gp: [N,k,chi] = [2160,3,Mod(1889,2160)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2160.1889");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [12,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 + 76 x 10 + 1798 x 8 + 15824 x 6 + 40465 x 4 + 25444 x 2 + 196 x^{12} + 76x^{10} + 1798x^{8} + 15824x^{6} + 40465x^{4} + 25444x^{2} + 196 x 1 2 + 7 6 x 1 0 + 1 7 9 8 x 8 + 1 5 8 2 4 x 6 + 4 0 4 6 5 x 4 + 2 5 4 4 4 x 2 + 1 9 6
x^12 + 76*x^10 + 1798*x^8 + 15824*x^6 + 40465*x^4 + 25444*x^2 + 196
:
β 1 \beta_{1} β 1 = = =
( − 1299 ν 10 − 97172 ν 8 − 2221126 ν 6 − 18048418 ν 4 − 34496851 ν 2 − 9205598 ) / 1579965 ( -1299\nu^{10} - 97172\nu^{8} - 2221126\nu^{6} - 18048418\nu^{4} - 34496851\nu^{2} - 9205598 ) / 1579965 ( − 1 2 9 9 ν 1 0 − 9 7 1 7 2 ν 8 − 2 2 2 1 1 2 6 ν 6 − 1 8 0 4 8 4 1 8 ν 4 − 3 4 4 9 6 8 5 1 ν 2 − 9 2 0 5 5 9 8 ) / 1 5 7 9 9 6 5
(-1299*v^10 - 97172*v^8 - 2221126*v^6 - 18048418*v^4 - 34496851*v^2 - 9205598) / 1579965
β 2 \beta_{2} β 2 = = =
( − 4703 ν 10 − 339565 ν 8 − 7302111 ν 6 − 54640101 ν 4 − 85130140 ν 2 + 19243268 ) / 2106620 ( -4703\nu^{10} - 339565\nu^{8} - 7302111\nu^{6} - 54640101\nu^{4} - 85130140\nu^{2} + 19243268 ) / 2106620 ( − 4 7 0 3 ν 1 0 − 3 3 9 5 6 5 ν 8 − 7 3 0 2 1 1 1 ν 6 − 5 4 6 4 0 1 0 1 ν 4 − 8 5 1 3 0 1 4 0 ν 2 + 1 9 2 4 3 2 6 8 ) / 2 1 0 6 6 2 0
(-4703*v^10 - 339565*v^8 - 7302111*v^6 - 54640101*v^4 - 85130140*v^2 + 19243268) / 2106620
β 3 \beta_{3} β 3 = = =
( − 2507 ν 10 − 190618 ν 8 − 4460178 ν 6 − 36630480 ν 4 − 61554583 ν 2 − 5948478 ) / 1053310 ( -2507\nu^{10} - 190618\nu^{8} - 4460178\nu^{6} - 36630480\nu^{4} - 61554583\nu^{2} - 5948478 ) / 1053310 ( − 2 5 0 7 ν 1 0 − 1 9 0 6 1 8 ν 8 − 4 4 6 0 1 7 8 ν 6 − 3 6 6 3 0 4 8 0 ν 4 − 6 1 5 5 4 5 8 3 ν 2 − 5 9 4 8 4 7 8 ) / 1 0 5 3 3 1 0
(-2507*v^10 - 190618*v^8 - 4460178*v^6 - 36630480*v^4 - 61554583*v^2 - 5948478) / 1053310
β 4 \beta_{4} β 4 = = =
( 15143 ν 10 + 1144371 ν 8 + 26783999 ν 6 + 230657783 ν 4 + 540082056 ν 2 + 186344612 ) / 6319860 ( 15143\nu^{10} + 1144371\nu^{8} + 26783999\nu^{6} + 230657783\nu^{4} + 540082056\nu^{2} + 186344612 ) / 6319860 ( 1 5 1 4 3 ν 1 0 + 1 1 4 4 3 7 1 ν 8 + 2 6 7 8 3 9 9 9 ν 6 + 2 3 0 6 5 7 7 8 3 ν 4 + 5 4 0 0 8 2 0 5 6 ν 2 + 1 8 6 3 4 4 6 1 2 ) / 6 3 1 9 8 6 0
