Properties

Label 2160.4.a.j
Level $2160$
Weight $4$
Character orbit 2160.a
Self dual yes
Analytic conductor $127.444$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2160.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(127.444125612\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 5 q^{5} + 34 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - 5 q^{5} + 34 q^{7} - 48 q^{11} - 70 q^{13} + 27 q^{17} - 119 q^{19} - 51 q^{23} + 25 q^{25} + 30 q^{29} + 133 q^{31} - 170 q^{35} + 218 q^{37} - 156 q^{41} + 88 q^{43} - 516 q^{47} + 813 q^{49} + 639 q^{53} + 240 q^{55} - 654 q^{59} + 461 q^{61} + 350 q^{65} - 182 q^{67} + 900 q^{71} + 704 q^{73} - 1632 q^{77} + 1375 q^{79} + 915 q^{83} - 135 q^{85} + 1116 q^{89} - 2380 q^{91} + 595 q^{95} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −5.00000 0 34.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.4.a.j 1
3.b odd 2 1 2160.4.a.t 1
4.b odd 2 1 270.4.a.a 1
12.b even 2 1 270.4.a.k yes 1
20.d odd 2 1 1350.4.a.bb 1
20.e even 4 2 1350.4.c.r 2
36.f odd 6 2 810.4.e.x 2
36.h even 6 2 810.4.e.d 2
60.h even 2 1 1350.4.a.n 1
60.l odd 4 2 1350.4.c.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.4.a.a 1 4.b odd 2 1
270.4.a.k yes 1 12.b even 2 1
810.4.e.d 2 36.h even 6 2
810.4.e.x 2 36.f odd 6 2
1350.4.a.n 1 60.h even 2 1
1350.4.a.bb 1 20.d odd 2 1
1350.4.c.c 2 60.l odd 4 2
1350.4.c.r 2 20.e even 4 2
2160.4.a.j 1 1.a even 1 1 trivial
2160.4.a.t 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2160))\):

\( T_{7} - 34 \) Copy content Toggle raw display
\( T_{11} + 48 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T - 34 \) Copy content Toggle raw display
$11$ \( T + 48 \) Copy content Toggle raw display
$13$ \( T + 70 \) Copy content Toggle raw display
$17$ \( T - 27 \) Copy content Toggle raw display
$19$ \( T + 119 \) Copy content Toggle raw display
$23$ \( T + 51 \) Copy content Toggle raw display
$29$ \( T - 30 \) Copy content Toggle raw display
$31$ \( T - 133 \) Copy content Toggle raw display
$37$ \( T - 218 \) Copy content Toggle raw display
$41$ \( T + 156 \) Copy content Toggle raw display
$43$ \( T - 88 \) Copy content Toggle raw display
$47$ \( T + 516 \) Copy content Toggle raw display
$53$ \( T - 639 \) Copy content Toggle raw display
$59$ \( T + 654 \) Copy content Toggle raw display
$61$ \( T - 461 \) Copy content Toggle raw display
$67$ \( T + 182 \) Copy content Toggle raw display
$71$ \( T - 900 \) Copy content Toggle raw display
$73$ \( T - 704 \) Copy content Toggle raw display
$79$ \( T - 1375 \) Copy content Toggle raw display
$83$ \( T - 915 \) Copy content Toggle raw display
$89$ \( T - 1116 \) Copy content Toggle raw display
$97$ \( T + 16 \) Copy content Toggle raw display
show more
show less