Properties

Label 2160.3.e.b.271.4
Level $2160$
Weight $3$
Character 2160.271
Analytic conductor $58.856$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,3,Mod(271,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.271");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 271.4
Root \(-0.309017 + 0.535233i\) of defining polynomial
Character \(\chi\) \(=\) 2160.271
Dual form 2160.3.e.b.271.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.23607 q^{5} +7.74597i q^{7} +O(q^{10})\) \(q+2.23607 q^{5} +7.74597i q^{7} -6.92820i q^{11} +22.0000 q^{13} -6.70820 q^{17} +27.1109i q^{19} +29.4449i q^{23} +5.00000 q^{25} -40.2492 q^{29} -19.3649i q^{31} +17.3205i q^{35} +2.00000 q^{37} +53.6656 q^{41} +15.4919i q^{43} -13.8564i q^{47} -11.0000 q^{49} -6.70820 q^{53} -15.4919i q^{55} +24.2487i q^{59} -31.0000 q^{61} +49.1935 q^{65} +23.2379i q^{67} -110.851i q^{71} +76.0000 q^{73} +53.6656 q^{77} +19.3649i q^{79} +129.904i q^{83} -15.0000 q^{85} -53.6656 q^{89} +170.411i q^{91} +60.6218i q^{95} -32.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 88 q^{13} + 20 q^{25} + 8 q^{37} - 44 q^{49} - 124 q^{61} + 304 q^{73} - 60 q^{85} - 128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.23607 0.447214
\(6\) 0 0
\(7\) 7.74597i 1.10657i 0.832993 + 0.553283i \(0.186625\pi\)
−0.832993 + 0.553283i \(0.813375\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 6.92820i − 0.629837i −0.949119 0.314918i \(-0.898023\pi\)
0.949119 0.314918i \(-0.101977\pi\)
\(12\) 0 0
\(13\) 22.0000 1.69231 0.846154 0.532939i \(-0.178912\pi\)
0.846154 + 0.532939i \(0.178912\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.70820 −0.394600 −0.197300 0.980343i \(-0.563217\pi\)
−0.197300 + 0.980343i \(0.563217\pi\)
\(18\) 0 0
\(19\) 27.1109i 1.42689i 0.700712 + 0.713444i \(0.252866\pi\)
−0.700712 + 0.713444i \(0.747134\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 29.4449i 1.28021i 0.768287 + 0.640106i \(0.221109\pi\)
−0.768287 + 0.640106i \(0.778891\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −40.2492 −1.38790 −0.693952 0.720021i \(-0.744132\pi\)
−0.693952 + 0.720021i \(0.744132\pi\)
\(30\) 0 0
\(31\) − 19.3649i − 0.624675i −0.949971 0.312337i \(-0.898888\pi\)
0.949971 0.312337i \(-0.101112\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 17.3205i 0.494872i
\(36\) 0 0
\(37\) 2.00000 0.0540541 0.0270270 0.999635i \(-0.491396\pi\)
0.0270270 + 0.999635i \(0.491396\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 53.6656 1.30892 0.654459 0.756098i \(-0.272896\pi\)
0.654459 + 0.756098i \(0.272896\pi\)
\(42\) 0 0
\(43\) 15.4919i 0.360278i 0.983641 + 0.180139i \(0.0576547\pi\)
−0.983641 + 0.180139i \(0.942345\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 13.8564i − 0.294817i −0.989076 0.147409i \(-0.952907\pi\)
0.989076 0.147409i \(-0.0470932\pi\)
\(48\) 0 0
\(49\) −11.0000 −0.224490
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.70820 −0.126570 −0.0632849 0.997995i \(-0.520158\pi\)
−0.0632849 + 0.997995i \(0.520158\pi\)
\(54\) 0 0
\(55\) − 15.4919i − 0.281672i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 24.2487i 0.410995i 0.978658 + 0.205498i \(0.0658813\pi\)
−0.978658 + 0.205498i \(0.934119\pi\)
\(60\) 0 0
\(61\) −31.0000 −0.508197 −0.254098 0.967178i \(-0.581779\pi\)
−0.254098 + 0.967178i \(0.581779\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 49.1935 0.756823
\(66\) 0 0
\(67\) 23.2379i 0.346834i 0.984848 + 0.173417i \(0.0554809\pi\)
−0.984848 + 0.173417i \(0.944519\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 110.851i − 1.56129i −0.624978 0.780643i \(-0.714892\pi\)
0.624978 0.780643i \(-0.285108\pi\)
\(72\) 0 0
\(73\) 76.0000 1.04110 0.520548 0.853832i \(-0.325728\pi\)
0.520548 + 0.853832i \(0.325728\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 53.6656 0.696956
\(78\) 0 0
\(79\) 19.3649i 0.245126i 0.992461 + 0.122563i \(0.0391113\pi\)
−0.992461 + 0.122563i \(0.960889\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 129.904i 1.56511i 0.622584 + 0.782553i \(0.286083\pi\)