(15143*v^10 + 1144371*v^8 + 26783999*v^6 + 230657783*v^4 + 540082056*v^2 + 186344612) / 6319860
β 5 \beta_{5} β 5 = = =
( − 29933 ν 11 − 2302068 ν 9 − 55822864 ν 7 − 518268874 ν 5 + ⋯ − 1220950086 ν ) / 29492680 ( - 29933 \nu^{11} - 2302068 \nu^{9} - 55822864 \nu^{7} - 518268874 \nu^{5} + \cdots - 1220950086 \nu ) / 29492680 ( − 2 9 9 3 3 ν 1 1 − 2 3 0 2 0 6 8 ν 9 − 5 5 8 2 2 8 6 4 ν 7 − 5 1 8 2 6 8 8 7 4 ν 5 + ⋯ − 1 2 2 0 9 5 0 0 8 6 ν ) / 2 9 4 9 2 6 8 0
(-29933*v^11 - 2302068*v^9 - 55822864*v^7 - 518268874*v^5 - 1555432611*v^3 - 1220950086*v) / 29492680
β 6 \beta_{6} β 6 = = =
( 50555 ν 11 − 824 ν 10 + 3843242 ν 9 − 84668 ν 8 + 91057122 ν 7 + ⋯ + 22344848 ) / 25279440 ( 50555 \nu^{11} - 824 \nu^{10} + 3843242 \nu^{9} - 84668 \nu^{8} + 91057122 \nu^{7} + \cdots + 22344848 ) / 25279440 ( 5 0 5 5 5 ν 1 1 − 8 2 4 ν 1 0 + 3 8 4 3 2 4 2 ν 9 − 8 4 6 6 8 ν 8 + 9 1 0 5 7 1 2 2 ν 7 + ⋯ + 2 2 3 4 4 8 4 8 ) / 2 5 2 7 9 4 4 0
(50555*v^11 - 824*v^10 + 3843242*v^9 - 84668*v^8 + 91057122*v^7 - 2861028*v^6 + 806491152*v^5 - 34554732*v^4 + 2121258799*v^3 - 111164620*v^2 + 1423359286*v + 22344848) / 25279440
β 7 \beta_{7} β 7 = = =
( 50555 ν 11 + 824 ν 10 + 3843242 ν 9 + 84668 ν 8 + 91057122 ν 7 + ⋯ + 2934592 ) / 25279440 ( 50555 \nu^{11} + 824 \nu^{10} + 3843242 \nu^{9} + 84668 \nu^{8} + 91057122 \nu^{7} + \cdots + 2934592 ) / 25279440 ( 5 0 5 5 5 ν 1 1 + 8 2 4 ν 1 0 + 3 8 4 3 2 4 2 ν 9 + 8 4 6 6 8 ν 8 + 9 1 0 5 7 1 2 2 ν 7 + ⋯ + 2 9 3 4 5 9 2 ) / 2 5 2 7 9 4 4 0
(50555*v^11 + 824*v^10 + 3843242*v^9 + 84668*v^8 + 91057122*v^7 + 2861028*v^6 + 806491152*v^5 + 34554732*v^4 + 2121258799*v^3 + 111164620*v^2 + 1423359286*v + 2934592) / 25279440
β 8 \beta_{8} β 8 = = =
( − 38866 ν 11 − 2925949 ν 9 − 67873097 ν 7 − 571720619 ν 5 − 1237923375 ν 3 − 317870642 ν ) / 14746340 ( - 38866 \nu^{11} - 2925949 \nu^{9} - 67873097 \nu^{7} - 571720619 \nu^{5} - 1237923375 \nu^{3} - 317870642 \nu ) / 14746340 ( − 3 8 8 6 6 ν 1 1 − 2 9 2 5 9 4 9 ν 9 − 6 7 8 7 3 0 9 7 ν 7 − 5 7 1 7 2 0 6 1 9 ν 5 − 1 2 3 7 9 2 3 3 7 5 ν 3 − 3 1 7 8 7 0 6 4 2 ν ) / 1 4 7 4 6 3 4 0
