Properties

Label 2160.3.e.b.271.2
Level $2160$
Weight $3$
Character 2160.271
Analytic conductor $58.856$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,3,Mod(271,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.271");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 271.2
Root \(0.809017 + 1.40126i\) of defining polynomial
Character \(\chi\) \(=\) 2160.271
Dual form 2160.3.e.b.271.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607 q^{5} +7.74597i q^{7} +O(q^{10})\) \(q-2.23607 q^{5} +7.74597i q^{7} +6.92820i q^{11} +22.0000 q^{13} +6.70820 q^{17} +27.1109i q^{19} -29.4449i q^{23} +5.00000 q^{25} +40.2492 q^{29} -19.3649i q^{31} -17.3205i q^{35} +2.00000 q^{37} -53.6656 q^{41} +15.4919i q^{43} +13.8564i q^{47} -11.0000 q^{49} +6.70820 q^{53} -15.4919i q^{55} -24.2487i q^{59} -31.0000 q^{61} -49.1935 q^{65} +23.2379i q^{67} +110.851i q^{71} +76.0000 q^{73} -53.6656 q^{77} +19.3649i q^{79} -129.904i q^{83} -15.0000 q^{85} +53.6656 q^{89} +170.411i q^{91} -60.6218i q^{95} -32.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 88 q^{13} + 20 q^{25} + 8 q^{37} - 44 q^{49} - 124 q^{61} + 304 q^{73} - 60 q^{85} - 128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.23607 −0.447214
\(6\) 0 0
\(7\) 7.74597i 1.10657i 0.832993 + 0.553283i \(0.186625\pi\)
−0.832993 + 0.553283i \(0.813375\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.92820i 0.629837i 0.949119 + 0.314918i \(0.101977\pi\)
−0.949119 + 0.314918i \(0.898023\pi\)
\(12\) 0 0
\(13\) 22.0000 1.69231 0.846154 0.532939i \(-0.178912\pi\)
0.846154 + 0.532939i \(0.178912\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.70820 0.394600 0.197300 0.980343i \(-0.436783\pi\)
0.197300 + 0.980343i \(0.436783\pi\)
\(18\) 0 0
\(19\) 27.1109i 1.42689i 0.700712 + 0.713444i \(0.252866\pi\)
−0.700712 + 0.713444i \(0.747134\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 29.4449i − 1.28021i −0.768287 0.640106i \(-0.778891\pi\)
0.768287 0.640106i \(-0.221109\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 40.2492 1.38790 0.693952 0.720021i \(-0.255868\pi\)
0.693952 + 0.720021i \(0.255868\pi\)
\(30\) 0 0
\(31\) − 19.3649i − 0.624675i −0.949971 0.312337i \(-0.898888\pi\)
0.949971 0.312337i \(-0.101112\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 17.3205i − 0.494872i
\(36\) 0 0
\(37\) 2.00000 0.0540541 0.0270270 0.999635i \(-0.491396\pi\)
0.0270270 + 0.999635i \(0.491396\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −53.6656 −1.30892 −0.654459 0.756098i \(-0.727104\pi\)
−0.654459 + 0.756098i \(0.727104\pi\)
\(42\) 0 0
\(43\) 15.4919i 0.360278i 0.983641 + 0.180139i \(0.0576547\pi\)
−0.983641 + 0.180139i \(0.942345\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 13.8564i 0.294817i 0.989076 + 0.147409i \(0.0470932\pi\)
−0.989076 + 0.147409i \(0.952907\pi\)
\(48\) 0 0
\(49\) −11.0000 −0.224490
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.70820 0.126570 0.0632849 0.997995i \(-0.479842\pi\)
0.0632849 + 0.997995i \(0.479842\pi\)
\(54\) 0 0
\(55\) − 15.4919i − 0.281672i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 24.2487i − 0.410995i −0.978658 0.205498i \(-0.934119\pi\)
0.978658 0.205498i \(-0.0658813\pi\)
\(60\) 0 0
\(61\) −31.0000 −0.508197 −0.254098 0.967178i \(-0.581779\pi\)
−0.254098 + 0.967178i \(0.581779\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −49.1935 −0.756823
\(66\) 0 0
\(67\) 23.2379i 0.346834i 0.984848 + 0.173417i \(0.0554809\pi\)
−0.984848 + 0.173417i \(0.944519\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 110.851i 1.56129i 0.624978 + 0.780643i \(0.285108\pi\)
−0.624978 + 0.780643i \(0.714892\pi\)
\(72\) 0 0
\(73\) 76.0000 1.04110 0.520548 0.853832i \(-0.325728\pi\)
0.520548 + 0.853832i \(0.325728\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −53.6656 −0.696956
\(78\) 0 0
\(79\) 19.3649i 0.245126i 0.992461 + 0.122563i \(0.0391113\pi\)
−0.992461 + 0.122563i \(0.960889\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 129.904i − 1.56511i −0.622584 0.782553i \(-0.713917\pi\)
