Properties

Label 2160.4.a.bf
Level $2160$
Weight $4$
Character orbit 2160.a
Self dual yes
Analytic conductor $127.444$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,4,Mod(1,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2160.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-15,0,-9,0,0,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(127.444125612\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.47977.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 60x - 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 1080)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 5 q^{5} + ( - \beta_{2} - 3) q^{7} + ( - \beta_{2} + \beta_1 + 6) q^{11} + (2 \beta_{2} + \beta_1 - 7) q^{13} + (\beta_{2} + \beta_1 - 28) q^{17} + ( - 3 \beta_{2} - 7) q^{19} + ( - \beta_{2} + 16) q^{23}+ \cdots + (19 \beta_{2} + 16 \beta_1 + 397) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 15 q^{5} - 9 q^{7} + 18 q^{11} - 21 q^{13} - 84 q^{17} - 21 q^{19} + 48 q^{23} + 75 q^{25} + 36 q^{29} - 324 q^{31} + 45 q^{35} + 33 q^{37} - 114 q^{41} - 282 q^{43} + 282 q^{47} + 228 q^{49} - 222 q^{53}+ \cdots + 1191 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 60x - 44 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 6\nu - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3\nu^{2} - 9\nu - 118 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 2 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 8\beta_{2} + 3\beta _1 + 242 ) / 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.83575
8.58548
−0.749725
0 0 0 −5.00000 0 −23.9261 0 0 0
1.2 0 0 0 −5.00000 0 −9.46549 0 0 0
1.3 0 0 0 −5.00000 0 24.3916 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.4.a.bf 3
3.b odd 2 1 2160.4.a.bn 3
4.b odd 2 1 1080.4.a.h 3
12.b even 2 1 1080.4.a.n yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.4.a.h 3 4.b odd 2 1
1080.4.a.n yes 3 12.b even 2 1
2160.4.a.bf 3 1.a even 1 1 trivial
2160.4.a.bn 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2160))\):

\( T_{7}^{3} + 9T_{7}^{2} - 588T_{7} - 5524 \) Copy content Toggle raw display
\( T_{11}^{3} - 18T_{11}^{2} - 3081T_{11} + 76426 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T + 5)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 9 T^{2} + \cdots - 5524 \) Copy content Toggle raw display
$11$ \( T^{3} - 18 T^{2} + \cdots + 76426 \) Copy content Toggle raw display
$13$ \( T^{3} + 21 T^{2} + \cdots - 30901 \) Copy content Toggle raw display
$17$ \( T^{3} + 84 T^{2} + \cdots - 86732 \) Copy content Toggle raw display
$19$ \( T^{3} + 21 T^{2} + \cdots - 138464 \) Copy content Toggle raw display
$23$ \( T^{3} - 48 T^{2} + \cdots + 2038 \) Copy content Toggle raw display
$29$ \( T^{3} - 36 T^{2} + \cdots + 3034586 \) Copy content Toggle raw display
$31$ \( T^{3} + 324 T^{2} + \cdots - 9213176 \) Copy content Toggle raw display
$37$ \( T^{3} - 33 T^{2} + \cdots + 2851956 \) Copy content Toggle raw display
$41$ \( T^{3} + 114 T^{2} + \cdots - 1847232 \) Copy content Toggle raw display
$43$ \( T^{3} + 282 T^{2} + \cdots - 1113236 \) Copy content Toggle raw display
$47$ \( T^{3} - 282 T^{2} + \cdots - 11238296 \) Copy content Toggle raw display
$53$ \( T^{3} + 222 T^{2} + \cdots + 5908896 \) Copy content Toggle raw display
$59$ \( (T + 92)^{3} \) Copy content Toggle raw display
$61$ \( T^{3} - 303 T^{2} + \cdots + 13330220 \) Copy content Toggle raw display
$67$ \( T^{3} + 1035 T^{2} + \cdots - 849676336 \) Copy content Toggle raw display
$71$ \( T^{3} - 510 T^{2} + \cdots + 11439360 \) Copy content Toggle raw display
$73$ \( T^{3} - 447 T^{2} + \cdots + 78574428 \) Copy content Toggle raw display
$79$ \( T^{3} + 777 T^{2} + \cdots + 14000175 \) Copy content Toggle raw display
$83$ \( T^{3} - 78 T^{2} + \cdots - 87546568 \) Copy content Toggle raw display
$89$ \( T^{3} - 324 T^{2} + \cdots - 92454912 \) Copy content Toggle raw display
$97$ \( T^{3} - 1191 T^{2} + \cdots + 31736348 \) Copy content Toggle raw display
show more
show less