(-38866*v^11 - 2925949*v^9 - 67873097*v^7 - 571720619*v^5 - 1237923375*v^3 - 317870642*v) / 14746340
β 9 \beta_{9} β 9 = = =
( − 638811 ν 11 − 48521048 ν 9 − 1146131464 ν 7 − 10042470682 ν 5 + ⋯ − 16055179562 ν ) / 88478040 ( - 638811 \nu^{11} - 48521048 \nu^{9} - 1146131464 \nu^{7} - 10042470682 \nu^{5} + \cdots - 16055179562 \nu ) / 88478040 ( − 6 3 8 8 1 1 ν 1 1 − 4 8 5 2 1 0 4 8 ν 9 − 1 1 4 6 1 3 1 4 6 4 ν 7 − 1 0 0 4 2 4 7 0 6 8 2 ν 5 + ⋯ − 1 6 0 5 5 1 7 9 5 6 2 ν ) / 8 8 4 7 8 0 4 0
(-638811*v^11 - 48521048*v^9 - 1146131464*v^7 - 10042470682*v^5 - 25287967429*v^3 - 16055179562*v) / 88478040
β 10 \beta_{10} β 1 0 = = =
( − 723619 ν 11 − 68922 ν 10 − 54817776 ν 9 − 5285140 ν 8 − 1288120840 ν 7 + ⋯ + 7920668 ) / 88478040 ( - 723619 \nu^{11} - 68922 \nu^{10} - 54817776 \nu^{9} - 5285140 \nu^{8} - 1288120840 \nu^{7} + \cdots + 7920668 ) / 88478040 ( − 7 2 3 6 1 9 ν 1 1 − 6 8 9 2 2 ν 1 0 − 5 4 8 1 7 7 7 6 ν 9 − 5 2 8 5 1 4 0 ν 8 − 1 2 8 8 1 2 0 8 4 0 ν 7 + ⋯ + 7 9 2 0 6 6 8 ) / 8 8 4 7 8 0 4 0
(-723619*v^11 - 68922*v^10 - 54817776*v^9 - 5285140*v^8 - 1288120840*v^7 - 125135948*v^6 - 11169263242*v^5 - 1033124456*v^4 - 27226367229*v^3 - 1619380658*v^2 - 15579025090*v + 7920668) / 88478040
β 11 \beta_{11} β 1 1 = = =
( − 844871 ν 11 − 64192458 ν 9 − 1516990574 ν 7 − 13292195192 ν 5 + ⋯ − 18475789382 ν ) / 88478040 ( - 844871 \nu^{11} - 64192458 \nu^{9} - 1516990574 \nu^{7} - 13292195192 \nu^{5} + \cdots - 18475789382 \nu ) / 88478040 ( − 8 4 4 8 7 1 ν 1 1 − 6 4 1 9 2 4 5 8 ν 9 − 1 5 1 6 9 9 0 5 7 4 ν 7 − 1 3 2 9 2 1 9 5 1 9 2 ν 5 + ⋯ − 1 8 4 7 5 7 8 9 3 8 2 ν ) / 8 8 4 7 8 0 4 0
(-844871*v^11 - 64192458*v^9 - 1516990574*v^7 - 13292195192*v^5 - 33230441799*v^3 - 18475789382*v) / 88478040
ν \nu ν = = =
( − 3 β 11 + 2 β 10 + β 9 + 6 β 8 + 7 β 7 + 7 β 6 + 17 β 5 − β 3 + β 1 − 7 ) / 48 ( -3\beta_{11} + 2\beta_{10} + \beta_{9} + 6\beta_{8} + 7\beta_{7} + 7\beta_{6} + 17\beta_{5} - \beta_{3} + \beta _1 - 7 ) / 48 ( − 3 β 1 1 + 2 β 1 0 + β 9 + 6 β 8 + 7 β 7 + 7 β 6 + 1 7 β 5 − β 3 + β 1 − 7 ) / 4 8
(-3*b11 + 2*b10 + b9 + 6*b8 + 7*b7 + 7*b6 + 17*b5 - b3 + b1 - 7) / 48
ν 2 \nu^{2} ν 2 = = =