0.622584 0.782553i \(-0.286083\pi\)
\(84\) 0 0
\(85\) −15.0000 −0.176471
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 53.6656 0.602985 0.301492 0.953469i \(-0.402515\pi\)
0.301492 + 0.953469i \(0.402515\pi\)
\(90\) 0 0
\(91\) 170.411i 1.87265i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 60.6218i − 0.638124i
\(96\) 0 0
\(97\) −32.0000 −0.329897 −0.164948 0.986302i \(-0.552746\pi\)
−0.164948 + 0.986302i \(0.552746\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 26.8328 0.265671 0.132836 0.991138i \(-0.457592\pi\)
0.132836 + 0.991138i \(0.457592\pi\)
\(102\) 0 0
\(103\) 201.395i 1.95529i 0.210256 + 0.977646i \(0.432570\pi\)
−0.210256 + 0.977646i \(0.567430\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 117.779i 1.10074i 0.834920 + 0.550371i \(0.185514\pi\)
−0.834920 + 0.550371i \(0.814486\pi\)
\(108\) 0 0
\(109\) −203.000 −1.86239 −0.931193 0.364527i \(-0.881231\pi\)
−0.931193 + 0.364527i \(0.881231\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 174.413 1.54348 0.771740 0.635938i \(-0.219387\pi\)
0.771740 + 0.635938i \(0.219387\pi\)
\(114\) 0 0
\(115\) 65.8407i 0.572528i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 51.9615i 0.436651i
\(120\) 0 0
\(121\) 73.0000 0.603306
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.1803 −0.0894427
\(126\) 0 0
\(127\) 116.190i 0.914878i 0.889241 + 0.457439i \(0.151233\pi\)
−0.889241 + 0.457439i \(0.848767\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 58.8897i 0.449540i 0.974412 + 0.224770i \(0.0721631\pi\)
−0.974412 + 0.224770i \(0.927837\pi\)
\(132\) 0 0
\(133\) −210.000 −1.57895
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −248.204 −1.81170 −0.905852 0.423594i \(-0.860768\pi\)
−0.905852 + 0.423594i \(0.860768\pi\)
\(138\) 0 0
\(139\) 154.919i 1.11453i 0.830336 + 0.557264i \(0.188149\pi\)
−0.830336 + 0.557264i \(0.811851\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 152.420i 1.06588i
\(144\) 0 0
\(145\) −90.0000 −0.620690
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 160.997 1.08052 0.540258 0.841499i \(-0.318327\pi\)
0.540258 + 0.841499i \(0.318327\pi\)
\(150\) 0 0
\(151\) 247.871i 1.64153i 0.571266 + 0.820765i \(0.306452\pi\)
−0.571266 + 0.820765i \(0.693548\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 43.3013i 0.279363i
\(156\) 0 0
\(157\) 56.0000 0.356688 0.178344 0.983968i \(-0.442926\pi\)
0.178344 + 0.983968i \(0.442926\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 228.079 1.41664
\(162\) 0 0
\(163\) − 116.190i − 0.712819i −0.934330 0.356410i \(-0.884001\pi\)
0.934330 0.356410i \(-0.115999\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 168.009i − 1.00604i −0.864274 0.503021i \(-0.832222\pi\)
0.864274 0.503021i \(-0.167778\pi\)
\(168\) 0 0
\(169\) 315.000 1.86391
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −221.371 −1.27960 −0.639800 0.768542i \(-0.720983\pi\)
−0.639800 + 0.768542i \(0.720983\pi\)
\(174\) 0 0
\(175\) 38.7298i 0.221313i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 284.056i − 1.58691i −0.608631 0.793453i \(-0.708281\pi\)
0.608631 0.793453i \(-0.291719\pi\)
\(180\) 0 0
\(181\) 181.000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.47214 −0.0241737
\(186\) 0 0
\(187\) 46.4758i 0.248534i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 51.9615i − 0.272050i −0.990705 0.136025i \(-0.956567\pi\)
0.990705 0.136025i \(-0.0434327\pi\)
\(192\) 0 0
\(193\) 74.0000 0.383420 0.191710 0.981452i \(-0.438597\pi\)
0.191710 + 0.981452i \(0.438597\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −221.371 −1.12371 −0.561855 0.827236i \(-0.689912\pi\)
−0.561855 + 0.827236i \(0.689912\pi\)
\(198\) 0 0
\(199\) 185.903i 0.934187i 0.884208 + 0.467093i \(0.154699\pi\)
−0.884208 + 0.467093i \(0.845301\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 311.769i 1.53581i
\(204\) 0 0
\(205\) 120.000 0.585366
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −187.830 −0.898707
