 1.07589i
\(690\) 0 0
\(691\) − 5258.51i − 0.289498i −0.989468 0.144749i \(-0.953763\pi\)
0.989468 0.144749i \(-0.0462374\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4364.77 −0.238223
\(696\) 0 0
\(697\) 7182.00 0.390298
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4413.00i 0.237770i 0.992908 + 0.118885i \(0.0379320\pi\)
−0.992908 + 0.118885i \(0.962068\pi\)
\(702\) 0 0
\(703\) − 11099.0i − 0.595457i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6921.28 −0.368177
\(708\) 0 0
\(709\) −9830.00 −0.520696 −0.260348 0.965515i \(-0.583837\pi\)
−0.260348 + 0.965515i \(0.583837\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 945.000i 0.0496361i
\(714\) 0 0
\(715\) 8547.67i 0.447084i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9675.24 −0.501843 −0.250922 0.968007i \(-0.580734\pi\)
−0.250922 + 0.968007i \(0.580734\pi\)
\(720\) 0 0
\(721\) −23112.0 −1.19381
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 3075.00i − 0.157521i
\(726\) 0 0
\(727\) 31374.4i 1.60057i 0.599623 + 0.800283i \(0.295317\pi\)
−0.599623 + 0.800283i \(0.704683\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4910.36 −0.248449
\(732\) 0 0
\(733\) 17350.0 0.874266 0.437133 0.899397i \(-0.355994\pi\)
0.437133 + 0.899397i \(0.355994\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5670.00i 0.283388i
\(738\) 0 0
\(739\) 21553.6i 1.07289i 0.843936 + 0.536443i \(0.180233\pi\)
−0.843936 + 0.536443i \(0.819767\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6386.07 0.315319 0.157660 0.987494i \(-0.449605\pi\)
0.157660 + 0.987494i \(0.449605\pi\)
\(744\) 0 0
\(745\) 7035.00 0.345963
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 28944.0i − 1.41200i
\(750\) 0 0
\(751\) 24957.1i 1.21265i 0.795218 + 0.606324i \(0.207356\pi\)
−0.795218 + 0.606324i \(0.792644\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1117.17 0.0538518
\(756\) 0 0
\(757\) 27133.0 1.30273 0.651364 0.758765i \(-0.274197\pi\)
0.651364 + 0.758765i \(0.274197\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 30630.0i 1.45905i 0.683954 + 0.729525i \(0.260259\pi\)
−0.683954 + 0.729525i \(0.739741\pi\)
\(762\) 0 0
\(763\) − 30636.5i − 1.45363i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −21002.8 −0.988747
\(768\) 0 0
\(769\) −9727.00 −0.456131 −0.228065 0.973646i \(-0.573240\pi\)
−0.228065 + 0.973646i \(0.573240\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 34260.0i 1.59411i 0.603907 + 0.797055i \(0.293610\pi\)
−0.603907 + 0.797055i \(0.706390\pi\)
\(774\) 0 0
\(775\) 649.519i 0.0301050i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −21325.0 −0.980806
\(780\) 0 0
\(781\) −30996.0 −1.42013
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 16505.0i − 0.750431i
\(786\) 0 0
\(787\) − 5554.69i − 0.251592i −0.992056 0.125796i \(-0.959851\pi\)
0.992056 0.125796i \(-0.0401485\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5300.08 −0.238241
\(792\) 0 0
\(793\) −25474.0 −1.14074
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10680.0i 0.474661i 0.971429 + 0.237331i \(0.0762725\pi\)
−0.971429 + 0.237331i \(0.923728\pi\)
\(798\) 0 0
\(799\) 6438.03i 0.285058i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −8438.55 −0.370847
\(804\) 0 0
\(805\) −3780.00 −0.165500
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4062.00i 0.176529i 0.996097 + 0.0882647i \(0.0281321\pi\)
−0.996097 + 0.0882647i \(0.971868\pi\)
\(810\) 0 0
\(811\) − 34564.8i − 1.49659i −0.663366 0.748295i \(-0.730873\pi\)
0.663366 0.748295i \(-0.269127\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 10574.2 0.454475
\(816\) 0 0
\(817\) 14580.0 0.624345
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 35430.0i − 1.50611i −0.657958 0.753055i \(-0.728580\pi\)
0.657958 0.753055i \(-0.271420\pi\)
\(822\) 0 0
\(823\) − 25107.8i − 1.06343i −0.846923 0.531715i \(-0.821548\pi\)
0.846923 0.531715i \(-0.178452\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33650.3 1.41492 0.707458 0.706756i \(-0.249842\pi\)
0.707458 + 0.706756i \(0.249842\pi\)
\(828\) 0 0
\(829\) −24032.0 −1.00683 −0.503417 0.864043i \(-0.667924\pi\)
−0.503417 + 0.864043i \(0.667924\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1869.00i 0.0777395i
\(834\) 0 0
\(835\) − 363.731i − 0.0150748i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −36580.9 −1.50526 −0.752630 0.658444i \(-0.771215\pi\)
−0.752630 + 0.658444i \(0.771215\pi\)
\(840\) 0 0
\(841\) 9260.00 0.379679
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 60.0000i 0.00244268i
\(846\) 0 0
\(847\) 166.277i 0.00674539i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6474.41 0.260799
\(852\) 0 0
\(853\) 18947.0 0.760531 0.380265 0.924877i \(-0.375833\pi\)