( − 20 β 7 + 20 β 6 + 4 β 4 − 2 β 3 + 4 β 2 + 5 β 1 − 152 ) / 12 ( -20\beta_{7} + 20\beta_{6} + 4\beta_{4} - 2\beta_{3} + 4\beta_{2} + 5\beta _1 - 152 ) / 12 ( − 2 0 β 7 + 2 0 β 6 + 4 β 4 − 2 β 3 + 4 β 2 + 5 β 1 − 1 5 2 ) / 1 2
(-20*b7 + 20*b6 + 4*b4 - 2*b3 + 4*b2 + 5*b1 - 152) / 12
ν 3 \nu^{3} ν 3 = = =
( 135 β 11 + 14 β 10 − 161 β 9 − 210 β 8 − 191 β 7 − 191 β 6 + ⋯ + 191 ) / 48 ( 135 \beta_{11} + 14 \beta_{10} - 161 \beta_{9} - 210 \beta_{8} - 191 \beta_{7} - 191 \beta_{6} + \cdots + 191 ) / 48 ( 1 3 5 β 1 1 + 1 4 β 1 0 − 1 6 1 β 9 − 2 1 0 β 8 − 1 9 1 β 7 − 1 9 1 β 6 + ⋯ + 1 9 1 ) / 4 8
(135*b11 + 14*b10 - 161*b9 - 210*b8 - 191*b7 - 191*b6 - 445*b5 - 7*b3 + 7*b1 + 191) / 48
ν 4 \nu^{4} ν 4 = = =
( 366 β 7 − 366 β 6 − 84 β 4 + 64 β 3 − 56 β 2 − 249 β 1 + 2180 ) / 6 ( 366\beta_{7} - 366\beta_{6} - 84\beta_{4} + 64\beta_{3} - 56\beta_{2} - 249\beta _1 + 2180 ) / 6 ( 3 6 6 β 7 − 3 6 6 β 6 − 8 4 β 4 + 6 4 β 3 − 5 6 β 2 − 2 4 9 β 1 + 2 1 8 0 ) / 6
(366*b7 - 366*b6 - 84*b4 + 64*b3 - 56*b2 - 249*b1 + 2180) / 6
ν 5 \nu^{5} ν 5 = = =
( − 5189 β 11 − 2450 β 10 + 7791 β 9 + 8882 β 8 + 6345 β 7 + 6345 β 6 + ⋯ − 6345 ) / 48 ( - 5189 \beta_{11} - 2450 \beta_{10} + 7791 \beta_{9} + 8882 \beta_{8} + 6345 \beta_{7} + 6345 \beta_{6} + \cdots - 6345 ) / 48 ( − 5 1 8 9 β 1 1 − 2 4 5 0 β 1 0 + 7 7 9 1 β 9 + 8 8 8 2 β 8 + 6 3 4 5 β 7 + 6 3 4 5 β 6 + ⋯ − 6 3 4 5 ) / 4 8
(-5189*b11 - 2450*b10 + 7791*b9 + 8882*b8 + 6345*b7 + 6345*b6 + 15079*b5 + 1225*b3 - 1225*b1 - 6345) / 48
ν 6 \nu^{6} ν 6 = = =
( − 28276 β 7 + 28276 β 6 + 7196 β 4 − 5730 β 3 + 3708 β 2 + 25249 β 1 − 153008 ) / 12 ( -28276\beta_{7} + 28276\beta_{6} + 7196\beta_{4} - 5730\beta_{3} + 3708\beta_{2} + 25249\beta _1 - 153008 ) / 12 ( − 2 8 2 7 6 β 7 + 2 8 2 7 6 β 6 + 7 1 9 6 β 4 − 5 7 3 0 β 3 + 3 7 0 8 β 2 + 2 5 2 4 9 β 1 − 1 5 3 0 0 8 ) / 1 2
(-28276*b7 + 28276*b6 + 7196*b4 - 5730*b3 + 3708*b2 + 25249*b1 - 153008) / 12
ν 7 \nu^{7} ν 7 = = =
( 207005 β 11 + 130570 β 10 − 334787 β 9 − 370382 β 8 − 231725 β 7 + ⋯ + 231725 ) / 48 ( 207005 \beta_{11} + 130570 \beta_{10} - 334787 \beta_{9} - 370382 \beta_{8} - 231725 \beta_{7} + \cdots + 231725 ) / 48 ( 2 0 7 0 0 5 β 1 1 + 1 3 0 5 7 0 β 1 0 − 3 3 4 7 8 7 β 9 − 3 7 0 3 8 2 β 8 − 2 3 1 7 2 5 β 7 + ⋯ + 2 3 1 7 2 5 ) / 4 8