\(210\) 0 0
\(211\) − 290.474i − 1.37665i −0.725401 0.688326i \(-0.758346\pi\)
0.725401 0.688326i \(-0.241654\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 34.6410i − 0.161121i
\(216\) 0 0
\(217\) 150.000 0.691244
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 147.580 0.667785
\(222\) 0 0
\(223\) 271.109i 1.21573i 0.794039 + 0.607867i \(0.207975\pi\)
−0.794039 + 0.607867i \(0.792025\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 168.009i 0.740127i 0.929006 + 0.370064i \(0.120664\pi\)
−0.929006 + 0.370064i \(0.879336\pi\)
\(228\) 0 0
\(229\) 19.0000 0.0829694 0.0414847 0.999139i \(-0.486791\pi\)
0.0414847 + 0.999139i \(0.486791\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 281.745 1.20920 0.604602 0.796528i \(-0.293332\pi\)
0.604602 + 0.796528i \(0.293332\pi\)
\(234\) 0 0
\(235\) − 30.9839i − 0.131846i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.2487i 0.101459i 0.998712 + 0.0507295i \(0.0161546\pi\)
−0.998712 + 0.0507295i \(0.983845\pi\)
\(240\) 0 0
\(241\) −209.000 −0.867220 −0.433610 0.901101i \(-0.642760\pi\)
−0.433610 + 0.901101i \(0.642760\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 24.5967 0.100395
\(246\) 0 0
\(247\) 596.439i 2.41473i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 304.841i − 1.21451i −0.794509 0.607253i \(-0.792271\pi\)
0.794509 0.607253i \(-0.207729\pi\)
\(252\) 0 0
\(253\) 204.000 0.806324
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −33.5410 −0.130510 −0.0652549 0.997869i \(-0.520786\pi\)
−0.0652549 + 0.997869i \(0.520786\pi\)
\(258\) 0 0
\(259\) 15.4919i 0.0598144i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 464.190i 1.76498i 0.470332 + 0.882490i \(0.344134\pi\)
−0.470332 + 0.882490i \(0.655866\pi\)
\(264\) 0 0
\(265\) −15.0000 −0.0566038
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 362.243 1.34663 0.673314 0.739357i \(-0.264870\pi\)
0.673314 + 0.739357i \(0.264870\pi\)
\(270\) 0 0
\(271\) 274.982i 1.01469i 0.861742 + 0.507347i \(0.169374\pi\)
−0.861742 + 0.507347i \(0.830626\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 34.6410i 0.125967i
\(276\) 0 0
\(277\) −116.000 −0.418773 −0.209386 0.977833i \(-0.567147\pi\)
−0.209386 + 0.977833i \(0.567147\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −469.574 −1.67108 −0.835541 0.549427i \(-0.814846\pi\)
−0.835541 + 0.549427i \(0.814846\pi\)
\(282\) 0 0
\(283\) 216.887i 0.766385i 0.923668 + 0.383193i \(0.125175\pi\)
−0.923668 + 0.383193i \(0.874825\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 415.692i − 1.44840i
\(288\) 0 0
\(289\) −244.000 −0.844291
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −328.702 −1.12185 −0.560925 0.827867i \(-0.689554\pi\)
−0.560925 + 0.827867i \(0.689554\pi\)
\(294\) 0 0
\(295\) 54.2218i 0.183803i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 647.787i − 2.16651i
\(300\) 0 0
\(301\) −120.000 −0.398671
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 69.3181 0.227272
\(306\) 0 0
\(307\) 147.173i 0.479392i 0.970848 + 0.239696i \(0.0770478\pi\)
−0.970848 + 0.239696i \(0.922952\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 45.0333i − 0.144802i −0.997376 0.0724008i \(-0.976934\pi\)
0.997376 0.0724008i \(-0.0230661\pi\)
\(312\) 0 0
\(313\) −256.000 −0.817891 −0.408946 0.912559i \(-0.634103\pi\)
−0.408946 + 0.912559i \(0.634103\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 140.872 0.444392 0.222196 0.975002i \(-0.428678\pi\)
0.222196 + 0.975002i \(0.428678\pi\)
\(318\) 0 0
\(319\) 278.855i 0.874153i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 181.865i 0.563051i
\(324\) 0 0
\(325\) 110.000 0.338462
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −107.331 −0.326235
\(330\) 0 0
\(331\) 340.823i 1.02968i 0.857288 + 0.514838i \(0.172148\pi\)
−0.857288 + 0.514838i \(0.827852\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 51.9615i − 0.155109i
\(336\) 0 0
\(337\) −386.000 −1.14540 −0.572700 0.819765i \(-0.694104\pi\)
