Properties

Label 2160.4.a.n.1.1
Level $2160$
Weight $4$
Character 2160.1
Self dual yes
Analytic conductor $127.444$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,4,Mod(1,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2160.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,0,0,5,0,0,0,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(127.444125612\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2160.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{5} -10.0000 q^{11} -80.0000 q^{13} +7.00000 q^{17} +113.000 q^{19} +81.0000 q^{23} +25.0000 q^{25} -220.000 q^{29} +189.000 q^{31} +170.000 q^{37} -130.000 q^{41} -10.0000 q^{43} -160.000 q^{47} -343.000 q^{49} +631.000 q^{53} -50.0000 q^{55} +560.000 q^{59} +229.000 q^{61} -400.000 q^{65} -750.000 q^{67} -890.000 q^{71} -890.000 q^{73} +27.0000 q^{79} -429.000 q^{83} +35.0000 q^{85} -750.000 q^{89} +565.000 q^{95} -1480.00 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −10.0000 −0.274101 −0.137051 0.990564i \(-0.543762\pi\)
−0.137051 + 0.990564i \(0.543762\pi\)
\(12\) 0 0
\(13\) −80.0000 −1.70677 −0.853385 0.521281i \(-0.825454\pi\)
−0.853385 + 0.521281i \(0.825454\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.00000 0.0998676 0.0499338 0.998753i \(-0.484099\pi\)
0.0499338 + 0.998753i \(0.484099\pi\)
\(18\) 0 0
\(19\) 113.000 1.36442 0.682210 0.731156i \(-0.261019\pi\)
0.682210 + 0.731156i \(0.261019\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 81.0000 0.734333 0.367167 0.930155i \(-0.380328\pi\)
0.367167 + 0.930155i \(0.380328\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −220.000 −1.40872 −0.704362 0.709841i \(-0.748767\pi\)
−0.704362 + 0.709841i \(0.748767\pi\)
\(30\) 0 0
\(31\) 189.000 1.09501 0.547506 0.836801i \(-0.315577\pi\)
0.547506 + 0.836801i \(0.315577\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 170.000 0.755347 0.377673 0.925939i \(-0.376724\pi\)
0.377673 + 0.925939i \(0.376724\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −130.000 −0.495185 −0.247593 0.968864i \(-0.579639\pi\)
−0.247593 + 0.968864i \(0.579639\pi\)
\(42\) 0 0
\(43\) −10.0000 −0.0354648 −0.0177324 0.999843i \(-0.505645\pi\)
−0.0177324 + 0.999843i \(0.505645\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −160.000 −0.496562 −0.248281 0.968688i \(-0.579866\pi\)
−0.248281 + 0.968688i \(0.579866\pi\)
\(48\) 0 0
\(49\) −343.000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 631.000 1.63537 0.817684 0.575667i \(-0.195258\pi\)
0.817684 + 0.575667i \(0.195258\pi\)
\(54\) 0 0
\(55\) −50.0000 −0.122582
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 560.000 1.23569 0.617846 0.786299i \(-0.288006\pi\)
0.617846 + 0.786299i \(0.288006\pi\)
\(60\) 0 0
\(61\) 229.000 0.480663 0.240332 0.970691i \(-0.422744\pi\)
0.240332 + 0.970691i \(0.422744\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −400.000 −0.763291
\(66\) 0 0
\(67\) −750.000 −1.36757 −0.683784 0.729684i \(-0.739667\pi\)
−0.683784 + 0.729684i \(0.739667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −890.000 −1.48766 −0.743828 0.668371i \(-0.766992\pi\)
−0.743828 + 0.668371i \(0.766992\pi\)
\(72\) 0 0
\(73\) −890.000 −1.42694 −0.713470 0.700686i \(-0.752878\pi\)
−0.713470 + 0.700686i \(0.752878\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 27.0000 0.0384524 0.0192262 0.999815i \(-0.493880\pi\)
0.0192262 + 0.999815i \(0.493880\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −429.000 −0.567336 −0.283668 0.958923i \(-0.591551\pi\)
−0.283668 + 0.958923i \(0.591551\pi\)
\(84\) 0 0
\(85\) 35.0000 0.0446622
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −750.000 −0.893257 −0.446628 0.894720i \(-0.647375\pi\)
−0.446628 + 0.894720i \(0.647375\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 565.000 0.610187