(207005*b11 + 130570*b10 - 334787*b9 - 370382*b8 - 231725*b7 - 231725*b6 - 569519*b5 - 65285*b3 + 65285*b1 + 231725) / 48
ν 8 \nu^{8} ν 8 = = =
94387 β 7 − 94387 β 6 − 25058 β 4 + 20053 β 3 − 11412 β 2 − 92608 β 1 + 489238 94387\beta_{7} - 94387\beta_{6} - 25058\beta_{4} + 20053\beta_{3} - 11412\beta_{2} - 92608\beta _1 + 489238 9 4 3 8 7 β 7 − 9 4 3 8 7 β 6 − 2 5 0 5 8 β 4 + 2 0 0 5 3 β 3 − 1 1 4 1 2 β 2 − 9 2 6 0 8 β 1 + 4 8 9 2 3 8
94387*b7 - 94387*b6 - 25058*b4 + 20053*b3 - 11412*b2 - 92608*b1 + 489238
ν 9 \nu^{9} ν 9 = = =
( − 8405067 β 11 − 5818174 β 10 + 13924585 β 9 + 15291702 β 8 + 8969551 β 7 + ⋯ − 8969551 ) / 48 ( - 8405067 \beta_{11} - 5818174 \beta_{10} + 13924585 \beta_{9} + 15291702 \beta_{8} + 8969551 \beta_{7} + \cdots - 8969551 ) / 48 ( − 8 4 0 5 0 6 7 β 1 1 − 5 8 1 8 1 7 4 β 1 0 + 1 3 9 2 4 5 8 5 β 9 + 1 5 2 9 1 7 0 2 β 8 + 8 9 6 9 5 5 1 β 7 + ⋯ − 8 9 6 9 5 5 1 ) / 4 8
(-8405067*b11 - 5818174*b10 + 13924585*b9 + 15291702*b8 + 8969551*b7 + 8969551*b6 + 22543529*b5 + 2909087*b3 - 2909087*b1 - 8969551) / 48
ν 10 \nu^{10} ν 1 0 = = =
( − 46018652 β 7 + 46018652 β 6 + 12417364 β 4 − 9928586 β 3 + 5353828 β 2 + ⋯ − 234173072 ) / 12 ( - 46018652 \beta_{7} + 46018652 \beta_{6} + 12417364 \beta_{4} - 9928586 \beta_{3} + 5353828 \beta_{2} + \cdots - 234173072 ) / 12 ( − 4 6 0 1 8 6 5 2 β 7 + 4 6 0 1 8 6 5 2 β 6 + 1 2 4 1 7 3 6 4 β 4 − 9 9 2 8 5 8 6 β 3 + 5 3 5 3 8 2 8 β 2 + ⋯ − 2 3 4 1 7 3 0 7 2 ) / 1 2
(-46018652*b7 + 46018652*b6 + 12417364*b4 - 9928586*b3 + 5353828*b2 + 46730033*b1 - 234173072) / 12
ν 11 \nu^{11} ν 1 1 = = =
( 343313415 β 11 + 245567822 β 10 − 573120017 β 9 − 628426914 β 8 + ⋯ + 357893903 ) / 48 ( 343313415 \beta_{11} + 245567822 \beta_{10} - 573120017 \beta_{9} - 628426914 \beta_{8} + \cdots + 357893903 ) / 48 ( 3 4 3 3 1 3 4 1 5 β 1 1 + 2 4 5 5 6 7 8 2 2 β 1 0 − 5 7 3 1 2 0 0 1 7 β 9 − 6 2 8 4 2 6 9 1 4 β 8 + ⋯ + 3 5 7 8 9 3 9 0 3 ) / 4 8
(343313415*b11 + 245567822*b10 - 573120017*b9 - 628426914*b8 - 357893903*b7 - 357893903*b6 - 910350973*b5 - 122783911*b3 + 122783911*b1 + 357893903) / 48
Character values
We give the values of χ \chi χ on generators for ( Z / 2160 Z ) × \left(\mathbb{Z}/2160\mathbb{Z}\right)^\times ( Z / 2 1 6 0 Z ) × .
