Properties

Label 2160.3.e.a
Level $2160$
Weight $3$
Character orbit 2160.e
Analytic conductor $58.856$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,3,Mod(271,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.271");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{5} + 2 \beta_{2} q^{11} - 8 q^{13} + 3 \beta_1 q^{17} + \beta_{3} q^{19} - \beta_{2} q^{23} + 5 q^{25} + 12 \beta_1 q^{29} - 3 \beta_{3} q^{31} + 2 q^{37} - 18 \beta_1 q^{41} - 2 \beta_{3} q^{43} + 4 \beta_{2} q^{47} + 49 q^{49} - 9 \beta_1 q^{53} - 2 \beta_{3} q^{55} + 8 \beta_{2} q^{59} - 31 q^{61} - 8 \beta_1 q^{65} - 6 \beta_{3} q^{67} + 2 \beta_{2} q^{71} - 74 q^{73} - 9 \beta_{3} q^{79} - 15 \beta_{2} q^{83} + 15 q^{85} - 30 \beta_1 q^{89} - 5 \beta_{2} q^{95} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 32 q^{13} + 20 q^{25} + 8 q^{37} + 196 q^{49} - 124 q^{61} - 296 q^{73} + 60 q^{85} - 128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 2x^{2} + x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} + 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -3\nu^{3} + 6\nu^{2} - 6\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 6\nu^{3} - 6\nu^{2} + 18\nu + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - 3\beta _1 + 3 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 3\beta_{2} + 3\beta _1 - 9 ) / 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta _1 - 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
271.1
0.809017 1.40126i
0.809017 + 1.40126i
−0.309017 + 0.535233i
−0.309017 0.535233i
0 0 0 −2.23607 0 0 0 0 0
271.2 0 0 0 −2.23607 0 0 0 0 0
271.3 0 0 0 2.23607 0 0 0 0 0
271.4 0 0 0 2.23607 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.3.e.a 4
3.b odd 2 1 inner 2160.3.e.a 4
4.b odd 2 1 inner 2160.3.e.a 4
12.b even 2 1 inner 2160.3.e.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2160.3.e.a 4 1.a even 1 1 trivial
2160.3.e.a 4 3.b odd 2 1 inner
2160.3.e.a 4 4.b odd 2 1 inner
2160.3.e.a 4 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(2160, [\chi])\):

\( T_{7} \) Copy content Toggle raw display
\( T_{17}^{2} - 45 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 108)^{2} \) Copy content Toggle raw display
$13$ \( (T + 8)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 45)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 135)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 27)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 720)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 1215)^{2} \) Copy content Toggle raw display
$37$ \( (T - 2)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 1620)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 540)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 432)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 405)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 1728)^{2} \) Copy content Toggle raw display
$61$ \( (T + 31)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 4860)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 108)^{2} \) Copy content Toggle raw display
$73$ \( (T + 74)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 10935)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 6075)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 4500)^{2} \) Copy content Toggle raw display
$97$ \( (T + 32)^{4} \) Copy content Toggle raw display
show more
show less