Properties

Label 2160.3.c.p
Level 21602160
Weight 33
Character orbit 2160.c
Analytic conductor 58.85658.856
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,3,Mod(1889,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.1889"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 2160=24335 2160 = 2^{4} \cdot 3^{3} \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 2160.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 58.855737101858.8557371018
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12+76x10+1798x8+15824x6+40465x4+25444x2+196 x^{12} + 76x^{10} + 1798x^{8} + 15824x^{6} + 40465x^{4} + 25444x^{2} + 196 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 21234 2^{12}\cdot 3^{4}
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β6q5β5q7β9q11+β8q13+β4q17+β2q19+(β7+β6++β2)q23+(β10β9+β3)q25++(3β11+2β10+7)q97+O(q100) q + \beta_{6} q^{5} - \beta_{5} q^{7} - \beta_{9} q^{11} + \beta_{8} q^{13} + \beta_{4} q^{17} + \beta_{2} q^{19} + ( - \beta_{7} + \beta_{6} + \cdots + \beta_{2}) q^{23} + (\beta_{10} - \beta_{9} + \cdots - \beta_{3}) q^{25}+ \cdots + (3 \beta_{11} + 2 \beta_{10} + \cdots - 7) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+6q5+6q2512q3130q35+48q4724q4960q5330q55120q61108q65+204q7772q7984q8384q8548q9196q95+O(q100) 12 q + 6 q^{5} + 6 q^{25} - 12 q^{31} - 30 q^{35} + 48 q^{47} - 24 q^{49} - 60 q^{53} - 30 q^{55} - 120 q^{61} - 108 q^{65} + 204 q^{77} - 72 q^{79} - 84 q^{83} - 84 q^{85} - 48 q^{91} - 96 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12+76x10+1798x8+15824x6+40465x4+25444x2+196 x^{12} + 76x^{10} + 1798x^{8} + 15824x^{6} + 40465x^{4} + 25444x^{2} + 196 : Copy content Toggle raw display

β1\beta_{1}== (1299ν1097172ν82221126ν618048418ν434496851ν29205598)/1579965 ( -1299\nu^{10} - 97172\nu^{8} - 2221126\nu^{6} - 18048418\nu^{4} - 34496851\nu^{2} - 9205598 ) / 1579965 Copy content Toggle raw display
β2\beta_{2}== (4703ν10339565ν87302111ν654640101ν485130140ν2+19243268)/2106620 ( -4703\nu^{10} - 339565\nu^{8} - 7302111\nu^{6} - 54640101\nu^{4} - 85130140\nu^{2} + 19243268 ) / 2106620 Copy content Toggle raw display
β3\beta_{3}== (2507ν10190618ν84460178ν636630480ν461554583ν25948478)/1053310 ( -2507\nu^{10} - 190618\nu^{8} - 4460178\nu^{6} - 36630480\nu^{4} - 61554583\nu^{2} - 5948478 ) / 1053310 Copy content Toggle raw display
β4\beta_{4}== (15143ν10+1144371ν8+26783999ν6+230657783ν4+540082056ν2+186344612)/6319860 ( 15143\nu^{10} + 1144371\nu^{8} + 26783999\nu^{6} + 230657783\nu^{4} + 540082056\nu^{2} + 186344612 ) / 6319860 Copy content Toggle raw display
β5\beta_{5}== (29933ν112302068ν955822864ν7518268874ν5+1220950086ν)/29492680 ( - 29933 \nu^{11} - 2302068 \nu^{9} - 55822864 \nu^{7} - 518268874 \nu^{5} + \cdots - 1220950086 \nu ) / 29492680 Copy content Toggle raw display
β6\beta_{6}== (50555ν11824ν10+3843242ν984668ν8+91057122ν7++22344848)/25279440 ( 50555 \nu^{11} - 824 \nu^{10} + 3843242 \nu^{9} - 84668 \nu^{8} + 91057122 \nu^{7} + \cdots + 22344848 ) / 25279440 Copy content Toggle raw display
β7\beta_{7}== (50555ν11+824ν10+3843242ν9+84668ν8+91057122ν7++2934592)/25279440 ( 50555 \nu^{11} + 824 \nu^{10} + 3843242 \nu^{9} + 84668 \nu^{8} + 91057122 \nu^{7} + \cdots + 2934592 ) / 25279440 Copy content Toggle raw display
