Properties

Label 2160.4.a.p
Level $2160$
Weight $4$
Character orbit 2160.a
Self dual yes
Analytic conductor $127.444$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2160.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(127.444125612\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 5 q^{5} + 6 q^{7} + O(q^{10}) \) \( q + 5 q^{5} + 6 q^{7} + 47 q^{11} - 5 q^{13} - 131 q^{17} + 56 q^{19} - 3 q^{23} + 25 q^{25} - 157 q^{29} - 225 q^{31} + 30 q^{35} - 70 q^{37} + 140 q^{41} - 397 q^{43} + 347 q^{47} - 307 q^{49} + 4 q^{53} + 235 q^{55} - 748 q^{59} - 338 q^{61} - 25 q^{65} - 492 q^{67} - 32 q^{71} + 970 q^{73} + 282 q^{77} + 1257 q^{79} + 102 q^{83} - 655 q^{85} - 1488 q^{89} - 30 q^{91} + 280 q^{95} + 974 q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 5.00000 0 6.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.4.a.p 1
3.b odd 2 1 2160.4.a.f 1
4.b odd 2 1 135.4.a.c yes 1
12.b even 2 1 135.4.a.b 1
20.d odd 2 1 675.4.a.c 1
20.e even 4 2 675.4.b.e 2
36.f odd 6 2 405.4.e.f 2
36.h even 6 2 405.4.e.h 2
60.h even 2 1 675.4.a.h 1
60.l odd 4 2 675.4.b.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.4.a.b 1 12.b even 2 1
135.4.a.c yes 1 4.b odd 2 1
405.4.e.f 2 36.f odd 6 2
405.4.e.h 2 36.h even 6 2
675.4.a.c 1 20.d odd 2 1
675.4.a.h 1 60.h even 2 1
675.4.b.e 2 20.e even 4 2
675.4.b.f 2 60.l odd 4 2
2160.4.a.f 1 3.b odd 2 1
2160.4.a.p 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2160))\):

\( T_{7} - 6 \)
\( T_{11} - 47 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( T \)
$5$ \( -5 + T \)
$7$ \( -6 + T \)
$11$ \( -47 + T \)
$13$ \( 5 + T \)
$17$ \( 131 + T \)
$19$ \( -56 + T \)
$23$ \( 3 + T \)
$29$ \( 157 + T \)
$31$ \( 225 + T \)
$37$ \( 70 + T \)
$41$ \( -140 + T \)
$43$ \( 397 + T \)
$47$ \( -347 + T \)
$53$ \( -4 + T \)
$59$ \( 748 + T \)
$61$ \( 338 + T \)
$67$ \( 492 + T \)
$71$ \( 32 + T \)
$73$ \( -970 + T \)
$79$ \( -1257 + T \)
$83$ \( -102 + T \)
$89$ \( 1488 + T \)
$97$ \( -974 + T \)
show more
show less