−0.622584 + 0.782553i \(0.713917\pi\)
\(84\) 0 0
\(85\) −15.0000 −0.176471
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −53.6656 −0.602985 −0.301492 0.953469i \(-0.597485\pi\)
−0.301492 + 0.953469i \(0.597485\pi\)
\(90\) 0 0
\(91\) 170.411i 1.87265i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 60.6218i 0.638124i
\(96\) 0 0
\(97\) −32.0000 −0.329897 −0.164948 0.986302i \(-0.552746\pi\)
−0.164948 + 0.986302i \(0.552746\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −26.8328 −0.265671 −0.132836 0.991138i \(-0.542408\pi\)
−0.132836 + 0.991138i \(0.542408\pi\)
\(102\) 0 0
\(103\) 201.395i 1.95529i 0.210256 + 0.977646i \(0.432570\pi\)
−0.210256 + 0.977646i \(0.567430\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 117.779i − 1.10074i −0.834920 0.550371i \(-0.814486\pi\)
0.834920 0.550371i \(-0.185514\pi\)
\(108\) 0 0
\(109\) −203.000 −1.86239 −0.931193 0.364527i \(-0.881231\pi\)
−0.931193 + 0.364527i \(0.881231\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −174.413 −1.54348 −0.771740 0.635938i \(-0.780613\pi\)
−0.771740 + 0.635938i \(0.780613\pi\)
\(114\) 0 0
\(115\) 65.8407i 0.572528i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 51.9615i − 0.436651i
\(120\) 0 0
\(121\) 73.0000 0.603306
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803 0.0894427
\(126\) 0 0
\(127\) 116.190i 0.914878i 0.889241 + 0.457439i \(0.151233\pi\)
−0.889241 + 0.457439i \(0.848767\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 58.8897i − 0.449540i −0.974412 0.224770i \(-0.927837\pi\)
0.974412 0.224770i \(-0.0721631\pi\)
\(132\) 0 0
\(133\) −210.000 −1.57895
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 248.204 1.81170 0.905852 0.423594i \(-0.139232\pi\)
0.905852 + 0.423594i \(0.139232\pi\)
\(138\) 0 0
\(139\) 154.919i 1.11453i 0.830336 + 0.557264i \(0.188149\pi\)
−0.830336 + 0.557264i \(0.811851\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 152.420i − 1.06588i
\(144\) 0 0
\(145\) −90.0000 −0.620690
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −160.997 −1.08052 −0.540258 0.841499i \(-0.681673\pi\)
−0.540258 + 0.841499i \(0.681673\pi\)
\(150\) 0 0
\(151\) 247.871i 1.64153i 0.571266 + 0.820765i \(0.306452\pi\)
−0.571266 + 0.820765i \(0.693548\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 43.3013i − 0.279363i
\(156\) 0 0
\(157\) 56.0000 0.356688 0.178344 0.983968i \(-0.442926\pi\)
0.178344 + 0.983968i \(0.442926\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −228.079 −1.41664
\(162\) 0 0
\(163\) − 116.190i − 0.712819i −0.934330 0.356410i \(-0.884001\pi\)
0.934330 0.356410i \(-0.115999\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 168.009i 1.00604i 0.864274 + 0.503021i \(0.167778\pi\)
−0.864274 + 0.503021i \(0.832222\pi\)
\(168\) 0 0
\(169\) 315.000 1.86391
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 221.371 1.27960 0.639800 0.768542i \(-0.279017\pi\)
0.639800 + 0.768542i \(0.279017\pi\)
\(174\) 0 0
\(175\) 38.7298i 0.221313i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 284.056i 1.58691i 0.608631 + 0.793453i \(0.291719\pi\)
−0.608631 + 0.793453i \(0.708281\pi\)
\(180\) 0 0
\(181\) 181.000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.47214 0.0241737
\(186\) 0 0
\(187\) 46.4758i 0.248534i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 51.9615i 0.272050i 0.990705 + 0.136025i \(0.0434327\pi\)
−0.990705 + 0.136025i \(0.956567\pi\)
\(192\) 0 0
\(193\) 74.0000 0.383420 0.191710 0.981452i \(-0.438597\pi\)
0.191710 + 0.981452i \(0.438597\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 221.371 1.12371 0.561855 0.827236i \(-0.310088\pi\)
0.561855 + 0.827236i \(0.310088\pi\)
\(198\) 0 0
\(199\) 185.903i 0.934187i 0.884208 + 0.467093i \(0.154699\pi\)
−0.884208 + 0.467093i \(0.845301\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 311.769i − 1.53581i
\(204\) 0 0
\(205\) 120.000 0.585366
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 187.830 0.898707