\(96\) 0 0
\(97\) −1480.00 −1.54919 −0.774594 0.632459i \(-0.782046\pi\)
−0.774594 + 0.632459i \(0.782046\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1500.00 −1.47778 −0.738889 0.673827i \(-0.764649\pi\)
−0.738889 + 0.673827i \(0.764649\pi\)
\(102\) 0 0
\(103\) 460.000 0.440050 0.220025 0.975494i \(-0.429386\pi\)
0.220025 + 0.975494i \(0.429386\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 420.000 0.379467 0.189733 0.981836i \(-0.439238\pi\)
0.189733 + 0.981836i \(0.439238\pi\)
\(108\) 0 0
\(109\) −607.000 −0.533395 −0.266698 0.963780i \(-0.585932\pi\)
−0.266698 + 0.963780i \(0.585932\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2170.00 1.80652 0.903259 0.429097i \(-0.141168\pi\)
0.903259 + 0.429097i \(0.141168\pi\)
\(114\) 0 0
\(115\) 405.000 0.328404
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1231.00 −0.924869
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1610.00 1.12492 0.562458 0.826826i \(-0.309856\pi\)
0.562458 + 0.826826i \(0.309856\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2370.00 −1.58067 −0.790335 0.612674i \(-0.790094\pi\)
−0.790335 + 0.612674i \(0.790094\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1797.00 1.12064 0.560321 0.828275i \(-0.310678\pi\)
0.560321 + 0.828275i \(0.310678\pi\)
\(138\) 0 0
\(139\) 124.000 0.0756658 0.0378329 0.999284i \(-0.487955\pi\)
0.0378329 + 0.999284i \(0.487955\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 800.000 0.467828
\(144\) 0 0
\(145\) −1100.00 −0.630000
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −70.0000 −0.0384874 −0.0192437 0.999815i \(-0.506126\pi\)
−0.0192437 + 0.999815i \(0.506126\pi\)
\(150\) 0 0
\(151\) −2248.00 −1.21152 −0.605760 0.795647i \(-0.707131\pi\)
−0.605760 + 0.795647i \(0.707131\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 945.000 0.489705
\(156\) 0 0
\(157\) 1010.00 0.513419 0.256709 0.966489i \(-0.417362\pi\)
0.256709 + 0.966489i \(0.417362\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −590.000 −0.283511 −0.141756 0.989902i \(-0.545275\pi\)
−0.141756 + 0.989902i \(0.545275\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2403.00 −1.11347 −0.556736 0.830690i \(-0.687946\pi\)
−0.556736 + 0.830690i \(0.687946\pi\)
\(168\) 0 0
\(169\) 4203.00 1.91306
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 801.000 0.352017 0.176008 0.984389i \(-0.443681\pi\)
0.176008 + 0.984389i \(0.443681\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2360.00 0.985445 0.492723 0.870186i \(-0.336002\pi\)
0.492723 + 0.870186i \(0.336002\pi\)
\(180\) 0 0
\(181\) 1241.00 0.509629 0.254814 0.966990i \(-0.417986\pi\)
0.254814 + 0.966990i \(0.417986\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 850.000 0.337801
\(186\) 0 0
\(187\) −70.0000 −0.0273738
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4990.00 1.89039 0.945193 0.326512i \(-0.105873\pi\)
0.945193 + 0.326512i \(0.105873\pi\)
\(192\) 0 0
\(193\) −2260.00 −0.842893 −0.421447 0.906853i \(-0.638477\pi\)
−0.421447 + 0.906853i \(0.638477\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2247.00 −0.812650 −0.406325 0.913729i \(-0.633190\pi\)
−0.406325 + 0.913729i \(0.633190\pi\)
\(198\) 0 0
\(199\) −4564.00 −1.62580 −0.812898 0.582406i \(-0.802111\pi\)
−0.812898 + 0.582406i \(0.802111\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −650.000 −0.221454
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1130.00 −0.373989
\(210\) 0 0
\(211\) −4949.00 −1.61471 −0.807354 0.590068i \(-0.799101\pi\)
−0.807354 + 0.590068i \(0.799101\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −50.0000 −0.0158603
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −560.000 −0.170451
\(222\) 0 0