−0.572700 + 0.819765i \(0.694104\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 134.164 0.393443
\(342\) 0 0
\(343\) 294.347i 0.858154i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 103.923i 0.299490i 0.988725 + 0.149745i \(0.0478453\pi\)
−0.988725 + 0.149745i \(0.952155\pi\)
\(348\) 0 0
\(349\) 413.000 1.18338 0.591691 0.806165i \(-0.298461\pi\)
0.591691 + 0.806165i \(0.298461\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 147.580 0.418075 0.209038 0.977908i \(-0.432967\pi\)
0.209038 + 0.977908i \(0.432967\pi\)
\(354\) 0 0
\(355\) − 247.871i − 0.698228i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 183.597i − 0.511413i −0.966754 0.255707i \(-0.917692\pi\)
0.966754 0.255707i \(-0.0823081\pi\)
\(360\) 0 0
\(361\) −374.000 −1.03601
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −169.941 −0.465592
\(366\) 0 0
\(367\) − 580.948i − 1.58296i −0.611193 0.791482i \(-0.709310\pi\)
0.611193 0.791482i \(-0.290690\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 51.9615i 0.140058i
\(372\) 0 0
\(373\) −16.0000 −0.0428954 −0.0214477 0.999770i \(-0.506828\pi\)
−0.0214477 + 0.999770i \(0.506828\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 885.483 2.34876
\(378\) 0 0
\(379\) − 383.425i − 1.01168i −0.862628 0.505838i \(-0.831183\pi\)
0.862628 0.505838i \(-0.168817\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 497.099i 1.29791i 0.760828 + 0.648954i \(0.224793\pi\)
−0.760828 + 0.648954i \(0.775207\pi\)
\(384\) 0 0
\(385\) 120.000 0.311688
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −563.489 −1.44856 −0.724279 0.689507i \(-0.757827\pi\)
−0.724279 + 0.689507i \(0.757827\pi\)
\(390\) 0 0
\(391\) − 197.522i − 0.505172i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 43.3013i − 0.109623i
\(396\) 0 0
\(397\) 2.00000 0.00503778 0.00251889 0.999997i \(-0.499198\pi\)
0.00251889 + 0.999997i \(0.499198\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −147.580 −0.368031 −0.184016 0.982923i \(-0.558910\pi\)
−0.184016 + 0.982923i \(0.558910\pi\)
\(402\) 0 0
\(403\) − 426.028i − 1.05714i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13.8564i 0.0340452i
\(408\) 0 0
\(409\) 49.0000 0.119804 0.0599022 0.998204i \(-0.480921\pi\)
0.0599022 + 0.998204i \(0.480921\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 187.830 0.454793
\(414\) 0 0
\(415\) 290.474i 0.699937i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 311.769i − 0.744079i −0.928217 0.372040i \(-0.878659\pi\)
0.928217 0.372040i \(-0.121341\pi\)
\(420\) 0 0
\(421\) 31.0000 0.0736342 0.0368171 0.999322i \(-0.488278\pi\)
0.0368171 + 0.999322i \(0.488278\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 33.5410 0.0789200
\(426\) 0 0
\(427\) − 240.125i − 0.562354i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 460.726i 1.06897i 0.845178 + 0.534484i \(0.179494\pi\)
−0.845178 + 0.534484i \(0.820506\pi\)
\(432\) 0 0
\(433\) −142.000 −0.327945 −0.163972 0.986465i \(-0.552431\pi\)
−0.163972 + 0.986465i \(0.552431\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 798.276 1.82672
\(438\) 0 0
\(439\) 73.5867i 0.167623i 0.996482 + 0.0838117i \(0.0267094\pi\)
−0.996482 + 0.0838117i \(0.973291\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 334.286i 0.754595i 0.926092 + 0.377298i \(0.123147\pi\)
−0.926092 + 0.377298i \(0.876853\pi\)
\(444\) 0 0
\(445\) −120.000 −0.269663
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −67.0820 −0.149403 −0.0747016 0.997206i \(-0.523800\pi\)
−0.0747016 + 0.997206i \(0.523800\pi\)
\(450\) 0 0
\(451\) − 371.806i − 0.824404i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 381.051i − 0.837475i
\(456\) 0 0
\(457\) 268.000 0.586433 0.293217 0.956046i \(-0.405274\pi\)
0.293217 + 0.956046i \(0.405274\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −630.571 −1.36783 −0.683917 0.729560i \(-0.739725\pi\)
−0.683917 + 0.729560i \(0.739725\pi\)
\(462\) 0 0
\(463\) − 658.407i − 1.42205i −0.703169 0.711023i \(-0.748232\pi\)