\(210\) 0 0
\(211\) − 290.474i − 1.37665i −0.725401 0.688326i \(-0.758346\pi\)
0.725401 0.688326i \(-0.241654\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 34.6410i 0.161121i
\(216\) 0 0
\(217\) 150.000 0.691244
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −147.580 −0.667785
\(222\) 0 0
\(223\) 271.109i 1.21573i 0.794039 + 0.607867i \(0.207975\pi\)
−0.794039 + 0.607867i \(0.792025\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 168.009i − 0.740127i −0.929006 0.370064i \(-0.879336\pi\)
0.929006 0.370064i \(-0.120664\pi\)
\(228\) 0 0
\(229\) 19.0000 0.0829694 0.0414847 0.999139i \(-0.486791\pi\)
0.0414847 + 0.999139i \(0.486791\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −281.745 −1.20920 −0.604602 0.796528i \(-0.706668\pi\)
−0.604602 + 0.796528i \(0.706668\pi\)
\(234\) 0 0
\(235\) − 30.9839i − 0.131846i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 24.2487i − 0.101459i −0.998712 0.0507295i \(-0.983845\pi\)
0.998712 0.0507295i \(-0.0161546\pi\)
\(240\) 0 0
\(241\) −209.000 −0.867220 −0.433610 0.901101i \(-0.642760\pi\)
−0.433610 + 0.901101i \(0.642760\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −24.5967 −0.100395
\(246\) 0 0
\(247\) 596.439i 2.41473i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 304.841i 1.21451i 0.794509 + 0.607253i \(0.207729\pi\)
−0.794509 + 0.607253i \(0.792271\pi\)
\(252\) 0 0
\(253\) 204.000 0.806324
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 33.5410 0.130510 0.0652549 0.997869i \(-0.479214\pi\)
0.0652549 + 0.997869i \(0.479214\pi\)
\(258\) 0 0
\(259\) 15.4919i 0.0598144i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 464.190i − 1.76498i −0.470332 0.882490i \(-0.655866\pi\)
0.470332 0.882490i \(-0.344134\pi\)
\(264\) 0 0
\(265\) −15.0000 −0.0566038
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −362.243 −1.34663 −0.673314 0.739357i \(-0.735130\pi\)
−0.673314 + 0.739357i \(0.735130\pi\)
\(270\) 0 0
\(271\) 274.982i 1.01469i 0.861742 + 0.507347i \(0.169374\pi\)
−0.861742 + 0.507347i \(0.830626\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 34.6410i − 0.125967i
\(276\) 0 0
\(277\) −116.000 −0.418773 −0.209386 0.977833i \(-0.567147\pi\)
−0.209386 + 0.977833i \(0.567147\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 469.574 1.67108 0.835541 0.549427i \(-0.185154\pi\)
0.835541 + 0.549427i \(0.185154\pi\)
\(282\) 0 0
\(283\) 216.887i 0.766385i 0.923668 + 0.383193i \(0.125175\pi\)
−0.923668 + 0.383193i \(0.874825\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 415.692i 1.44840i
\(288\) 0 0
\(289\) −244.000 −0.844291
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 328.702 1.12185 0.560925 0.827867i \(-0.310446\pi\)
0.560925 + 0.827867i \(0.310446\pi\)
\(294\) 0 0
\(295\) 54.2218i 0.183803i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 647.787i 2.16651i
\(300\) 0 0
\(301\) −120.000 −0.398671
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −69.3181 −0.227272
\(306\) 0 0
\(307\) 147.173i 0.479392i 0.970848 + 0.239696i \(0.0770478\pi\)
−0.970848 + 0.239696i \(0.922952\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 45.0333i 0.144802i 0.997376 + 0.0724008i \(0.0230661\pi\)
−0.997376 + 0.0724008i \(0.976934\pi\)
\(312\) 0 0
\(313\) −256.000 −0.817891 −0.408946 0.912559i \(-0.634103\pi\)
−0.408946 + 0.912559i \(0.634103\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −140.872 −0.444392 −0.222196 0.975002i \(-0.571322\pi\)
−0.222196 + 0.975002i \(0.571322\pi\)
\(318\) 0 0
\(319\) 278.855i 0.874153i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 181.865i − 0.563051i
\(324\) 0 0
\(325\) 110.000 0.338462
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 107.331 0.326235
\(330\) 0 0
\(331\) 340.823i 1.02968i 0.857288 + 0.514838i \(0.172148\pi\)
−0.857288 + 0.514838i \(0.827852\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 51.9615i 0.155109i
\(336\) 0 0
\(337\) −386.000 −1.14540 −0.572700 0.819765i \(-0.694104\pi\)