n n n
271 271 2 7 1
1297 1297 1 2 9 7
1621 1621 1 6 2 1
2081 2081 2 0 8 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 3 n e w ( 2160 , [ χ ] ) S_{3}^{\mathrm{new}}(2160, [\chi]) S 3 n e w ( 2 1 6 0 , [ χ ] ) :
T 7 12 + 306 T 7 10 + 36381 T 7 8 + 2141348 T 7 6 + 65457468 T 7 4 + 975048384 T 7 2 + 5395783936 T_{7}^{12} + 306T_{7}^{10} + 36381T_{7}^{8} + 2141348T_{7}^{6} + 65457468T_{7}^{4} + 975048384T_{7}^{2} + 5395783936 T 7 1 2 + 3 0 6 T 7 1 0 + 3 6 3 8 1 T 7 8 + 2 1 4 1 3 4 8 T 7 6 + 6 5 4 5 7 4 6 8 T 7 4 + 9 7 5 0 4 8 3 8 4 T 7 2 + 5 3 9 5 7 8 3 9 3 6
T7^12 + 306*T7^10 + 36381*T7^8 + 2141348*T7^6 + 65457468*T7^4 + 975048384*T7^2 + 5395783936
T 17 6 − 888 T 17 4 − 3744 T 17 3 + 148383 T 17 2 + 413316 T 17 − 5972292 T_{17}^{6} - 888T_{17}^{4} - 3744T_{17}^{3} + 148383T_{17}^{2} + 413316T_{17} - 5972292 T 1 7 6 − 8 8 8 T 1 7 4 − 3 7 4 4 T 1 7 3 + 1 4 8 3 8 3 T 1 7 2 + 4 1 3 3 1 6 T 1 7 − 5 9 7 2 2 9 2
T17^6 - 888*T17^4 - 3744*T17^3 + 148383*T17^2 + 413316*T17 - 5972292
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
T 12 + ⋯ + 244140625 T^{12} + \cdots + 244140625 T 1 2 + ⋯ + 2 4 4 1 4 0 6 2 5
T^12 - 6*T^11 + 15*T^10 + 42*T^9 - 93*T^8 - 4500*T^7 + 39450*T^6 - 112500*T^5 - 58125*T^4 + 656250*T^3 + 5859375*T^2 - 58593750*T + 244140625
7 7 7
T 12 + ⋯ + 5395783936 T^{12} + \cdots + 5395783936 T 1 2 + ⋯ + 5 3 9 5 7 8 3 9 3 6
T^12 + 306*T^10 + 36381*T^8 + 2141348*T^6 + 65457468*T^4 + 975048384*T^2 + 5395783936
11 11 1 1
T 12 + ⋯ + 20519989504 T^{12} + \cdots + 20519989504 T 1 2 + ⋯ + 2 0 5 1 9 9 8 9 5 0 4
T^12 + 714*T^10 + 173469*T^8 + 16883884*T^6 + 664427580*T^4 + 8702243520*T^2 + 20519989504
13 13 1 3
T 12 + ⋯ + 28052230144 T^{12} + \cdots + 28052230144 T 1 2 + ⋯ + 2 8 0 5 2 2 3 0 1 4 4
T^12 + 1020*T^10 + 278412*T^8 + 24356768*T^6 + 849001152*T^4 + 10852500480*T^2 + 28052230144
17 17 1 7
( T 6 − 888 T 4 + ⋯ − 5972292 ) 2 (T^{6} - 888 T^{4} + \cdots - 5972292)^{2} ( T 6 − 8 8 8 T 4 + ⋯ − 5 9 7 2 2 9 2 ) 2
