Properties

Label 2160.4.a.m
Level $2160$
Weight $4$
Character orbit 2160.a
Self dual yes
Analytic conductor $127.444$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2160.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(127.444125612\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 5 q^{5} - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 5 q^{5} - 8 q^{7} - 18 q^{11} + 8 q^{13} + 15 q^{17} - 23 q^{19} - 63 q^{23} + 25 q^{25} + 156 q^{29} + 85 q^{31} - 40 q^{35} + 74 q^{37} + 246 q^{41} + 190 q^{43} - 288 q^{47} - 279 q^{49} - 177 q^{53} - 90 q^{55} - 792 q^{59} - 907 q^{61} + 40 q^{65} + 322 q^{67} + 270 q^{71} + 254 q^{73} + 144 q^{77} + 1123 q^{79} + 771 q^{83} + 75 q^{85} - 198 q^{89} - 64 q^{91} - 115 q^{95} - 1192 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 5.00000 0 −8.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.4.a.m 1
3.b odd 2 1 2160.4.a.c 1
4.b odd 2 1 270.4.a.l yes 1
12.b even 2 1 270.4.a.b 1
20.d odd 2 1 1350.4.a.f 1
20.e even 4 2 1350.4.c.n 2
36.f odd 6 2 810.4.e.b 2
36.h even 6 2 810.4.e.v 2
60.h even 2 1 1350.4.a.t 1
60.l odd 4 2 1350.4.c.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.4.a.b 1 12.b even 2 1
270.4.a.l yes 1 4.b odd 2 1
810.4.e.b 2 36.f odd 6 2
810.4.e.v 2 36.h even 6 2
1350.4.a.f 1 20.d odd 2 1
1350.4.a.t 1 60.h even 2 1
1350.4.c.g 2 60.l odd 4 2
1350.4.c.n 2 20.e even 4 2
2160.4.a.c 1 3.b odd 2 1
2160.4.a.m 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2160))\):

\( T_{7} + 8 \) Copy content Toggle raw display
\( T_{11} + 18 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T + 8 \) Copy content Toggle raw display
$11$ \( T + 18 \) Copy content Toggle raw display
$13$ \( T - 8 \) Copy content Toggle raw display
$17$ \( T - 15 \) Copy content Toggle raw display
$19$ \( T + 23 \) Copy content Toggle raw display
$23$ \( T + 63 \) Copy content Toggle raw display
$29$ \( T - 156 \) Copy content Toggle raw display
$31$ \( T - 85 \) Copy content Toggle raw display
$37$ \( T - 74 \) Copy content Toggle raw display
$41$ \( T - 246 \) Copy content Toggle raw display
$43$ \( T - 190 \) Copy content Toggle raw display
$47$ \( T + 288 \) Copy content Toggle raw display
$53$ \( T + 177 \) Copy content Toggle raw display
$59$ \( T + 792 \) Copy content Toggle raw display
$61$ \( T + 907 \) Copy content Toggle raw display
$67$ \( T - 322 \) Copy content Toggle raw display
$71$ \( T - 270 \) Copy content Toggle raw display
$73$ \( T - 254 \) Copy content Toggle raw display
$79$ \( T - 1123 \) Copy content Toggle raw display
$83$ \( T - 771 \) Copy content Toggle raw display
$89$ \( T + 198 \) Copy content Toggle raw display
$97$ \( T + 1192 \) Copy content Toggle raw display
show more
show less