−0.572700 + 0.819765i \(0.694104\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −134.164 −0.393443
\(342\) 0 0
\(343\) 294.347i 0.858154i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 103.923i − 0.299490i −0.988725 0.149745i \(-0.952155\pi\)
0.988725 0.149745i \(-0.0478453\pi\)
\(348\) 0 0
\(349\) 413.000 1.18338 0.591691 0.806165i \(-0.298461\pi\)
0.591691 + 0.806165i \(0.298461\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −147.580 −0.418075 −0.209038 0.977908i \(-0.567033\pi\)
−0.209038 + 0.977908i \(0.567033\pi\)
\(354\) 0 0
\(355\) − 247.871i − 0.698228i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 183.597i 0.511413i 0.966754 + 0.255707i \(0.0823081\pi\)
−0.966754 + 0.255707i \(0.917692\pi\)
\(360\) 0 0
\(361\) −374.000 −1.03601
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 169.941 0.465592
\(366\) 0 0
\(367\) − 580.948i − 1.58296i −0.611193 0.791482i \(-0.709310\pi\)
0.611193 0.791482i \(-0.290690\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 51.9615i − 0.140058i
\(372\) 0 0
\(373\) −16.0000 −0.0428954 −0.0214477 0.999770i \(-0.506828\pi\)
−0.0214477 + 0.999770i \(0.506828\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −885.483 −2.34876
\(378\) 0 0
\(379\) − 383.425i − 1.01168i −0.862628 0.505838i \(-0.831183\pi\)
0.862628 0.505838i \(-0.168817\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 497.099i − 1.29791i −0.760828 0.648954i \(-0.775207\pi\)
0.760828 0.648954i \(-0.224793\pi\)
\(384\) 0 0
\(385\) 120.000 0.311688
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 563.489 1.44856 0.724279 0.689507i \(-0.242173\pi\)
0.724279 + 0.689507i \(0.242173\pi\)
\(390\) 0 0
\(391\) − 197.522i − 0.505172i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 43.3013i 0.109623i
\(396\) 0 0
\(397\) 2.00000 0.00503778 0.00251889 0.999997i \(-0.499198\pi\)
0.00251889 + 0.999997i \(0.499198\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 147.580 0.368031 0.184016 0.982923i \(-0.441090\pi\)
0.184016 + 0.982923i \(0.441090\pi\)
\(402\) 0 0
\(403\) − 426.028i − 1.05714i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 13.8564i − 0.0340452i
\(408\) 0 0
\(409\) 49.0000 0.119804 0.0599022 0.998204i \(-0.480921\pi\)
0.0599022 + 0.998204i \(0.480921\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −187.830 −0.454793
\(414\) 0 0
\(415\) 290.474i 0.699937i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 311.769i 0.744079i 0.928217 + 0.372040i \(0.121341\pi\)
−0.928217 + 0.372040i \(0.878659\pi\)
\(420\) 0 0
\(421\) 31.0000 0.0736342 0.0368171 0.999322i \(-0.488278\pi\)
0.0368171 + 0.999322i \(0.488278\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −33.5410 −0.0789200
\(426\) 0 0
\(427\) − 240.125i − 0.562354i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 460.726i − 1.06897i −0.845178 0.534484i \(-0.820506\pi\)
0.845178 0.534484i \(-0.179494\pi\)
\(432\) 0 0
\(433\) −142.000 −0.327945 −0.163972 0.986465i \(-0.552431\pi\)
−0.163972 + 0.986465i \(0.552431\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −798.276 −1.82672
\(438\) 0 0
\(439\) 73.5867i 0.167623i 0.996482 + 0.0838117i \(0.0267094\pi\)
−0.996482 + 0.0838117i \(0.973291\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 334.286i − 0.754595i −0.926092 0.377298i \(-0.876853\pi\)
0.926092 0.377298i \(-0.123147\pi\)
\(444\) 0 0
\(445\) −120.000 −0.269663
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 67.0820 0.149403 0.0747016 0.997206i \(-0.476200\pi\)
0.0747016 + 0.997206i \(0.476200\pi\)
\(450\) 0 0
\(451\) − 371.806i − 0.824404i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 381.051i 0.837475i
\(456\) 0 0
\(457\) 268.000 0.586433 0.293217 0.956046i \(-0.405274\pi\)
0.293217 + 0.956046i \(0.405274\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 630.571 1.36783 0.683917 0.729560i \(-0.260275\pi\)
0.683917 + 0.729560i \(0.260275\pi\)
\(462\) 0 0
\(463\) − 658.407i − 1.42205i −0.703169 0.711023i \(-0.748232\pi\)