\(223\) −3890.00 −1.16813 −0.584067 0.811706i \(-0.698539\pi\)
−0.584067 + 0.811706i \(0.698539\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2453.00 −0.717231 −0.358615 0.933485i \(-0.616751\pi\)
−0.358615 + 0.933485i \(0.616751\pi\)
\(228\) 0 0
\(229\) −6213.00 −1.79287 −0.896434 0.443178i \(-0.853851\pi\)
−0.896434 + 0.443178i \(0.853851\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3450.00 −0.970030 −0.485015 0.874506i \(-0.661186\pi\)
−0.485015 + 0.874506i \(0.661186\pi\)
\(234\) 0 0
\(235\) −800.000 −0.222069
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6490.00 −1.75650 −0.878249 0.478203i \(-0.841288\pi\)
−0.878249 + 0.478203i \(0.841288\pi\)
\(240\) 0 0
\(241\) −3401.00 −0.909036 −0.454518 0.890738i \(-0.650188\pi\)
−0.454518 + 0.890738i \(0.650188\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1715.00 −0.447214
\(246\) 0 0
\(247\) −9040.00 −2.32875
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4980.00 1.25233 0.626165 0.779691i \(-0.284624\pi\)
0.626165 + 0.779691i \(0.284624\pi\)
\(252\) 0 0
\(253\) −810.000 −0.201282
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3357.00 0.814801 0.407401 0.913250i \(-0.366435\pi\)
0.407401 + 0.913250i \(0.366435\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4540.00 1.06444 0.532221 0.846605i \(-0.321357\pi\)
0.532221 + 0.846605i \(0.321357\pi\)
\(264\) 0 0
\(265\) 3155.00 0.731359
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8410.00 1.90620 0.953098 0.302662i \(-0.0978752\pi\)
0.953098 + 0.302662i \(0.0978752\pi\)
\(270\) 0 0
\(271\) −259.000 −0.0580558 −0.0290279 0.999579i \(-0.509241\pi\)
−0.0290279 + 0.999579i \(0.509241\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −250.000 −0.0548202
\(276\) 0 0
\(277\) −4170.00 −0.904516 −0.452258 0.891887i \(-0.649381\pi\)
−0.452258 + 0.891887i \(0.649381\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1740.00 −0.369394 −0.184697 0.982796i \(-0.559130\pi\)
−0.184697 + 0.982796i \(0.559130\pi\)
\(282\) 0 0
\(283\) 5070.00 1.06495 0.532474 0.846446i \(-0.321262\pi\)
0.532474 + 0.846446i \(0.321262\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4864.00 −0.990026
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −159.000 −0.0317027 −0.0158513 0.999874i \(-0.505046\pi\)
−0.0158513 + 0.999874i \(0.505046\pi\)
\(294\) 0 0
\(295\) 2800.00 0.552618
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6480.00 −1.25334
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1145.00 0.214959
\(306\) 0 0
\(307\) −6490.00 −1.20653 −0.603264 0.797542i \(-0.706133\pi\)
−0.603264 + 0.797542i \(0.706133\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8220.00 1.49876 0.749379 0.662142i \(-0.230352\pi\)
0.749379 + 0.662142i \(0.230352\pi\)
\(312\) 0 0
\(313\) −4660.00 −0.841530 −0.420765 0.907170i \(-0.638238\pi\)
−0.420765 + 0.907170i \(0.638238\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6817.00 −1.20783 −0.603913 0.797050i \(-0.706393\pi\)
−0.603913 + 0.797050i \(0.706393\pi\)
\(318\) 0 0
\(319\) 2200.00 0.386133
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 791.000 0.136261
\(324\) 0 0
\(325\) −2000.00 −0.341354
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −192.000 −0.0318830 −0.0159415 0.999873i \(-0.505075\pi\)
−0.0159415 + 0.999873i \(0.505075\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3750.00 −0.611595
\(336\) 0 0
\(337\) 4840.00 0.782349 0.391174 0.920317i \(-0.372069\pi\)
0.391174 + 0.920317i \(0.372069\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1890.00 −0.300144
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 860.000 0.133047 0.0665234 0.997785i \(-0.478809\pi\)
0.0665234 + 0.997785i \(0.478809\pi\)
\(348\) 0 0
\(349\) 5377.00 0.824711 0.412356 0.911023i \(-0.364706\pi\)