0.703169 0.711023i \(-0.251768\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 687.624i 1.47243i 0.676748 + 0.736214i \(0.263388\pi\)
−0.676748 + 0.736214i \(0.736612\pi\)
\(468\) 0 0
\(469\) −180.000 −0.383795
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −107.331 −0.226916
\(474\) 0 0
\(475\) 135.554i 0.285378i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 727.461i − 1.51871i −0.650677 0.759354i \(-0.725515\pi\)
0.650677 0.759354i \(-0.274485\pi\)
\(480\) 0 0
\(481\) 44.0000 0.0914761
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 71.5542 0.147534
\(486\) 0 0
\(487\) − 464.758i − 0.954329i −0.878814 0.477164i \(-0.841665\pi\)
0.878814 0.477164i \(-0.158335\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 675.500i 1.37576i 0.725823 + 0.687882i \(0.241459\pi\)
−0.725823 + 0.687882i \(0.758541\pi\)
\(492\) 0 0
\(493\) 270.000 0.547667
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −858.650 −1.72767
\(498\) 0 0
\(499\) − 143.300i − 0.287175i −0.989638 0.143588i \(-0.954136\pi\)
0.989638 0.143588i \(-0.0458639\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 285.788i − 0.568168i −0.958799 0.284084i \(-0.908311\pi\)
0.958799 0.284084i \(-0.0916894\pi\)
\(504\) 0 0
\(505\) −60.0000 −0.118812
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −187.830 −0.369017 −0.184509 0.982831i \(-0.559069\pi\)
−0.184509 + 0.982831i \(0.559069\pi\)
\(510\) 0 0
\(511\) 588.693i 1.15204i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 450.333i − 0.874433i
\(516\) 0 0
\(517\) −96.0000 −0.185687
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 131.681i 0.251781i 0.992044 + 0.125890i \(0.0401788\pi\)
−0.992044 + 0.125890i \(0.959821\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 129.904i − 0.246497i
\(528\) 0 0
\(529\) −338.000 −0.638941
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1180.64 −2.21509
\(534\) 0 0
\(535\) − 263.363i − 0.492267i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 76.2102i − 0.141392i
\(540\) 0 0
\(541\) 826.000 1.52680 0.763401 0.645925i \(-0.223528\pi\)
0.763401 + 0.645925i \(0.223528\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 453.922 0.832884
\(546\) 0 0
\(547\) − 449.266i − 0.821327i −0.911787 0.410664i \(-0.865297\pi\)
0.911787 0.410664i \(-0.134703\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1091.19i 1.98038i
\(552\) 0 0
\(553\) −150.000 −0.271248
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1006.23 1.80652 0.903259 0.429096i \(-0.141168\pi\)
0.903259 + 0.429096i \(0.141168\pi\)
\(558\) 0 0
\(559\) 340.823i 0.609700i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 256.344i − 0.455317i −0.973741 0.227659i \(-0.926893\pi\)
0.973741 0.227659i \(-0.0731070\pi\)
\(564\) 0 0
\(565\) −390.000 −0.690265
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −496.407 −0.872420 −0.436210 0.899845i \(-0.643680\pi\)
−0.436210 + 0.899845i \(0.643680\pi\)
\(570\) 0 0
\(571\) − 577.075i − 1.01064i −0.862933 0.505319i \(-0.831375\pi\)
0.862933 0.505319i \(-0.168625\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 147.224i − 0.256042i
\(576\) 0 0
\(577\) 992.000 1.71924 0.859619 0.510936i \(-0.170701\pi\)
0.859619 + 0.510936i \(0.170701\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1006.23 1.73189
\(582\) 0 0
\(583\) 46.4758i 0.0797184i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 441.673i 0.752424i 0.926534 + 0.376212i \(0.122774\pi\)
−0.926534 + 0.376212i \(0.877226\pi\)
\(588\) 0 0
\(589\) 525.000 0.891341
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 315.286 0.531679 0.265839 0.964017i \(-0.414351\pi\)
0.265839 + 0.964017i \(0.414351\pi\)
\(594\) 0 0
\(595\) − 116.190i − 0.195276i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 779.423i − 1.30121i −0.759418 0.650603i \(-0.774516\pi\)
0.759418 0.650603i \(-0.225484\pi\)
\(600\) 0 0
\(601\) 869.000 1.44592 0.722962 0.690888i \(-0.242780\pi\)
0.722962 + 0.690888i \(0.242780\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −163.233 −0.269807