0.703169 0.711023i \(-0.251768\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 687.624i − 1.47243i −0.676748 0.736214i \(-0.736612\pi\)
0.676748 0.736214i \(-0.263388\pi\)
\(468\) 0 0
\(469\) −180.000 −0.383795
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 107.331 0.226916
\(474\) 0 0
\(475\) 135.554i 0.285378i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 727.461i 1.51871i 0.650677 + 0.759354i \(0.274485\pi\)
−0.650677 + 0.759354i \(0.725515\pi\)
\(480\) 0 0
\(481\) 44.0000 0.0914761
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −71.5542 −0.147534
\(486\) 0 0
\(487\) − 464.758i − 0.954329i −0.878814 0.477164i \(-0.841665\pi\)
0.878814 0.477164i \(-0.158335\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 675.500i − 1.37576i −0.725823 0.687882i \(-0.758541\pi\)
0.725823 0.687882i \(-0.241459\pi\)
\(492\) 0 0
\(493\) 270.000 0.547667
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 858.650 1.72767
\(498\) 0 0
\(499\) − 143.300i − 0.287175i −0.989638 0.143588i \(-0.954136\pi\)
0.989638 0.143588i \(-0.0458639\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 285.788i 0.568168i 0.958799 + 0.284084i \(0.0916894\pi\)
−0.958799 + 0.284084i \(0.908311\pi\)
\(504\) 0 0
\(505\) −60.0000 −0.118812
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 187.830 0.369017 0.184509 0.982831i \(-0.440931\pi\)
0.184509 + 0.982831i \(0.440931\pi\)
\(510\) 0 0
\(511\) 588.693i 1.15204i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 450.333i 0.874433i
\(516\) 0 0
\(517\) −96.0000 −0.185687
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 131.681i 0.251781i 0.992044 + 0.125890i \(0.0401788\pi\)
−0.992044 + 0.125890i \(0.959821\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 129.904i 0.246497i
\(528\) 0 0
\(529\) −338.000 −0.638941
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1180.64 2.21509
\(534\) 0 0
\(535\) − 263.363i − 0.492267i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 76.2102i 0.141392i
\(540\) 0 0
\(541\) 826.000 1.52680 0.763401 0.645925i \(-0.223528\pi\)
0.763401 + 0.645925i \(0.223528\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −453.922 −0.832884
\(546\) 0 0
\(547\) − 449.266i − 0.821327i −0.911787 0.410664i \(-0.865297\pi\)
0.911787 0.410664i \(-0.134703\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 1091.19i − 1.98038i
\(552\) 0 0
\(553\) −150.000 −0.271248
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1006.23 −1.80652 −0.903259 0.429096i \(-0.858832\pi\)
−0.903259 + 0.429096i \(0.858832\pi\)
\(558\) 0 0
\(559\) 340.823i 0.609700i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 256.344i 0.455317i 0.973741 + 0.227659i \(0.0731070\pi\)
−0.973741 + 0.227659i \(0.926893\pi\)
\(564\) 0 0
\(565\) −390.000 −0.690265
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 496.407 0.872420 0.436210 0.899845i \(-0.356320\pi\)
0.436210 + 0.899845i \(0.356320\pi\)
\(570\) 0 0
\(571\) − 577.075i − 1.01064i −0.862933 0.505319i \(-0.831375\pi\)
0.862933 0.505319i \(-0.168625\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 147.224i 0.256042i
\(576\) 0 0
\(577\) 992.000 1.71924 0.859619 0.510936i \(-0.170701\pi\)
0.859619 + 0.510936i \(0.170701\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1006.23 −1.73189
\(582\) 0 0
\(583\) 46.4758i 0.0797184i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 441.673i − 0.752424i −0.926534 0.376212i \(-0.877226\pi\)
0.926534 0.376212i \(-0.122774\pi\)
\(588\) 0 0
\(589\) 525.000 0.891341
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −315.286 −0.531679 −0.265839 0.964017i \(-0.585649\pi\)
−0.265839 + 0.964017i \(0.585649\pi\)
\(594\) 0 0
\(595\) − 116.190i − 0.195276i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 779.423i 1.30121i 0.759418 + 0.650603i \(0.225484\pi\)
−0.759418 + 0.650603i \(0.774516\pi\)
\(600\) 0 0
\(601\) 869.000 1.44592 0.722962 0.690888i \(-0.242780\pi\)
0.722962 + 0.690888i \(0.242780\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 163.233 0.269807