0.412356 + 0.911023i \(0.364706\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8010.00 −1.20773 −0.603866 0.797086i \(-0.706374\pi\)
−0.603866 + 0.797086i \(0.706374\pi\)
\(354\) 0 0
\(355\) −4450.00 −0.665300
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12930.0 −1.90089 −0.950445 0.310894i \(-0.899372\pi\)
−0.950445 + 0.310894i \(0.899372\pi\)
\(360\) 0 0
\(361\) 5910.00 0.861642
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4450.00 −0.638147
\(366\) 0 0
\(367\) 6000.00 0.853399 0.426700 0.904393i \(-0.359676\pi\)
0.426700 + 0.904393i \(0.359676\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −140.000 −0.0194341 −0.00971706 0.999953i \(-0.503093\pi\)
−0.00971706 + 0.999953i \(0.503093\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17600.0 2.40437
\(378\) 0 0
\(379\) −6217.00 −0.842601 −0.421301 0.906921i \(-0.638426\pi\)
−0.421301 + 0.906921i \(0.638426\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4551.00 −0.607168 −0.303584 0.952805i \(-0.598183\pi\)
−0.303584 + 0.952805i \(0.598183\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2310.00 −0.301084 −0.150542 0.988604i \(-0.548102\pi\)
−0.150542 + 0.988604i \(0.548102\pi\)
\(390\) 0 0
\(391\) 567.000 0.0733361
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 135.000 0.0171964
\(396\) 0 0
\(397\) −2900.00 −0.366617 −0.183308 0.983055i \(-0.558681\pi\)
−0.183308 + 0.983055i \(0.558681\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2250.00 0.280199 0.140099 0.990137i \(-0.455258\pi\)
0.140099 + 0.990137i \(0.455258\pi\)
\(402\) 0 0
\(403\) −15120.0 −1.86894
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1700.00 −0.207041
\(408\) 0 0
\(409\) −11263.0 −1.36166 −0.680831 0.732441i \(-0.738381\pi\)
−0.680831 + 0.732441i \(0.738381\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2145.00 −0.253720
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6910.00 0.805670 0.402835 0.915273i \(-0.368025\pi\)
0.402835 + 0.915273i \(0.368025\pi\)
\(420\) 0 0
\(421\) −5249.00 −0.607650 −0.303825 0.952728i \(-0.598264\pi\)
−0.303825 + 0.952728i \(0.598264\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 175.000 0.0199735
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11880.0 1.32770 0.663851 0.747865i \(-0.268921\pi\)
0.663851 + 0.747865i \(0.268921\pi\)
\(432\) 0 0
\(433\) −4280.00 −0.475020 −0.237510 0.971385i \(-0.576331\pi\)
−0.237510 + 0.971385i \(0.576331\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9153.00 1.00194
\(438\) 0 0
\(439\) −6463.00 −0.702647 −0.351324 0.936254i \(-0.614268\pi\)
−0.351324 + 0.936254i \(0.614268\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11721.0 −1.25707 −0.628534 0.777782i \(-0.716345\pi\)
−0.628534 + 0.777782i \(0.716345\pi\)
\(444\) 0 0
\(445\) −3750.00 −0.399477
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2180.00 −0.229133 −0.114566 0.993416i \(-0.536548\pi\)
−0.114566 + 0.993416i \(0.536548\pi\)
\(450\) 0 0
\(451\) 1300.00 0.135731
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17840.0 −1.82608 −0.913042 0.407866i \(-0.866273\pi\)
−0.913042 + 0.407866i \(0.866273\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2250.00 −0.227317 −0.113658 0.993520i \(-0.536257\pi\)
−0.113658 + 0.993520i \(0.536257\pi\)
\(462\) 0 0
\(463\) −1230.00 −0.123462 −0.0617310 0.998093i \(-0.519662\pi\)
−0.0617310 + 0.998093i \(0.519662\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5813.00 −0.576003 −0.288002 0.957630i \(-0.592991\pi\)
−0.288002 + 0.957630i \(0.592991\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 100.000 0.00972094
\(474\) 0 0
\(475\) 2825.00 0.272884
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6750.00 0.643873 0.321937 0.946761i \(-0.395666\pi\)