0.380265 + 0.924877i \(0.375833\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 23406.0i − 0.932945i −0.884536 0.466472i \(-0.845525\pi\)
0.884536 0.466472i \(-0.154475\pi\)
\(858\) 0 0
\(859\) − 6391.27i − 0.253862i −0.991912 0.126931i \(-0.959487\pi\)
0.991912 0.126931i \(-0.0405126\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −16258.8 −0.641315 −0.320657 0.947195i \(-0.603904\pi\)
−0.320657 + 0.947195i \(0.603904\pi\)
\(864\) 0 0
\(865\) −10560.0 −0.415088
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 12663.0i 0.494319i
\(870\) 0 0
\(871\) 7326.57i 0.285019i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2598.08 −0.100378
\(876\) 0 0
\(877\) −6001.00 −0.231060 −0.115530 0.993304i \(-0.536857\pi\)
−0.115530 + 0.993304i \(0.536857\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 20214.0i − 0.773016i −0.922286 0.386508i \(-0.873681\pi\)
0.922286 0.386508i \(-0.126319\pi\)
\(882\) 0 0
\(883\) − 26843.3i − 1.02305i −0.859270 0.511523i \(-0.829081\pi\)
0.859270 0.511523i \(-0.170919\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −40659.9 −1.53915 −0.769575 0.638557i \(-0.779532\pi\)
−0.769575 + 0.638557i \(0.779532\pi\)
\(888\) 0 0
\(889\) 30024.0 1.13270
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 19116.0i − 0.716341i
\(894\) 0 0
\(895\) 16575.7i 0.619068i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3195.63 0.118554
\(900\) 0 0
\(901\) 8694.00 0.321464
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 3520.00i − 0.129291i
\(906\) 0 0
\(907\) 3393.09i 0.124218i 0.998069 + 0.0621089i \(0.0197826\pi\)
−0.998069 + 0.0621089i \(0.980217\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12668.2 −0.460721 −0.230361 0.973105i \(-0.573991\pi\)
−0.230361 + 0.973105i \(0.573991\pi\)
\(912\) 0 0
\(913\) −14742.0 −0.534380
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3996.00i 0.143904i
\(918\) 0 0
\(919\) 12694.2i 0.455651i 0.973702 + 0.227825i \(0.0731615\pi\)
−0.973702 + 0.227825i \(0.926838\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −40051.9 −1.42831
\(924\) 0 0
\(925\) 4450.00 0.158178
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 51366.0i − 1.81406i −0.421064 0.907031i \(-0.638343\pi\)
0.421064 0.907031i \(-0.361657\pi\)
\(930\) 0 0
\(931\) − 5549.49i − 0.195357i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3819.17 −0.133583
\(936\) 0 0
\(937\) 40700.0 1.41901 0.709504 0.704701i \(-0.248919\pi\)
0.709504 + 0.704701i \(0.248919\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 41649.0i 1.44285i 0.692494 + 0.721423i \(0.256512\pi\)
−0.692494 + 0.721423i \(0.743488\pi\)
\(942\) 0 0
\(943\) − 12439.6i − 0.429574i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27092.7 −0.929668 −0.464834 0.885398i \(-0.653886\pi\)
−0.464834 + 0.885398i \(0.653886\pi\)
\(948\) 0 0
\(949\) −10904.0 −0.372981
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 25593.0i − 0.869925i −0.900449 0.434963i \(-0.856762\pi\)
0.900449 0.434963i \(-0.143238\pi\)
\(954\) 0 0
\(955\) 7170.69i 0.242972i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −36040.5 −1.21357
\(960\) 0 0
\(961\) 29116.0 0.977342
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 5840.00i − 0.194815i
\(966\) 0 0
\(967\) − 39511.5i − 1.31397i −0.753905 0.656983i \(-0.771832\pi\)
0.753905 0.656983i \(-0.228168\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −32959.2 −1.08930 −0.544650 0.838663i \(-0.683338\pi\)
−0.544650 + 0.838663i \(0.683338\pi\)
\(972\) 0 0
\(973\) 18144.0 0.597811
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1269.00i − 0.0415547i −0.999784 0.0207773i \(-0.993386\pi\)
0.999784 0.0207773i \(-0.00661411\pi\)
\(978\) 0 0
\(979\) 49321.9i 1.61015i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −30174.1 −0.979047 −0.489523 0.871990i \(-0.662829\pi\)
−0.489523 + 0.871990i \(0.662829\pi\)
\(984\) 0 0
\(985\) −2280.00 −0.0737531
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8505.00i 0.273451i
\(990\) 0 0
\(991\) − 52839.7i − 1.69375i −0.531791 0.846876i \(-0.678481\pi\)
0.531791 0.846876i \(-0.321519\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3715.25 −0.118373
\(996\) 0 0
\(997\) −28051.0 −0.891057 −0.445529 0.895268i \(-0.646984\pi\)
−0.445529 + 0.895268i \(0.646984\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.4.h.a.431.3 yes 4
3.2 odd 2 inner 2160.4.h.a.431.1 4
4.3 odd 2 inner 2160.4.h.a.431.4 yes 4
12.11 even 2 inner 2160.4.h.a.431.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2160.4.h.a.431.1 4 3.2 odd 2 inner
2160.4.h.a.431.2 yes 4 12.11 even 2 inner
2160.4.h.a.431.3 yes 4 1.1 even 1 trivial
2160.4.h.a.431.4 yes 4 4.3 odd 2 inner