Properties

Label 2160.3.c.j
Level $2160$
Weight $3$
Character orbit 2160.c
Analytic conductor $58.856$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,3,Mod(1889,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.1889");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 3 \zeta_{8}^{3} + 4 \zeta_{8}) q^{5} - 11 \zeta_{8}^{2} q^{7} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - 3 \zeta_{8}^{3} + 4 \zeta_{8}) q^{5} - 11 \zeta_{8}^{2} q^{7} + (5 \zeta_{8}^{3} + 5 \zeta_{8}) q^{11} + 15 \zeta_{8}^{2} q^{13} + (16 \zeta_{8}^{3} - 16 \zeta_{8}) q^{17} + 3 q^{19} + (13 \zeta_{8}^{3} - 13 \zeta_{8}) q^{23} + (7 \zeta_{8}^{2} + 24) q^{25} + (9 \zeta_{8}^{3} + 9 \zeta_{8}) q^{29} + 8 q^{31} + ( - 44 \zeta_{8}^{3} - 33 \zeta_{8}) q^{35} + 65 \zeta_{8}^{2} q^{37} + (55 \zeta_{8}^{3} + 55 \zeta_{8}) q^{41} + 32 \zeta_{8}^{2} q^{43} + (40 \zeta_{8}^{3} - 40 \zeta_{8}) q^{47} - 72 q^{49} + (9 \zeta_{8}^{3} - 9 \zeta_{8}) q^{53} + (35 \zeta_{8}^{2} - 5) q^{55} + (56 \zeta_{8}^{3} + 56 \zeta_{8}) q^{59} + 95 q^{61} + (60 \zeta_{8}^{3} + 45 \zeta_{8}) q^{65} - 19 \zeta_{8}^{2} q^{67} + ( - 3 \zeta_{8}^{3} - 3 \zeta_{8}) q^{71} - 119 \zeta_{8}^{2} q^{73} + ( - 55 \zeta_{8}^{3} + 55 \zeta_{8}) q^{77} - 99 q^{79} + ( - 77 \zeta_{8}^{3} + 77 \zeta_{8}) q^{83} + ( - 16 \zeta_{8}^{2} - 112) q^{85} + ( - 64 \zeta_{8}^{3} - 64 \zeta_{8}) q^{89} + 165 q^{91} + ( - 9 \zeta_{8}^{3} + 12 \zeta_{8}) q^{95} - 95 \zeta_{8}^{2} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 12 q^{19} + 96 q^{25} + 32 q^{31} - 288 q^{49} - 20 q^{55} + 380 q^{61} - 396 q^{79} - 448 q^{85} + 660 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1889.1
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
0.707107 + 0.707107i
0 0 0 −4.94975 0.707107i 0 11.0000i 0 0 0
1889.2 0 0 0 −4.94975 + 0.707107i 0 11.0000i 0 0 0
1889.3 0 0 0 4.94975 0.707107i 0 11.0000i 0 0 0
1889.4 0 0 0 4.94975 + 0.707107i 0 11.0000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.3.c.j 4
3.b odd 2 1 inner 2160.3.c.j 4
4.b odd 2 1 270.3.b.b 4
5.b even 2 1 inner 2160.3.c.j 4
12.b even 2 1 270.3.b.b 4
15.d odd 2 1 inner 2160.3.c.j 4
20.d odd 2 1 270.3.b.b 4
20.e even 4 1 1350.3.d.b 2
20.e even 4 1 1350.3.d.j 2
36.f odd 6 2 810.3.j.b 8
36.h even 6 2 810.3.j.b 8
60.h even 2 1 270.3.b.b 4
60.l odd 4 1 1350.3.d.b 2
60.l odd 4 1 1350.3.d.j 2
180.n even 6 2 810.3.j.b 8
180.p odd 6 2 810.3.j.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.3.b.b 4 4.b odd 2 1
270.3.b.b 4 12.b even 2 1
270.3.b.b 4 20.d odd 2 1
270.3.b.b 4 60.h even 2 1
810.3.j.b 8 36.f odd 6 2
810.3.j.b 8 36.h even 6 2
810.3.j.b 8 180.n even 6 2
810.3.j.b 8 180.p odd 6 2
1350.3.d.b 2 20.e even 4 1
1350.3.d.b 2 60.l odd 4 1
1350.3.d.j 2 20.e even 4 1
1350.3.d.j 2 60.l odd 4 1
2160.3.c.j 4 1.a even 1 1 trivial
2160.3.c.j 4 3.b odd 2 1 inner
2160.3.c.j 4 5.b even 2 1 inner
2160.3.c.j 4 15.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(2160, [\chi])\):

\( T_{7}^{2} + 121 \) Copy content Toggle raw display
\( T_{17}^{2} - 512 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 48T^{2} + 625 \) Copy content Toggle raw display
$7$ \( (T^{2} + 121)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 50)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 225)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 512)^{2} \) Copy content Toggle raw display
$19$ \( (T - 3)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 338)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 162)^{2} \) Copy content Toggle raw display
$31$ \( (T - 8)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 4225)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 6050)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 1024)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 3200)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 162)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 6272)^{2} \) Copy content Toggle raw display
$61$ \( (T - 95)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 361)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 14161)^{2} \) Copy content Toggle raw display
$79$ \( (T + 99)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 11858)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 8192)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 9025)^{2} \) Copy content Toggle raw display
show more
show less