0.321937 + 0.946761i \(0.395666\pi\)
\(480\) 0 0
\(481\) −13600.0 −1.28920
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7400.00 −0.692818
\(486\) 0 0
\(487\) 6610.00 0.615047 0.307523 0.951541i \(-0.400500\pi\)
0.307523 + 0.951541i \(0.400500\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4990.00 0.458647 0.229323 0.973350i \(-0.426349\pi\)
0.229323 + 0.973350i \(0.426349\pi\)
\(492\) 0 0
\(493\) −1540.00 −0.140686
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1483.00 −0.133042 −0.0665212 0.997785i \(-0.521190\pi\)
−0.0665212 + 0.997785i \(0.521190\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 11641.0 1.03190 0.515951 0.856618i \(-0.327439\pi\)
0.515951 + 0.856618i \(0.327439\pi\)
\(504\) 0 0
\(505\) −7500.00 −0.660882
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2620.00 0.228152 0.114076 0.993472i \(-0.463609\pi\)
0.114076 + 0.993472i \(0.463609\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2300.00 0.196796
\(516\) 0 0
\(517\) 1600.00 0.136108
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13690.0 −1.15119 −0.575595 0.817735i \(-0.695229\pi\)
−0.575595 + 0.817735i \(0.695229\pi\)
\(522\) 0 0
\(523\) 10220.0 0.854473 0.427237 0.904140i \(-0.359487\pi\)
0.427237 + 0.904140i \(0.359487\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1323.00 0.109356
\(528\) 0 0
\(529\) −5606.00 −0.460754
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10400.0 0.845167
\(534\) 0 0
\(535\) 2100.00 0.169703
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3430.00 0.274101
\(540\) 0 0
\(541\) −2778.00 −0.220768 −0.110384 0.993889i \(-0.535208\pi\)
−0.110384 + 0.993889i \(0.535208\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3035.00 −0.238541
\(546\) 0 0
\(547\) 12830.0 1.00287 0.501436 0.865195i \(-0.332805\pi\)
0.501436 + 0.865195i \(0.332805\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −24860.0 −1.92209
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4950.00 −0.376550 −0.188275 0.982116i \(-0.560290\pi\)
−0.188275 + 0.982116i \(0.560290\pi\)
\(558\) 0 0
\(559\) 800.000 0.0605302
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6540.00 −0.489570 −0.244785 0.969577i \(-0.578717\pi\)
−0.244785 + 0.969577i \(0.578717\pi\)
\(564\) 0 0
\(565\) 10850.0 0.807899
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15240.0 −1.12284 −0.561418 0.827532i \(-0.689744\pi\)
−0.561418 + 0.827532i \(0.689744\pi\)
\(570\) 0 0
\(571\) 5281.00 0.387045 0.193523 0.981096i \(-0.438009\pi\)
0.193523 + 0.981096i \(0.438009\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2025.00 0.146867
\(576\) 0 0
\(577\) −10510.0 −0.758296 −0.379148 0.925336i \(-0.623783\pi\)
−0.379148 + 0.925336i \(0.623783\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6310.00 −0.448256
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4107.00 −0.288780 −0.144390 0.989521i \(-0.546122\pi\)
−0.144390 + 0.989521i \(0.546122\pi\)
\(588\) 0 0
\(589\) 21357.0 1.49406
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 26129.0 1.80943 0.904713 0.426022i \(-0.140085\pi\)
0.904713 + 0.426022i \(0.140085\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4360.00 0.297404 0.148702 0.988882i \(-0.452491\pi\)
0.148702 + 0.988882i \(0.452491\pi\)
\(600\) 0 0
\(601\) −16639.0 −1.12932 −0.564658 0.825325i \(-0.690992\pi\)
−0.564658 + 0.825325i \(0.690992\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6155.00 −0.413614
\(606\) 0 0
\(607\) −490.000 −0.0327652 −0.0163826 0.999866i \(-0.505215\pi\)
−0.0163826 + 0.999866i \(0.505215\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12800.0 0.847516
\(612\) 0 0
\(613\) 18400.0 1.21235 0.606174 0.795332i \(-0.292704\pi\)
0.606174 + 0.795332i \(0.292704\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7827.00 0.510702 0.255351 0.966848i \(-0.417809\pi\)