(T^6 - 888*T^4 - 3744*T^3 + 148383*T^2 + 413316*T - 5972292)^2
19 19 1 9
( T 6 − 1260 T 4 + ⋯ − 4083056 ) 2 (T^{6} - 1260 T^{4} + \cdots - 4083056)^{2} ( T 6 − 1 2 6 0 T 4 + ⋯ − 4 0 8 3 0 5 6 ) 2
(T^6 - 1260*T^4 + 9596*T^3 + 175239*T^2 - 1092744*T - 4083056)^2
23 23 2 3
( T 6 − 2082 T 4 + ⋯ + 25322992 ) 2 (T^{6} - 2082 T^{4} + \cdots + 25322992)^{2} ( T 6 − 2 0 8 2 T 4 + ⋯ + 2 5 3 2 2 9 9 2 ) 2
(T^6 - 2082*T^4 - 5064*T^3 + 914241*T^2 + 10419960*T + 25322992)^2
29 29 2 9
T 12 + ⋯ + 15556650532864 T^{12} + \cdots + 15556650532864 T 1 2 + ⋯ + 1 5 5 5 6 6 5 0 5 3 2 8 6 4
T^12 + 3036*T^10 + 2546076*T^8 + 780586048*T^6 + 76582784256*T^4 + 2394416799744*T^2 + 15556650532864
31 31 3 1
( T 6 + 6 T 5 + ⋯ − 321489 ) 2 (T^{6} + 6 T^{5} + \cdots - 321489)^{2} ( T 6 + 6 T 5 + ⋯ − 3 2 1 4 8 9 ) 2
(T^6 + 6*T^5 - 1251*T^4 - 4428*T^3 + 137619*T^2 - 123930*T - 321489)^2
37 37 3 7
T 12 + ⋯ + 12 ⋯ 24 T^{12} + \cdots + 12\!\cdots\!24 T 1 2 + ⋯ + 1 2 ⋯ 2 4
T^12 + 8736*T^10 + 28763904*T^8 + 43665293312*T^6 + 29694011375616*T^4 + 7224302864695296*T^2 + 129651246024884224
41 41 4 1
T 12 + ⋯ + 79 ⋯ 96 T^{12} + \cdots + 79\!\cdots\!96 T 1 2 + ⋯ + 7 9 ⋯ 9 6
T^12 + 18396*T^10 + 123610332*T^8 + 360533614144*T^6 + 396265625038080*T^4 + 34712041379389440*T^2 + 790713744972906496
43 43 4 3
T 12 + ⋯ + 17 ⋯ 04 T^{12} + \cdots + 17\!\cdots\!04 T 1 2 + ⋯ + 1 7 ⋯ 0 4
T^12 + 12852*T^10 + 61861644*T^8 + 143032949280*T^6 + 165100251112128*T^4 + 87906599377118208*T^2 + 17152131188188975104
47 47 4 7
( T 6 − 24 T 5 + ⋯ − 65183616 ) 2 (T^{6} - 24 T^{5} + \cdots - 65183616)^{2} ( T 6 − 2 4 T 5 + ⋯ − 6 5 1 8 3 6 1 6 ) 2
(T^6 - 24*T^5 - 5568*T^4 + 77760*T^3 + 6885072*T^2 - 84993408*T - 65183616)^2
53 53 5 3
( T 6 + 30 T 5 + ⋯ − 979723913 ) 2 (T^{6} + 30 T^{5} + \cdots - 979723913)^{2} ( T 6 + 3 0 T 5 + ⋯ − 9 7 9 7 2 3 9 1 3 ) 2
(T^6 + 30*T^5 - 5595*T^4 - 179964*T^3 + 4827651*T^2 + 92749182*T - 979723913)^2
59 59 5 9