\(606\) 0 0
\(607\) 1130.91i 1.86312i 0.363593 + 0.931558i \(0.381550\pi\)
−0.363593 + 0.931558i \(0.618450\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 304.841i 0.498921i
\(612\) 0 0
\(613\) −592.000 −0.965742 −0.482871 0.875691i \(-0.660406\pi\)
−0.482871 + 0.875691i \(0.660406\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −154.289 −0.250063 −0.125031 0.992153i \(-0.539903\pi\)
−0.125031 + 0.992153i \(0.539903\pi\)
\(618\) 0 0
\(619\) − 1192.88i − 1.92711i −0.267517 0.963553i \(-0.586203\pi\)
0.267517 0.963553i \(-0.413797\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 415.692i 0.667243i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13.4164 0.0213297
\(630\) 0 0
\(631\) − 987.611i − 1.56515i −0.622555 0.782576i \(-0.713905\pi\)
0.622555 0.782576i \(-0.286095\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 259.808i − 0.409146i
\(636\) 0 0
\(637\) −242.000 −0.379906
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −160.997 −0.251165 −0.125583 0.992083i \(-0.540080\pi\)
−0.125583 + 0.992083i \(0.540080\pi\)
\(642\) 0 0
\(643\) − 441.520i − 0.686656i −0.939215 0.343328i \(-0.888446\pi\)
0.939215 0.343328i \(-0.111554\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 247.683i 0.382818i 0.981510 + 0.191409i \(0.0613057\pi\)
−0.981510 + 0.191409i \(0.938694\pi\)
\(648\) 0 0
\(649\) 168.000 0.258860
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 784.860 1.20193 0.600965 0.799276i \(-0.294783\pi\)
0.600965 + 0.799276i \(0.294783\pi\)
\(654\) 0 0
\(655\) − 131.681i − 0.201040i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 571.577i − 0.867340i −0.901072 0.433670i \(-0.857218\pi\)
0.901072 0.433670i \(-0.142782\pi\)
\(660\) 0 0
\(661\) −46.0000 −0.0695915 −0.0347958 0.999394i \(-0.511078\pi\)
−0.0347958 + 0.999394i \(0.511078\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 469.574 0.706127
\(666\) 0 0
\(667\) − 1185.13i − 1.77681i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 214.774i − 0.320081i
\(672\) 0 0
\(673\) 878.000 1.30461 0.652303 0.757958i \(-0.273803\pi\)
0.652303 + 0.757958i \(0.273803\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −603.738 −0.891785 −0.445892 0.895087i \(-0.647114\pi\)
−0.445892 + 0.895087i \(0.647114\pi\)
\(678\) 0 0
\(679\) − 247.871i − 0.365053i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1172.60i 1.71684i 0.512952 + 0.858418i \(0.328552\pi\)
−0.512952 + 0.858418i \(0.671448\pi\)
\(684\) 0 0
\(685\) 555.000 0.810219
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 147.580 0.214195
\(690\) 0 0
\(691\) − 1080.56i − 1.56377i −0.623425 0.781883i \(-0.714259\pi\)
0.623425 0.781883i \(-0.285741\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 346.410i − 0.498432i
\(696\) 0 0
\(697\) −360.000 −0.516499
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 952.565 1.35887 0.679433 0.733738i \(-0.262226\pi\)
0.679433 + 0.733738i \(0.262226\pi\)
\(702\) 0 0
\(703\) 54.2218i 0.0771291i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 207.846i 0.293983i
\(708\) 0 0
\(709\) −1346.00 −1.89845 −0.949224 0.314600i \(-0.898130\pi\)
−0.949224 + 0.314600i \(0.898130\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −570.197 −0.799716
\(714\) 0 0
\(715\) − 340.823i − 0.476675i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 1118.90i − 1.55620i −0.628143 0.778098i \(-0.716185\pi\)
0.628143 0.778098i \(-0.283815\pi\)
\(720\) 0 0
\(721\) −1560.00 −2.16366
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 201.246 0.277581
\(726\) 0 0
\(727\) 340.823i 0.468807i 0.972139 + 0.234403i \(0.0753137\pi\)
−0.972139 + 0.234403i \(0.924686\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 103.923i 0.142166i
\(732\) 0 0
\(733\) 472.000 0.643929 0.321965 0.946752i \(-0.395657\pi\)
0.321965 + 0.946752i \(0.395657\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −160.997 −0.218449
\(738\) 0 0
\(739\) − 1359.42i − 1.83954i −0.392462 0.919768i \(-0.628377\pi\)