0.255351 + 0.966848i \(0.417809\pi\)
\(618\) 0 0
\(619\) 19756.0 1.28281 0.641406 0.767202i \(-0.278351\pi\)
0.641406 + 0.767202i \(0.278351\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1190.00 0.0754347
\(630\) 0 0
\(631\) −9829.00 −0.620105 −0.310053 0.950719i \(-0.600347\pi\)
−0.310053 + 0.950719i \(0.600347\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8050.00 0.503078
\(636\) 0 0
\(637\) 27440.0 1.70677
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6000.00 −0.369713 −0.184856 0.982766i \(-0.559182\pi\)
−0.184856 + 0.982766i \(0.559182\pi\)
\(642\) 0 0
\(643\) −8280.00 −0.507825 −0.253912 0.967227i \(-0.581717\pi\)
−0.253912 + 0.967227i \(0.581717\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16637.0 1.01092 0.505462 0.862849i \(-0.331322\pi\)
0.505462 + 0.862849i \(0.331322\pi\)
\(648\) 0 0
\(649\) −5600.00 −0.338705
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19751.0 1.18364 0.591820 0.806070i \(-0.298410\pi\)
0.591820 + 0.806070i \(0.298410\pi\)
\(654\) 0 0
\(655\) −11850.0 −0.706897
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −14260.0 −0.842930 −0.421465 0.906845i \(-0.638484\pi\)
−0.421465 + 0.906845i \(0.638484\pi\)
\(660\) 0 0
\(661\) 22318.0 1.31327 0.656634 0.754210i \(-0.271980\pi\)
0.656634 + 0.754210i \(0.271980\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −17820.0 −1.03447
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2290.00 −0.131750
\(672\) 0 0
\(673\) 20040.0 1.14782 0.573912 0.818917i \(-0.305425\pi\)
0.573912 + 0.818917i \(0.305425\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2310.00 −0.131138 −0.0655691 0.997848i \(-0.520886\pi\)
−0.0655691 + 0.997848i \(0.520886\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 26739.0 1.49801 0.749004 0.662566i \(-0.230532\pi\)
0.749004 + 0.662566i \(0.230532\pi\)
\(684\) 0 0
\(685\) 8985.00 0.501167
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −50480.0 −2.79120
\(690\) 0 0
\(691\) −5101.00 −0.280827 −0.140413 0.990093i \(-0.544843\pi\)
−0.140413 + 0.990093i \(0.544843\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 620.000 0.0338388
\(696\) 0 0
\(697\) −910.000 −0.0494530
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 26030.0 1.40248 0.701241 0.712925i \(-0.252630\pi\)
0.701241 + 0.712925i \(0.252630\pi\)
\(702\) 0 0
\(703\) 19210.0 1.03061
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −3854.00 −0.204147 −0.102073 0.994777i \(-0.532548\pi\)
−0.102073 + 0.994777i \(0.532548\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 15309.0 0.804105
\(714\) 0 0
\(715\) 4000.00 0.209219
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 870.000 0.0451259 0.0225630 0.999745i \(-0.492817\pi\)
0.0225630 + 0.999745i \(0.492817\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5500.00 −0.281745
\(726\) 0 0
\(727\) −35780.0 −1.82532 −0.912659 0.408721i \(-0.865975\pi\)
−0.912659 + 0.408721i \(0.865975\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −70.0000 −0.00354178
\(732\) 0 0
\(733\) −3400.00 −0.171326 −0.0856629 0.996324i \(-0.527301\pi\)
−0.0856629 + 0.996324i \(0.527301\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7500.00 0.374852
\(738\) 0 0
\(739\) 683.000 0.0339981 0.0169990 0.999856i \(-0.494589\pi\)
0.0169990 + 0.999856i \(0.494589\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13400.0 0.661640 0.330820 0.943694i \(-0.392675\pi\)
0.330820 + 0.943694i \(0.392675\pi\)
\(744\) 0 0
\(745\) −350.000 −0.0172121
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 23219.0 1.12819 0.564097 0.825709i \(-0.309224\pi\)
0.564097 + 0.825709i \(0.309224\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −11240.0 −0.541809
\(756\) 0 0