\(606\) 0 0
\(607\) 1130.91i 1.86312i 0.363593 + 0.931558i \(0.381550\pi\)
−0.363593 + 0.931558i \(0.618450\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 304.841i − 0.498921i
\(612\) 0 0
\(613\) −592.000 −0.965742 −0.482871 0.875691i \(-0.660406\pi\)
−0.482871 + 0.875691i \(0.660406\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 154.289 0.250063 0.125031 0.992153i \(-0.460097\pi\)
0.125031 + 0.992153i \(0.460097\pi\)
\(618\) 0 0
\(619\) − 1192.88i − 1.92711i −0.267517 0.963553i \(-0.586203\pi\)
0.267517 0.963553i \(-0.413797\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 415.692i − 0.667243i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13.4164 −0.0213297
\(630\) 0 0
\(631\) − 987.611i − 1.56515i −0.622555 0.782576i \(-0.713905\pi\)
0.622555 0.782576i \(-0.286095\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 259.808i 0.409146i
\(636\) 0 0
\(637\) −242.000 −0.379906
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 160.997 0.251165 0.125583 0.992083i \(-0.459920\pi\)
0.125583 + 0.992083i \(0.459920\pi\)
\(642\) 0 0
\(643\) − 441.520i − 0.686656i −0.939215 0.343328i \(-0.888446\pi\)
0.939215 0.343328i \(-0.111554\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 247.683i − 0.382818i −0.981510 0.191409i \(-0.938694\pi\)
0.981510 0.191409i \(-0.0613057\pi\)
\(648\) 0 0
\(649\) 168.000 0.258860
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −784.860 −1.20193 −0.600965 0.799276i \(-0.705217\pi\)
−0.600965 + 0.799276i \(0.705217\pi\)
\(654\) 0 0
\(655\) − 131.681i − 0.201040i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 571.577i 0.867340i 0.901072 + 0.433670i \(0.142782\pi\)
−0.901072 + 0.433670i \(0.857218\pi\)
\(660\) 0 0
\(661\) −46.0000 −0.0695915 −0.0347958 0.999394i \(-0.511078\pi\)
−0.0347958 + 0.999394i \(0.511078\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −469.574 −0.706127
\(666\) 0 0
\(667\) − 1185.13i − 1.77681i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 214.774i 0.320081i
\(672\) 0 0
\(673\) 878.000 1.30461 0.652303 0.757958i \(-0.273803\pi\)
0.652303 + 0.757958i \(0.273803\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 603.738 0.891785 0.445892 0.895087i \(-0.352886\pi\)
0.445892 + 0.895087i \(0.352886\pi\)
\(678\) 0 0
\(679\) − 247.871i − 0.365053i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 1172.60i − 1.71684i −0.512952 0.858418i \(-0.671448\pi\)
0.512952 0.858418i \(-0.328552\pi\)
\(684\) 0 0
\(685\) 555.000 0.810219
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −147.580 −0.214195
\(690\) 0 0
\(691\) − 1080.56i − 1.56377i −0.623425 0.781883i \(-0.714259\pi\)
0.623425 0.781883i \(-0.285741\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 346.410i 0.498432i
\(696\) 0 0
\(697\) −360.000 −0.516499
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −952.565 −1.35887 −0.679433 0.733738i \(-0.737774\pi\)
−0.679433 + 0.733738i \(0.737774\pi\)
\(702\) 0 0
\(703\) 54.2218i 0.0771291i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 207.846i − 0.293983i
\(708\) 0 0
\(709\) −1346.00 −1.89845 −0.949224 0.314600i \(-0.898130\pi\)
−0.949224 + 0.314600i \(0.898130\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 570.197 0.799716
\(714\) 0 0
\(715\) − 340.823i − 0.476675i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1118.90i 1.55620i 0.628143 + 0.778098i \(0.283815\pi\)
−0.628143 + 0.778098i \(0.716185\pi\)
\(720\) 0 0
\(721\) −1560.00 −2.16366
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −201.246 −0.277581
\(726\) 0 0
\(727\) 340.823i 0.468807i 0.972139 + 0.234403i \(0.0753137\pi\)
−0.972139 + 0.234403i \(0.924686\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 103.923i − 0.142166i
\(732\) 0 0
\(733\) 472.000 0.643929 0.321965 0.946752i \(-0.395657\pi\)
0.321965 + 0.946752i \(0.395657\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 160.997 0.218449
\(738\) 0 0
\(739\) − 1359.42i − 1.83954i −0.392462 0.919768i \(-0.628377\pi\)