0.392462 0.919768i \(-0.371623\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 48.4974i 0.0652724i 0.999467 + 0.0326362i \(0.0103903\pi\)
−0.999467 + 0.0326362i \(0.989610\pi\)
\(744\) 0 0
\(745\) −360.000 −0.483221
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −912.316 −1.21805
\(750\) 0 0
\(751\) − 27.1109i − 0.0360997i −0.999837 0.0180499i \(-0.994254\pi\)
0.999837 0.0180499i \(-0.00574576\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 554.256i − 0.734114i
\(756\) 0 0
\(757\) −542.000 −0.715984 −0.357992 0.933725i \(-0.616539\pi\)
−0.357992 + 0.933725i \(0.616539\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −952.565 −1.25173 −0.625864 0.779932i \(-0.715253\pi\)
−0.625864 + 0.779932i \(0.715253\pi\)
\(762\) 0 0
\(763\) − 1572.43i − 2.06085i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 533.472i − 0.695530i
\(768\) 0 0
\(769\) −127.000 −0.165150 −0.0825748 0.996585i \(-0.526314\pi\)
−0.0825748 + 0.996585i \(0.526314\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −73.7902 −0.0954596 −0.0477298 0.998860i \(-0.515199\pi\)
−0.0477298 + 0.998860i \(0.515199\pi\)
\(774\) 0 0
\(775\) − 96.8246i − 0.124935i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 1454.92i − 1.86768i
\(780\) 0 0
\(781\) −768.000 −0.983355
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −125.220 −0.159516
\(786\) 0 0
\(787\) − 960.500i − 1.22046i −0.792225 0.610229i \(-0.791078\pi\)
0.792225 0.610229i \(-0.208922\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1351.00i 1.70796i
\(792\) 0 0
\(793\) −682.000 −0.860025
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −731.194 −0.917433 −0.458717 0.888583i \(-0.651691\pi\)
−0.458717 + 0.888583i \(0.651691\pi\)
\(798\) 0 0
\(799\) 92.9516i 0.116335i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 526.543i 0.655720i
\(804\) 0 0
\(805\) −510.000 −0.633540
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1234.31 1.52572 0.762861 0.646562i \(-0.223794\pi\)
0.762861 + 0.646562i \(0.223794\pi\)
\(810\) 0 0
\(811\) − 247.871i − 0.305636i −0.988254 0.152818i \(-0.951165\pi\)
0.988254 0.152818i \(-0.0488349\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 259.808i 0.318782i
\(816\) 0 0
\(817\) −420.000 −0.514076
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 576.906 0.702686 0.351343 0.936247i \(-0.385725\pi\)
0.351343 + 0.936247i \(0.385725\pi\)
\(822\) 0 0
\(823\) − 139.427i − 0.169414i −0.996406 0.0847068i \(-0.973005\pi\)
0.996406 0.0847068i \(-0.0269954\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 715.337i − 0.864978i −0.901639 0.432489i \(-0.857635\pi\)
0.901639 0.432489i \(-0.142365\pi\)
\(828\) 0 0
\(829\) 34.0000 0.0410133 0.0205066 0.999790i \(-0.493472\pi\)
0.0205066 + 0.999790i \(0.493472\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −73.7902 −0.0885837
\(834\) 0 0
\(835\) 375.679i 0.449915i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 651.251i − 0.776223i −0.921612 0.388112i \(-0.873128\pi\)
0.921612 0.388112i \(-0.126872\pi\)
\(840\) 0 0
\(841\) 779.000 0.926278
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −704.361 −0.833564
\(846\) 0 0
\(847\) 565.456i 0.667598i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 58.8897i − 0.0692006i
\(852\) 0 0
\(853\) 1028.00 1.20516 0.602579 0.798059i \(-0.294140\pi\)
0.602579 + 0.798059i \(0.294140\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 677.529 0.790582 0.395291 0.918556i \(-0.370644\pi\)
0.395291 + 0.918556i \(0.370644\pi\)
\(858\) 0 0
\(859\) 143.300i 0.166822i 0.996515 + 0.0834112i \(0.0265815\pi\)
−0.996515 + 0.0834112i \(0.973419\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1688.75i 1.95684i 0.206635 + 0.978418i \(0.433749\pi\)
−0.206635 + 0.978418i \(0.566251\pi\)
\(864\) 0 0
\(865\) 495.000 0.572254
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −134.164 −0.154389
\(870\) 0 0
\(871\) 511.234i 0.586950i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 86.6025i − 0.0989743i