\(757\) 19630.0 0.942489 0.471245 0.882003i \(-0.343805\pi\)
0.471245 + 0.882003i \(0.343805\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2940.00 0.140046 0.0700229 0.997545i \(-0.477693\pi\)
0.0700229 + 0.997545i \(0.477693\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −44800.0 −2.10904
\(768\) 0 0
\(769\) −13987.0 −0.655896 −0.327948 0.944696i \(-0.606357\pi\)
−0.327948 + 0.944696i \(0.606357\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19839.0 0.923104 0.461552 0.887113i \(-0.347293\pi\)
0.461552 + 0.887113i \(0.347293\pi\)
\(774\) 0 0
\(775\) 4725.00 0.219003
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14690.0 −0.675640
\(780\) 0 0
\(781\) 8900.00 0.407768
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5050.00 0.229608
\(786\) 0 0
\(787\) 38390.0 1.73883 0.869413 0.494086i \(-0.164497\pi\)
0.869413 + 0.494086i \(0.164497\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −18320.0 −0.820381
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −28027.0 −1.24563 −0.622815 0.782369i \(-0.714011\pi\)
−0.622815 + 0.782369i \(0.714011\pi\)
\(798\) 0 0
\(799\) −1120.00 −0.0495904
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8900.00 0.391126
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 8630.00 0.375049 0.187525 0.982260i \(-0.439954\pi\)
0.187525 + 0.982260i \(0.439954\pi\)
\(810\) 0 0
\(811\) 1932.00 0.0836519 0.0418260 0.999125i \(-0.486683\pi\)
0.0418260 + 0.999125i \(0.486683\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2950.00 −0.126790
\(816\) 0 0
\(817\) −1130.00 −0.0483889
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −18090.0 −0.768996 −0.384498 0.923126i \(-0.625625\pi\)
−0.384498 + 0.923126i \(0.625625\pi\)
\(822\) 0 0
\(823\) −12890.0 −0.545950 −0.272975 0.962021i \(-0.588008\pi\)
−0.272975 + 0.962021i \(0.588008\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14887.0 −0.625963 −0.312982 0.949759i \(-0.601328\pi\)
−0.312982 + 0.949759i \(0.601328\pi\)
\(828\) 0 0
\(829\) 12666.0 0.530649 0.265325 0.964159i \(-0.414521\pi\)
0.265325 + 0.964159i \(0.414521\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2401.00 −0.0998676
\(834\) 0 0
\(835\) −12015.0 −0.497960
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −43820.0 −1.80314 −0.901570 0.432633i \(-0.857584\pi\)
−0.901570 + 0.432633i \(0.857584\pi\)
\(840\) 0 0
\(841\) 24011.0 0.984501
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 21015.0 0.855548
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 13770.0 0.554676
\(852\) 0 0
\(853\) 19320.0 0.775503 0.387752 0.921764i \(-0.373252\pi\)
0.387752 + 0.921764i \(0.373252\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3653.00 −0.145606 −0.0728029 0.997346i \(-0.523194\pi\)
−0.0728029 + 0.997346i \(0.523194\pi\)
\(858\) 0 0
\(859\) −24373.0 −0.968098 −0.484049 0.875041i \(-0.660834\pi\)
−0.484049 + 0.875041i \(0.660834\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 17629.0 0.695363 0.347681 0.937613i \(-0.386969\pi\)
0.347681 + 0.937613i \(0.386969\pi\)
\(864\) 0 0
\(865\) 4005.00 0.157427
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −270.000 −0.0105398
\(870\) 0 0
\(871\) 60000.0 2.33412
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −21210.0 −0.816660 −0.408330 0.912834i \(-0.633889\pi\)
−0.408330 + 0.912834i \(0.633889\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 39340.0 1.50442 0.752212 0.658921i \(-0.228987\pi\)
0.752212 + 0.658921i \(0.228987\pi\)
\(882\) 0 0
\(883\) 4240.00 0.161594 0.0807969 0.996731i \(-0.474253\pi\)
0.0807969 + 0.996731i \(0.474253\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 15933.0 0.603132 0.301566 0.953445i \(-0.402491\pi\)
0.301566 + 0.953445i \(0.402491\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −18080.0 −0.677519