0.392462 0.919768i \(-0.371623\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 48.4974i − 0.0652724i −0.999467 0.0326362i \(-0.989610\pi\)
0.999467 0.0326362i \(-0.0103903\pi\)
\(744\) 0 0
\(745\) −360.000 −0.483221
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 912.316 1.21805
\(750\) 0 0
\(751\) − 27.1109i − 0.0360997i −0.999837 0.0180499i \(-0.994254\pi\)
0.999837 0.0180499i \(-0.00574576\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 554.256i 0.734114i
\(756\) 0 0
\(757\) −542.000 −0.715984 −0.357992 0.933725i \(-0.616539\pi\)
−0.357992 + 0.933725i \(0.616539\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 952.565 1.25173 0.625864 0.779932i \(-0.284747\pi\)
0.625864 + 0.779932i \(0.284747\pi\)
\(762\) 0 0
\(763\) − 1572.43i − 2.06085i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 533.472i 0.695530i
\(768\) 0 0
\(769\) −127.000 −0.165150 −0.0825748 0.996585i \(-0.526314\pi\)
−0.0825748 + 0.996585i \(0.526314\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 73.7902 0.0954596 0.0477298 0.998860i \(-0.484801\pi\)
0.0477298 + 0.998860i \(0.484801\pi\)
\(774\) 0 0
\(775\) − 96.8246i − 0.124935i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1454.92i 1.86768i
\(780\) 0 0
\(781\) −768.000 −0.983355
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 125.220 0.159516
\(786\) 0 0
\(787\) − 960.500i − 1.22046i −0.792225 0.610229i \(-0.791078\pi\)
0.792225 0.610229i \(-0.208922\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 1351.00i − 1.70796i
\(792\) 0 0
\(793\) −682.000 −0.860025
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 731.194 0.917433 0.458717 0.888583i \(-0.348309\pi\)
0.458717 + 0.888583i \(0.348309\pi\)
\(798\) 0 0
\(799\) 92.9516i 0.116335i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 526.543i − 0.655720i
\(804\) 0 0
\(805\) −510.000 −0.633540
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1234.31 −1.52572 −0.762861 0.646562i \(-0.776206\pi\)
−0.762861 + 0.646562i \(0.776206\pi\)
\(810\) 0 0
\(811\) − 247.871i − 0.305636i −0.988254 0.152818i \(-0.951165\pi\)
0.988254 0.152818i \(-0.0488349\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 259.808i − 0.318782i
\(816\) 0 0
\(817\) −420.000 −0.514076
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −576.906 −0.702686 −0.351343 0.936247i \(-0.614275\pi\)
−0.351343 + 0.936247i \(0.614275\pi\)
\(822\) 0 0
\(823\) − 139.427i − 0.169414i −0.996406 0.0847068i \(-0.973005\pi\)
0.996406 0.0847068i \(-0.0269954\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 715.337i 0.864978i 0.901639 + 0.432489i \(0.142365\pi\)
−0.901639 + 0.432489i \(0.857635\pi\)
\(828\) 0 0
\(829\) 34.0000 0.0410133 0.0205066 0.999790i \(-0.493472\pi\)
0.0205066 + 0.999790i \(0.493472\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 73.7902 0.0885837
\(834\) 0 0
\(835\) 375.679i 0.449915i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 651.251i 0.776223i 0.921612 + 0.388112i \(0.126872\pi\)
−0.921612 + 0.388112i \(0.873128\pi\)
\(840\) 0 0
\(841\) 779.000 0.926278
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 704.361 0.833564
\(846\) 0 0
\(847\) 565.456i 0.667598i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 58.8897i 0.0692006i
\(852\) 0 0
\(853\) 1028.00 1.20516 0.602579 0.798059i \(-0.294140\pi\)
0.602579 + 0.798059i \(0.294140\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −677.529 −0.790582 −0.395291 0.918556i \(-0.629356\pi\)
−0.395291 + 0.918556i \(0.629356\pi\)
\(858\) 0 0
\(859\) 143.300i 0.166822i 0.996515 + 0.0834112i \(0.0265815\pi\)
−0.996515 + 0.0834112i \(0.973419\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 1688.75i − 1.95684i −0.206635 0.978418i \(-0.566251\pi\)
0.206635 0.978418i \(-0.433749\pi\)
\(864\) 0 0
\(865\) 495.000 0.572254
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 134.164 0.154389
\(870\) 0 0
\(871\) 511.234i 0.586950i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 86.6025i 0.0989743i