β8\beta_{8}== (38866ν112925949ν967873097ν7571720619ν51237923375ν3317870642ν)/14746340 ( - 38866 \nu^{11} - 2925949 \nu^{9} - 67873097 \nu^{7} - 571720619 \nu^{5} - 1237923375 \nu^{3} - 317870642 \nu ) / 14746340 Copy content Toggle raw display
β9\beta_{9}== (638811ν1148521048ν91146131464ν710042470682ν5+16055179562ν)/88478040 ( - 638811 \nu^{11} - 48521048 \nu^{9} - 1146131464 \nu^{7} - 10042470682 \nu^{5} + \cdots - 16055179562 \nu ) / 88478040 Copy content Toggle raw display
β10\beta_{10}== (723619ν1168922ν1054817776ν95285140ν81288120840ν7++7920668)/88478040 ( - 723619 \nu^{11} - 68922 \nu^{10} - 54817776 \nu^{9} - 5285140 \nu^{8} - 1288120840 \nu^{7} + \cdots + 7920668 ) / 88478040 Copy content Toggle raw display
β11\beta_{11}== (844871ν1164192458ν91516990574ν713292195192ν5+18475789382ν)/88478040 ( - 844871 \nu^{11} - 64192458 \nu^{9} - 1516990574 \nu^{7} - 13292195192 \nu^{5} + \cdots - 18475789382 \nu ) / 88478040 Copy content Toggle raw display
ν\nu== (3β11+2β10+β9+6β8+7β7+7β6+17β5β3+β17)/48 ( -3\beta_{11} + 2\beta_{10} + \beta_{9} + 6\beta_{8} + 7\beta_{7} + 7\beta_{6} + 17\beta_{5} - \beta_{3} + \beta _1 - 7 ) / 48 Copy content Toggle raw display
ν2\nu^{2}== (20β7+20β6+4β42β3+4β2+5β1152)/12 ( -20\beta_{7} + 20\beta_{6} + 4\beta_{4} - 2\beta_{3} + 4\beta_{2} + 5\beta _1 - 152 ) / 12 Copy content Toggle raw display
ν3\nu^{3}== (135β11+14β10161β9210β8191β7191β6++191)/48 ( 135 \beta_{11} + 14 \beta_{10} - 161 \beta_{9} - 210 \beta_{8} - 191 \beta_{7} - 191 \beta_{6} + \cdots + 191 ) / 48 Copy content Toggle raw display
ν4\nu^{4}== (366β7366β684β4+64β356β2249β1+2180)/6 ( 366\beta_{7} - 366\beta_{6} - 84\beta_{4} + 64\beta_{3} - 56\beta_{2} - 249\beta _1 + 2180 ) / 6 Copy content Toggle raw display
ν5\nu^{5}== (5189β112450β10+7791β9+8882β8+6345β7+6345β6+6345)/48 ( - 5189 \beta_{11} - 2450 \beta_{10} + 7791 \beta_{9} + 8882 \beta_{8} + 6345 \beta_{7} + 6345 \beta_{6} + \cdots - 6345 ) / 48 Copy content Toggle raw display
ν6\nu^{6}== (28276β7+28276β6+7196β45730β3+3708β2+25249β1153008)/12 ( -28276\beta_{7} + 28276\beta_{6} + 7196\beta_{4} - 5730\beta_{3} + 3708\beta_{2} + 25249\beta _1 - 153008 ) / 12 Copy content Toggle raw display
ν7\nu^{7}== (207005β11+130570β10334787β9370382β8231725β7++231725)/48 ( 207005 \beta_{11} + 130570 \beta_{10} - 334787 \beta_{9} - 370382 \beta_{8} - 231725 \beta_{7} + \cdots + 231725 ) / 48 Copy content Toggle raw display
ν8\nu^{8}== 94387β794387β625058β4+20053β311412β292608β1+489238 94387\beta_{7} - 94387\beta_{6} - 25058\beta_{4} + 20053\beta_{3} - 11412\beta_{2} - 92608\beta _1 + 489238 Copy content Toggle raw display
ν9\nu^{9}== (8405067β115818174β10+13924585β9+15291702β8+8969551β7+8969551)/48 ( - 8405067 \beta_{11} - 5818174 \beta_{10} + 13924585 \beta_{9} + 15291702 \beta_{8} + 8969551 \beta_{7} + \cdots - 8969551 ) / 48 Copy content Toggle raw display
ν10\nu^{10}== (46018652β7+46018652β6+12417364β49928586β3+5353828β2+234173072)/12 ( - 46018652 \beta_{7} + 46018652 \beta_{6} + 12417364 \beta_{4} - 9928586 \beta_{3} + 5353828 \beta_{2} + \cdots - 234173072 ) / 12 Copy content Toggle raw display
ν11\nu^{11}== (343313415β11+245567822β10573120017β9628426914β8++357893903)/48 ( 343313415 \beta_{11} + 245567822 \beta_{10} - 573120017 \beta_{9} - 628426914 \beta_{8} + \cdots + 357893903 ) / 48 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2160Z)×\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times.