\(894\) 0 0
\(895\) 11800.0 0.440704
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −41580.0 −1.54257
\(900\) 0 0
\(901\) 4417.00 0.163320
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6205.00 0.227913
\(906\) 0 0
\(907\) 6780.00 0.248210 0.124105 0.992269i \(-0.460394\pi\)
0.124105 + 0.992269i \(0.460394\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 24740.0 0.899751 0.449875 0.893091i \(-0.351468\pi\)
0.449875 + 0.893091i \(0.351468\pi\)
\(912\) 0 0
\(913\) 4290.00 0.155507
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 48344.0 1.73528 0.867640 0.497194i \(-0.165636\pi\)
0.867640 + 0.497194i \(0.165636\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 71200.0 2.53909
\(924\) 0 0
\(925\) 4250.00 0.151069
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −29650.0 −1.04713 −0.523566 0.851985i \(-0.675399\pi\)
−0.523566 + 0.851985i \(0.675399\pi\)
\(930\) 0 0
\(931\) −38759.0 −1.36442
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −350.000 −0.0122420
\(936\) 0 0
\(937\) 10260.0 0.357716 0.178858 0.983875i \(-0.442760\pi\)
0.178858 + 0.983875i \(0.442760\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −16270.0 −0.563642 −0.281821 0.959467i \(-0.590938\pi\)
−0.281821 + 0.959467i \(0.590938\pi\)
\(942\) 0 0
\(943\) −10530.0 −0.363631
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23103.0 0.792763 0.396382 0.918086i \(-0.370266\pi\)
0.396382 + 0.918086i \(0.370266\pi\)
\(948\) 0 0
\(949\) 71200.0 2.43546
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −32090.0 −1.09076 −0.545381 0.838188i \(-0.683615\pi\)
−0.545381 + 0.838188i \(0.683615\pi\)
\(954\) 0 0
\(955\) 24950.0 0.845406
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 5930.00 0.199053
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −11300.0 −0.376953
\(966\) 0 0
\(967\) 42010.0 1.39705 0.698527 0.715584i \(-0.253839\pi\)
0.698527 + 0.715584i \(0.253839\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −17490.0 −0.578044 −0.289022 0.957322i \(-0.593330\pi\)
−0.289022 + 0.957322i \(0.593330\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −22130.0 −0.724669 −0.362334 0.932048i \(-0.618020\pi\)
−0.362334 + 0.932048i \(0.618020\pi\)
\(978\) 0 0
\(979\) 7500.00 0.244843
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −40959.0 −1.32898 −0.664491 0.747296i \(-0.731352\pi\)
−0.664491 + 0.747296i \(0.731352\pi\)
\(984\) 0 0
\(985\) −11235.0 −0.363428
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −810.000 −0.0260430
\(990\) 0 0
\(991\) −61169.0 −1.96074 −0.980372 0.197157i \(-0.936829\pi\)
−0.980372 + 0.197157i \(0.936829\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −22820.0 −0.727078
\(996\) 0 0
\(997\) 26190.0 0.831941 0.415971 0.909378i \(-0.363442\pi\)
0.415971 + 0.909378i \(0.363442\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.4.a.n.1.1 1
3.2 odd 2 2160.4.a.d.1.1 1
4.3 odd 2 135.4.a.a.1.1 1
12.11 even 2 135.4.a.d.1.1 yes 1
20.3 even 4 675.4.b.d.649.2 2
20.7 even 4 675.4.b.d.649.1 2
20.19 odd 2 675.4.a.i.1.1 1
36.7 odd 6 405.4.e.j.271.1 2
36.11 even 6 405.4.e.e.271.1 2
36.23 even 6 405.4.e.e.136.1 2
36.31 odd 6 405.4.e.j.136.1 2
60.23 odd 4 675.4.b.c.649.1 2
60.47 odd 4 675.4.b.c.649.2 2
60.59 even 2 675.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.4.a.a.1.1 1 4.3 odd 2
135.4.a.d.1.1 yes 1 12.11 even 2
405.4.e.e.136.1 2 36.23 even 6
405.4.e.e.271.1 2 36.11 even 6
405.4.e.j.136.1 2 36.31 odd 6
405.4.e.j.271.1 2 36.7 odd 6
675.4.a.b.1.1 1 60.59 even 2
675.4.a.i.1.1 1 20.19 odd 2
675.4.b.c.649.1 2 60.23 odd 4
675.4.b.c.649.2 2 60.47 odd 4
675.4.b.d.649.1 2 20.7 even 4
675.4.b.d.649.2 2 20.3 even 4
2160.4.a.d.1.1 1 3.2 odd 2
2160.4.a.n.1.1 1 1.1 even 1 trivial