T 12 + ⋯ + 72 ⋯ 16 T^{12} + \cdots + 72\!\cdots\!16 T 1 2 + ⋯ + 7 2 ⋯ 1 6
T^12 + 32196*T^10 + 394096284*T^8 + 2369262056256*T^6 + 7440718903282944*T^4 + 11708248528238026752*T^2 + 7291458810972424175616
61 61 6 1
( T 6 + 60 T 5 + ⋯ − 7714816112 ) 2 (T^{6} + 60 T^{5} + \cdots - 7714816112)^{2} ( T 6 + 6 0 T 5 + ⋯ − 7 7 1 4 8 1 6 1 1 2 ) 2
(T^6 + 60*T^5 - 9690*T^4 - 594172*T^3 + 11322897*T^2 + 535586952*T - 7714816112)^2
67 67 6 7
T 12 + ⋯ + 52 ⋯ 16 T^{12} + \cdots + 52\!\cdots\!16 T 1 2 + ⋯ + 5 2 ⋯ 1 6
T^12 + 22440*T^10 + 181843152*T^8 + 699486400256*T^6 + 1383193106512896*T^4 + 1360364374620635136*T^2 + 527553319646386978816
71 71 7 1
T 12 + ⋯ + 11 ⋯ 64 T^{12} + \cdots + 11\!\cdots\!64 T 1 2 + ⋯ + 1 1 ⋯ 6 4
T^12 + 32700*T^10 + 404572620*T^8 + 2356774164640*T^6 + 6402075079291584*T^4 + 6398451591639254016*T^2 + 11458713745051684864
73 73 7 3
T 12 + ⋯ + 24 ⋯ 64 T^{12} + \cdots + 24\!\cdots\!64 T 1 2 + ⋯ + 2 4 ⋯ 6 4
T^12 + 34890*T^10 + 458225661*T^8 + 2790995922764*T^6 + 7697432770159164*T^4 + 7649632348995580608*T^2 + 2435031684209552683264
79 79 7 9
( T 6 + 36 T 5 + ⋯ + 115534145692 ) 2 (T^{6} + 36 T^{5} + \cdots + 115534145692)^{2} ( T 6 + 3 6 T 5 + ⋯ + 1 1 5 5 3 4 1 4 5 6 9 2 ) 2
(T^6 + 36*T^5 - 20952*T^4 - 1193636*T^3 + 90051399*T^2 + 7439244372*T + 115534145692)^2
83 83 8 3
( T 6 + 42 T 5 + ⋯ − 56368474079 ) 2 (T^{6} + 42 T^{5} + \cdots - 56368474079)^{2} ( T 6 + 4 2 T 5 + ⋯ − 5 6 3 6 8 4 7 4 0 7 9 ) 2
(T^6 + 42*T^5 - 17601*T^4 - 428148*T^3 + 71346975*T^2 + 1380534474*T - 56368474079)^2
89 89 8 9
T 12 + ⋯ + 28 ⋯ 16 T^{12} + \cdots + 28\!\cdots\!16 T 1 2 + ⋯ + 2 8 ⋯ 1 6
T^12 + 54324*T^10 + 1074981132*T^8 + 9544392935712*T^6 + 37755395361388224*T^4 + 58585196642788353024*T^2 + 28330982281309157462016
97 97 9 7
T 12 + ⋯ + 20 ⋯ 44 T^{12} + \cdots + 20\!\cdots\!44 T 1 2 + ⋯ + 2 0 ⋯ 4 4
T^12 + 51222*T^10 + 1032257049*T^8 + 10623656461280*T^6 + 59392154690888448*T^4 + 171986887235457466368*T^2 + 202357407971477029126144
show more
show less