nn 271271 12971297 16211621 20812081
χ(n)\chi(n) 11 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1889.1
6.39900i
6.39900i
3.85006i
3.85006i
0.0883156i
0.0883156i
4.07393i
4.07393i
0.960866i
0.960866i
1.64375i
1.64375i
0 0 0 −4.26321 2.61249i 0 5.45716i 0 0 0
1889.2 0 0 0 −4.26321 + 2.61249i 0 5.45716i 0 0 0
1889.3 0 0 0 −4.03477 2.95308i 0 7.07219i 0 0 0
1889.4 0 0 0 −4.03477 + 2.95308i 0 7.07219i 0 0 0
1889.5 0 0 0 0.918129 4.91498i 0 3.61989i 0 0 0
1889.6 0 0 0 0.918129 + 4.91498i 0 3.61989i 0 0 0
1889.7 0 0 0 1.66938 4.71308i 0 8.68251i 0 0 0
1889.8 0 0 0 1.66938 + 4.71308i 0 8.68251i 0 0 0
1889.9 0 0 0 3.86538 3.17156i 0 6.00695i 0 0 0
1889.10 0 0 0 3.86538 + 3.17156i 0 6.00695i 0 0 0
1889.11 0 0 0 4.84508 1.23501i 0 10.0812i 0 0 0
1889.12 0 0 0 4.84508 + 1.23501i 0 10.0812i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1889.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.3.c.p 12
3.b odd 2 1 2160.3.c.o 12
4.b odd 2 1 1080.3.c.b yes 12
5.b even 2 1 2160.3.c.o 12
12.b even 2 1 1080.3.c.a 12
15.d odd 2 1 inner 2160.3.c.p 12
20.d odd 2 1 1080.3.c.a 12
60.h even 2 1 1080.3.c.b yes 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.3.c.a 12 12.b even 2 1
1080.3.c.a 12 20.d odd 2 1
1080.3.c.b yes 12 4.b odd 2 1
1080.3.c.b yes 12 60.h even 2 1
2160.3.c.o 12 3.b odd 2 1
2160.3.c.o 12 5.b even 2 1
2160.3.c.p 12 1.a even 1 1 trivial
2160.3.c.p 12 15.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(2160,[χ])S_{3}^{\mathrm{new}}(2160, [\chi]):

T712+306T710+36381T78+2141348T76+65457468T74+975048384T72+5395783936 T_{7}^{12} + 306T_{7}^{10} + 36381T_{7}^{8} + 2141348T_{7}^{6} + 65457468T_{7}^{4} + 975048384T_{7}^{2} + 5395783936 Copy content Toggle raw display
T176888T1743744T173+148383T172+413316T175972292 T_{17}^{6} - 888T_{17}^{4} - 3744T_{17}^{3} + 148383T_{17}^{2} + 413316T_{17} - 5972292 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12++244140625 T^{12} + \cdots + 244140625 Copy content Toggle raw display
77 T12++5395783936 T^{12} + \cdots + 5395783936 Copy content Toggle raw display
1111 T12++20519989504 T^{12} + \cdots + 20519989504 Copy content Toggle raw display
1313 T12++28052230144 T^{12} + \cdots + 28052230144 Copy content Toggle raw display
1717 (T6888T4+5972292)2 (T^{6} - 888 T^{4} + \cdots - 5972292)^{2} Copy content Toggle raw display
1919 (T61260T4+4083056)2 (T^{6} - 1260 T^{4} + \cdots - 4083056)^{2} Copy content Toggle raw display
2323 (T62082T4++25322992)2 (T^{6} - 2082 T^{4} + \cdots + 25322992)^{2} Copy content Toggle raw display
2929 T12++15556650532864 T^{12} + \cdots + 15556650532864 Copy content Toggle raw display
3131 (T6+6T5+321489)2 (T^{6} + 6 T^{5} + \cdots - 321489)^{2} Copy content Toggle raw display
3737 T12++12 ⁣ ⁣24 T^{12} + \cdots + 12\!\cdots\!24 Copy content Toggle raw display
4141 T12++79 ⁣ ⁣96 T^{12} + \cdots + 79\!\cdots\!96 Copy content Toggle raw display
4343 T12++17 ⁣ ⁣04 T^{12} + \cdots + 17\!\cdots\!04 Copy content Toggle raw display
4747 (T624T5+65183616)2 (T^{6} - 24 T^{5} + \cdots - 65183616)^{2} Copy content Toggle raw display
5353 (T6+30T5+979723913)2 (T^{6} + 30 T^{5} + \cdots - 979723913)^{2} Copy content Toggle raw display
5959 T12++72 ⁣ ⁣16 T^{12} + \cdots + 72\!\cdots\!16 Copy content Toggle raw display
6161 (T6+60T5+7714816112)2 (T^{6} + 60 T^{5} + \cdots - 7714816112)^{2} Copy content Toggle raw display
6767 T12++52 ⁣ ⁣16 T^{12} + \cdots + 52\!\cdots\!16 Copy content Toggle raw display
7171 T12++11 ⁣ ⁣64 T^{12} + \cdots + 11\!\cdots\!64 Copy content Toggle raw display
7373 T12++24 ⁣ ⁣64 T^{12} + \cdots + 24\!\cdots\!64 Copy content Toggle raw display
7979 (T6+36T5++115534145692)2 (T^{6} + 36 T^{5} + \cdots + 115534145692)^{2} Copy content Toggle raw display
8383 (T6+42T5+56368474079)2 (T^{6} + 42 T^{5} + \cdots - 56368474079)^{2} Copy content Toggle raw display
8989 T12++28 ⁣ ⁣16 T^{12} + \cdots + 28\!\cdots\!16 Copy content Toggle raw display
9797 T12++20 ⁣ ⁣44 T^{12} + \cdots + 20\!\cdots\!44 Copy content Toggle raw display
show more
show less