Properties

Label 2160.4.a.bi
Level $2160$
Weight $4$
Character orbit 2160.a
Self dual yes
Analytic conductor $127.444$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,4,Mod(1,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(127.444125612\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1772.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 12x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 5 q^{5} + (\beta_{2} + 3 \beta_1) q^{7} + (\beta_{2} - 5 \beta_1 + 3) q^{11} + ( - \beta_{2} + 2 \beta_1 + 2) q^{13} + (2 \beta_{2} + 5 \beta_1 - 54) q^{17} + ( - 8 \beta_{2} + \beta_1 + 19) q^{19}+ \cdots + (28 \beta_{2} - \beta_1 + 231) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 15 q^{5} + 4 q^{7} + 5 q^{11} + 7 q^{13} - 155 q^{17} + 50 q^{19} + 285 q^{23} + 75 q^{25} - 115 q^{29} + 115 q^{31} - 20 q^{35} - 384 q^{37} - 580 q^{41} + 797 q^{43} - 145 q^{47} + 577 q^{49} + 400 q^{53}+ \cdots + 720 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 12x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -\nu^{2} + 2\nu + 8 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} + 2\nu - 17 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 2\beta _1 + 1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} - \beta _1 + 25 ) / 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.32803
0.654334
3.67370
0 0 0 −5.00000 0 −30.7000 0 0 0
1.2 0 0 0 −5.00000 0 11.8065 0 0 0
1.3 0 0 0 −5.00000 0 22.8935 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.4.a.bi 3
3.b odd 2 1 2160.4.a.bq 3
4.b odd 2 1 135.4.a.e 3
12.b even 2 1 135.4.a.h yes 3
20.d odd 2 1 675.4.a.s 3
20.e even 4 2 675.4.b.m 6
36.f odd 6 2 405.4.e.v 6
36.h even 6 2 405.4.e.q 6
60.h even 2 1 675.4.a.p 3
60.l odd 4 2 675.4.b.n 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.4.a.e 3 4.b odd 2 1
135.4.a.h yes 3 12.b even 2 1
405.4.e.q 6 36.h even 6 2
405.4.e.v 6 36.f odd 6 2
675.4.a.p 3 60.h even 2 1
675.4.a.s 3 20.d odd 2 1
675.4.b.m 6 20.e even 4 2
675.4.b.n 6 60.l odd 4 2
2160.4.a.bi 3 1.a even 1 1 trivial
2160.4.a.bq 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2160))\):

\( T_{7}^{3} - 4T_{7}^{2} - 795T_{7} + 8298 \) Copy content Toggle raw display
\( T_{11}^{3} - 5T_{11}^{2} - 2888T_{11} + 31260 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T + 5)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 4 T^{2} + \cdots + 8298 \) Copy content Toggle raw display
$11$ \( T^{3} - 5 T^{2} + \cdots + 31260 \) Copy content Toggle raw display
$13$ \( T^{3} - 7 T^{2} + \cdots - 6425 \) Copy content Toggle raw display
$17$ \( T^{3} + 155 T^{2} + \cdots + 41760 \) Copy content Toggle raw display
$19$ \( T^{3} - 50 T^{2} + \cdots + 368012 \) Copy content Toggle raw display
$23$ \( T^{3} - 285 T^{2} + \cdots + 553500 \) Copy content Toggle raw display
$29$ \( T^{3} + 115 T^{2} + \cdots - 6440340 \) Copy content Toggle raw display
$31$ \( T^{3} - 115 T^{2} + \cdots + 938304 \) Copy content Toggle raw display
$37$ \( T^{3} + 384 T^{2} + \cdots - 22667198 \) Copy content Toggle raw display
$41$ \( T^{3} + 580 T^{2} + \cdots + 3917280 \) Copy content Toggle raw display
$43$ \( T^{3} - 797 T^{2} + \cdots + 5357936 \) Copy content Toggle raw display
$47$ \( T^{3} + 145 T^{2} + \cdots + 14388240 \) Copy content Toggle raw display
$53$ \( T^{3} - 400 T^{2} + \cdots + 12658320 \) Copy content Toggle raw display
$59$ \( T^{3} - 380 T^{2} + \cdots + 5205120 \) Copy content Toggle raw display
$61$ \( T^{3} + 152 T^{2} + \cdots - 5069066 \) Copy content Toggle raw display
$67$ \( T^{3} + 2 T^{2} + \cdots - 20769300 \) Copy content Toggle raw display
$71$ \( T^{3} - 40 T^{2} + \cdots + 216071280 \) Copy content Toggle raw display
$73$ \( T^{3} + 980 T^{2} + \cdots + 16447954 \) Copy content Toggle raw display
$79$ \( T^{3} + 1013 T^{2} + \cdots - 90596925 \) Copy content Toggle raw display
$83$ \( T^{3} - 270 T^{2} + \cdots + 84539160 \) Copy content Toggle raw display
$89$ \( T^{3} + 1020 T^{2} + \cdots - 125064000 \) Copy content Toggle raw display
$97$ \( T^{3} - 720 T^{2} + \cdots + 27430558 \) Copy content Toggle raw display
show more
show less