Properties

Label 2160.3.c.k
Level $2160$
Weight $3$
Character orbit 2160.c
Analytic conductor $58.856$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,3,Mod(1889,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.1889");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - \beta_{2}) q^{5} + \beta_1 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{3} - \beta_{2}) q^{5} + \beta_1 q^{7} + (\beta_{3} - 2 \beta_{2}) q^{11} + 7 \beta_1 q^{13} + 4 \beta_{3} q^{17} + 31 q^{19} - 7 \beta_{3} q^{23} + ( - 5 \beta_1 - 20) q^{25} + (5 \beta_{3} - 10 \beta_{2}) q^{29} + 16 q^{31} + (4 \beta_{3} + \beta_{2}) q^{35} + 9 \beta_1 q^{37} + ( - 5 \beta_{3} + 10 \beta_{2}) q^{41} + 16 \beta_1 q^{43} - 4 \beta_{3} q^{47} + 40 q^{49} + 13 \beta_{3} q^{53} + ( - 5 \beta_1 - 45) q^{55} + ( - 4 \beta_{3} + 8 \beta_{2}) q^{59} - q^{61} + (28 \beta_{3} + 7 \beta_{2}) q^{65} - 7 \beta_1 q^{67} + ( - 3 \beta_{3} + 6 \beta_{2}) q^{71} + 9 \beta_1 q^{73} + 9 \beta_{3} q^{77} + q^{79} + 35 \beta_{3} q^{83} + ( - 20 \beta_1 + 20) q^{85} + (12 \beta_{3} - 24 \beta_{2}) q^{89} - 63 q^{91} + (31 \beta_{3} - 31 \beta_{2}) q^{95} - 31 \beta_1 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 124 q^{19} - 80 q^{25} + 64 q^{31} + 160 q^{49} - 180 q^{55} - 4 q^{61} + 4 q^{79} + 80 q^{85} - 252 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 3\nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 10\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 5\nu ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -10\beta_{3} + 5\beta_{2} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1889.1
−1.58114 + 1.58114i
−1.58114 1.58114i
1.58114 + 1.58114i
1.58114 1.58114i
0 0 0 −1.58114 4.74342i 0 3.00000i 0 0 0
1889.2 0 0 0 −1.58114 + 4.74342i 0 3.00000i 0 0 0
1889.3 0 0 0 1.58114 4.74342i 0 3.00000i 0 0 0
1889.4 0 0 0 1.58114 + 4.74342i 0 3.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.3.c.k 4
3.b odd 2 1 inner 2160.3.c.k 4
4.b odd 2 1 135.3.d.g 4
5.b even 2 1 inner 2160.3.c.k 4
12.b even 2 1 135.3.d.g 4
15.d odd 2 1 inner 2160.3.c.k 4
20.d odd 2 1 135.3.d.g 4
20.e even 4 1 675.3.c.f 2
20.e even 4 1 675.3.c.g 2
36.f odd 6 2 405.3.h.i 8
36.h even 6 2 405.3.h.i 8
60.h even 2 1 135.3.d.g 4
60.l odd 4 1 675.3.c.f 2
60.l odd 4 1 675.3.c.g 2
180.n even 6 2 405.3.h.i 8
180.p odd 6 2 405.3.h.i 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.3.d.g 4 4.b odd 2 1
135.3.d.g 4 12.b even 2 1
135.3.d.g 4 20.d odd 2 1
135.3.d.g 4 60.h even 2 1
405.3.h.i 8 36.f odd 6 2
405.3.h.i 8 36.h even 6 2
405.3.h.i 8 180.n even 6 2
405.3.h.i 8 180.p odd 6 2
675.3.c.f 2 20.e even 4 1
675.3.c.f 2 60.l odd 4 1
675.3.c.g 2 20.e even 4 1
675.3.c.g 2 60.l odd 4 1
2160.3.c.k 4 1.a even 1 1 trivial
2160.3.c.k 4 3.b odd 2 1 inner
2160.3.c.k 4 5.b even 2 1 inner
2160.3.c.k 4 15.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(2160, [\chi])\):

\( T_{7}^{2} + 9 \) Copy content Toggle raw display
\( T_{17}^{2} - 160 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 40T^{2} + 625 \) Copy content Toggle raw display
$7$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 90)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 441)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 160)^{2} \) Copy content Toggle raw display
$19$ \( (T - 31)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 490)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 2250)^{2} \) Copy content Toggle raw display
$31$ \( (T - 16)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 729)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 2250)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 2304)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 160)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 1690)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 1440)^{2} \) Copy content Toggle raw display
$61$ \( (T + 1)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 441)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 810)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 729)^{2} \) Copy content Toggle raw display
$79$ \( (T - 1)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 12250)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 12960)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 8649)^{2} \) Copy content Toggle raw display
show more
show less