\(876\) 0 0
\(877\) −568.000 −0.647662 −0.323831 0.946115i \(-0.604971\pi\)
−0.323831 + 0.946115i \(0.604971\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 281.745 0.319801 0.159900 0.987133i \(-0.448883\pi\)
0.159900 + 0.987133i \(0.448883\pi\)
\(882\) 0 0
\(883\) − 642.915i − 0.728103i −0.931379 0.364052i \(-0.881393\pi\)
0.931379 0.364052i \(-0.118607\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1155.28i 1.30246i 0.758882 + 0.651228i \(0.225746\pi\)
−0.758882 + 0.651228i \(0.774254\pi\)
\(888\) 0 0
\(889\) −900.000 −1.01237
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −375.659 −0.420671
\(894\) 0 0
\(895\) 635.169i 0.709686i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 779.423i − 0.866989i
\(900\) 0 0
\(901\) 45.0000 0.0499445
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −404.728 −0.447214
\(906\) 0 0
\(907\) − 666.153i − 0.734458i −0.930131 0.367229i \(-0.880307\pi\)
0.930131 0.367229i \(-0.119693\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 1617.74i − 1.77578i −0.460056 0.887890i \(-0.652171\pi\)
0.460056 0.887890i \(-0.347829\pi\)
\(912\) 0 0
\(913\) 900.000 0.985761
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −456.158 −0.497446
\(918\) 0 0
\(919\) 588.693i 0.640580i 0.947319 + 0.320290i \(0.103780\pi\)
−0.947319 + 0.320290i \(0.896220\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2438.73i 2.64218i
\(924\) 0 0
\(925\) 10.0000 0.0108108
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 643.988 0.693205 0.346603 0.938012i \(-0.387335\pi\)
0.346603 + 0.938012i \(0.387335\pi\)
\(930\) 0 0
\(931\) − 298.220i − 0.320322i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 103.923i − 0.111148i
\(936\) 0 0
\(937\) 1712.00 1.82711 0.913554 0.406718i \(-0.133327\pi\)
0.913554 + 0.406718i \(0.133327\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −630.571 −0.670108 −0.335054 0.942199i \(-0.608754\pi\)
−0.335054 + 0.942199i \(0.608754\pi\)
\(942\) 0 0
\(943\) 1580.18i 1.67569i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 857.365i − 0.905349i −0.891676 0.452674i \(-0.850470\pi\)
0.891676 0.452674i \(-0.149530\pi\)
\(948\) 0 0
\(949\) 1672.00 1.76185
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1838.05 1.92870 0.964348 0.264636i \(-0.0852519\pi\)
0.964348 + 0.264636i \(0.0852519\pi\)
\(954\) 0 0
\(955\) 116.190i 0.121664i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 1922.58i − 2.00477i
\(960\) 0 0
\(961\) 586.000 0.609781
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −165.469 −0.171470
\(966\) 0 0
\(967\) − 1386.53i − 1.43384i −0.697153 0.716922i \(-0.745550\pi\)
0.697153 0.716922i \(-0.254450\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 1811.73i − 1.86583i −0.360091 0.932917i \(-0.617254\pi\)
0.360091 0.932917i \(-0.382746\pi\)
\(972\) 0 0
\(973\) −1200.00 −1.23330
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −764.735 −0.782738 −0.391369 0.920234i \(-0.627998\pi\)
−0.391369 + 0.920234i \(0.627998\pi\)
\(978\) 0 0
\(979\) 371.806i 0.379782i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1120.64i 1.14002i 0.821639 + 0.570009i \(0.193060\pi\)
−0.821639 + 0.570009i \(0.806940\pi\)
\(984\) 0 0
\(985\) 495.000 0.502538
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 456.158 0.461231
\(990\) 0 0
\(991\) 1738.97i 1.75476i 0.479794 + 0.877381i \(0.340711\pi\)
−0.479794 + 0.877381i \(0.659289\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 415.692i − 0.417781i
\(996\) 0 0
\(997\) 632.000 0.633902 0.316951 0.948442i \(-0.397341\pi\)
0.316951 + 0.948442i \(0.397341\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.3.e.b.271.2 yes 4
3.2 odd 2 inner 2160.3.e.b.271.4 yes 4
4.3 odd 2 inner 2160.3.e.b.271.1 4
12.11 even 2 inner 2160.3.e.b.271.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2160.3.e.b.271.1 4 4.3 odd 2 inner
2160.3.e.b.271.2 yes 4 1.1 even 1 trivial
2160.3.e.b.271.3 yes 4 12.11 even 2 inner
2160.3.e.b.271.4 yes 4 3.2 odd 2 inner