Properties

Label 2160.4.h.a
Level $2160$
Weight $4$
Character orbit 2160.h
Analytic conductor $127.444$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,4,Mod(431,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.431");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2160.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(127.444125612\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 5 \beta_1 q^{5} + 4 \beta_{2} q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 5 \beta_1 q^{5} + 4 \beta_{2} q^{7} + 7 \beta_{3} q^{11} - 47 q^{13} - 21 \beta_1 q^{17} - 12 \beta_{2} q^{19} + 7 \beta_{3} q^{23} - 25 q^{25} + 123 \beta_1 q^{29} + 5 \beta_{2} q^{31} - 20 \beta_{3} q^{35} - 178 q^{37} + 342 \beta_1 q^{41} + 45 \beta_{2} q^{43} + 59 \beta_{3} q^{47} - 89 q^{49} + 414 \beta_1 q^{53} + 35 \beta_{2} q^{55} - 86 \beta_{3} q^{59} + 542 q^{61} - 235 \beta_1 q^{65} + 30 \beta_{2} q^{67} - 164 \beta_{3} q^{71} + 232 q^{73} + 756 \beta_1 q^{77} + 67 \beta_{2} q^{79} - 78 \beta_{3} q^{83} + 105 q^{85} - 1356 \beta_1 q^{89} - 188 \beta_{2} q^{91} + 60 \beta_{3} q^{95} - 1046 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 188 q^{13} - 100 q^{25} - 712 q^{37} - 356 q^{49} + 2168 q^{61} + 928 q^{73} + 420 q^{85} - 4184 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 6\zeta_{12}^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -3\zeta_{12}^{3} + 6\zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + 3\beta_1 ) / 6 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( \beta_{2} + 3 ) / 6 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
431.1
0.866025 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
0 0 0 5.00000i 0 20.7846i 0 0 0
431.2 0 0 0 5.00000i 0 20.7846i 0 0 0
431.3 0 0 0 5.00000i 0 20.7846i 0 0 0
431.4 0 0 0 5.00000i 0 20.7846i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.4.h.a 4
3.b odd 2 1 inner 2160.4.h.a 4
4.b odd 2 1 inner 2160.4.h.a 4
12.b even 2 1 inner 2160.4.h.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2160.4.h.a 4 1.a even 1 1 trivial
2160.4.h.a 4 3.b odd 2 1 inner
2160.4.h.a 4 4.b odd 2 1 inner
2160.4.h.a 4 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 432 \) acting on \(S_{4}^{\mathrm{new}}(2160, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 432)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 1323)^{2} \) Copy content Toggle raw display
$13$ \( (T + 47)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 441)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 3888)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 1323)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 15129)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 675)^{2} \) Copy content Toggle raw display
$37$ \( (T + 178)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 116964)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 54675)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 93987)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 171396)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 199692)^{2} \) Copy content Toggle raw display
$61$ \( (T - 542)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 24300)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 726192)^{2} \) Copy content Toggle raw display
$73$ \( (T - 232)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 121203)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 164268)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 1838736)^{2} \) Copy content Toggle raw display
$97$ \( (T + 1046)^{4} \) Copy content Toggle raw display
show more
show less