\(876\) 0 0
\(877\) −568.000 −0.647662 −0.323831 0.946115i \(-0.604971\pi\)
−0.323831 + 0.946115i \(0.604971\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −281.745 −0.319801 −0.159900 0.987133i \(-0.551117\pi\)
−0.159900 + 0.987133i \(0.551117\pi\)
\(882\) 0 0
\(883\) − 642.915i − 0.728103i −0.931379 0.364052i \(-0.881393\pi\)
0.931379 0.364052i \(-0.118607\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1155.28i − 1.30246i −0.758882 0.651228i \(-0.774254\pi\)
0.758882 0.651228i \(-0.225746\pi\)
\(888\) 0 0
\(889\) −900.000 −1.01237
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 375.659 0.420671
\(894\) 0 0
\(895\) 635.169i 0.709686i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 779.423i 0.866989i
\(900\) 0 0
\(901\) 45.0000 0.0499445
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 404.728 0.447214
\(906\) 0 0
\(907\) − 666.153i − 0.734458i −0.930131 0.367229i \(-0.880307\pi\)
0.930131 0.367229i \(-0.119693\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1617.74i 1.77578i 0.460056 + 0.887890i \(0.347829\pi\)
−0.460056 + 0.887890i \(0.652171\pi\)
\(912\) 0 0
\(913\) 900.000 0.985761
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 456.158 0.497446
\(918\) 0 0
\(919\) 588.693i 0.640580i 0.947319 + 0.320290i \(0.103780\pi\)
−0.947319 + 0.320290i \(0.896220\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 2438.73i − 2.64218i
\(924\) 0 0
\(925\) 10.0000 0.0108108
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −643.988 −0.693205 −0.346603 0.938012i \(-0.612665\pi\)
−0.346603 + 0.938012i \(0.612665\pi\)
\(930\) 0 0
\(931\) − 298.220i − 0.320322i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 103.923i 0.111148i
\(936\) 0 0
\(937\) 1712.00 1.82711 0.913554 0.406718i \(-0.133327\pi\)
0.913554 + 0.406718i \(0.133327\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 630.571 0.670108 0.335054 0.942199i \(-0.391246\pi\)
0.335054 + 0.942199i \(0.391246\pi\)
\(942\) 0 0
\(943\) 1580.18i 1.67569i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 857.365i 0.905349i 0.891676 + 0.452674i \(0.149530\pi\)
−0.891676 + 0.452674i \(0.850470\pi\)
\(948\) 0 0
\(949\) 1672.00 1.76185
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1838.05 −1.92870 −0.964348 0.264636i \(-0.914748\pi\)
−0.964348 + 0.264636i \(0.914748\pi\)
\(954\) 0 0
\(955\) 116.190i 0.121664i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1922.58i 2.00477i
\(960\) 0 0
\(961\) 586.000 0.609781
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 165.469 0.171470
\(966\) 0 0
\(967\) − 1386.53i − 1.43384i −0.697153 0.716922i \(-0.745550\pi\)
0.697153 0.716922i \(-0.254450\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1811.73i 1.86583i 0.360091 + 0.932917i \(0.382746\pi\)
−0.360091 + 0.932917i \(0.617254\pi\)
\(972\) 0 0
\(973\) −1200.00 −1.23330
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 764.735 0.782738 0.391369 0.920234i \(-0.372002\pi\)
0.391369 + 0.920234i \(0.372002\pi\)
\(978\) 0 0
\(979\) 371.806i 0.379782i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1120.64i − 1.14002i −0.821639 0.570009i \(-0.806940\pi\)
0.821639 0.570009i \(-0.193060\pi\)
\(984\) 0 0
\(985\) 495.000 0.502538
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −456.158 −0.461231
\(990\) 0 0
\(991\) 1738.97i 1.75476i 0.479794 + 0.877381i \(0.340711\pi\)
−0.479794 + 0.877381i \(0.659289\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 415.692i 0.417781i
\(996\) 0 0
\(997\) 632.000 0.633902 0.316951 0.948442i \(-0.397341\pi\)
0.316951 + 0.948442i \(0.397341\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.3.e.b.271.4 yes 4
3.2 odd 2 inner 2160.3.e.b.271.2 yes 4
4.3 odd 2 inner 2160.3.e.b.271.3 yes 4
12.11 even 2 inner 2160.3.e.b.271.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2160.3.e.b.271.1 4 12.11 even 2 inner
2160.3.e.b.271.2 yes 4 3.2 odd 2 inner
2160.3.e.b.271.3 yes 4 4.3 odd 2 inner
2160.3.e.b.271.4 yes 4 1.1 even 1 trivial