Properties

Label 2160.3.bs.a.881.2
Level $2160$
Weight $3$
Character 2160.881
Analytic conductor $58.856$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,3,Mod(881,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.881");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 881.2
Root \(-1.93649 - 1.11803i\) of defining polynomial
Character \(\chi\) \(=\) 2160.881
Dual form 2160.3.bs.a.1601.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.93649 + 1.11803i) q^{5} +(1.87298 + 3.24410i) q^{7} +O(q^{10})\) \(q+(1.93649 + 1.11803i) q^{5} +(1.87298 + 3.24410i) q^{7} +(-10.1190 + 5.84218i) q^{11} +(1.12702 - 1.95205i) q^{13} -11.6844i q^{17} +26.7460 q^{19} +(-17.2379 - 9.95231i) q^{23} +(2.50000 + 4.33013i) q^{25} +(38.2379 - 22.0767i) q^{29} +(-26.1109 + 45.2254i) q^{31} +8.37624i q^{35} +14.0000 q^{37} +(22.5000 + 12.9904i) q^{41} +(20.9919 + 36.3591i) q^{43} +(39.3810 - 22.7367i) q^{47} +(17.4839 - 30.2829i) q^{49} +10.8323i q^{53} -26.1270 q^{55} +(-31.8810 - 18.4065i) q^{59} +(22.6190 + 39.1772i) q^{61} +(4.36492 - 2.52009i) q^{65} +(-49.9758 + 86.5606i) q^{67} +102.603i q^{71} -13.7621 q^{73} +(-37.9052 - 21.8846i) q^{77} +(28.3810 + 49.1574i) q^{79} +(-78.0000 + 45.0333i) q^{83} +(13.0635 - 22.6267i) q^{85} +95.2349i q^{89} +8.44353 q^{91} +(51.7933 + 29.9029i) q^{95} +(50.8488 + 88.0727i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{7} + 6 q^{11} + 20 q^{13} + 76 q^{19} + 24 q^{23} + 10 q^{25} + 60 q^{29} + 4 q^{31} + 56 q^{37} + 90 q^{41} + 22 q^{43} + 204 q^{47} - 54 q^{49} - 120 q^{55} - 174 q^{59} + 44 q^{61} - 60 q^{65} - 14 q^{67} - 148 q^{73} - 384 q^{77} + 160 q^{79} - 312 q^{83} + 60 q^{85} - 400 q^{91} + 60 q^{95} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.93649 + 1.11803i 0.387298 + 0.223607i
\(6\) 0 0
\(7\) 1.87298 + 3.24410i 0.267569 + 0.463443i 0.968234 0.250048i \(-0.0804463\pi\)
−0.700664 + 0.713491i \(0.747113\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −10.1190 + 5.84218i −0.919905 + 0.531107i −0.883605 0.468234i \(-0.844891\pi\)
−0.0362999 + 0.999341i \(0.511557\pi\)
\(12\) 0 0
\(13\) 1.12702 1.95205i 0.0866936 0.150158i −0.819418 0.573196i \(-0.805703\pi\)
0.906112 + 0.423039i \(0.139037\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 11.6844i 0.687315i −0.939095 0.343658i \(-0.888334\pi\)
0.939095 0.343658i \(-0.111666\pi\)
\(18\) 0 0
\(19\) 26.7460 1.40768 0.703841 0.710357i \(-0.251467\pi\)
0.703841 + 0.710357i \(0.251467\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −17.2379 9.95231i −0.749474 0.432709i 0.0760299 0.997106i \(-0.475776\pi\)
−0.825504 + 0.564397i \(0.809109\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 38.2379 22.0767i 1.31855 0.761264i 0.335053 0.942199i \(-0.391246\pi\)
0.983495 + 0.180935i \(0.0579124\pi\)
\(30\) 0 0
\(31\) −26.1109 + 45.2254i −0.842287 + 1.45888i 0.0456704 + 0.998957i \(0.485458\pi\)
−0.887957 + 0.459927i \(0.847876\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.37624i 0.239321i
\(36\) 0 0
\(37\) 14.0000 0.378378 0.189189 0.981941i \(-0.439414\pi\)
0.189189 + 0.981941i \(0.439414\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 22.5000 + 12.9904i 0.548780 + 0.316839i 0.748630 0.662988i \(-0.230712\pi\)
−0.199849 + 0.979827i \(0.564045\pi\)
\(42\) 0 0
\(43\) 20.9919 + 36.3591i 0.488184 + 0.845560i 0.999908 0.0135900i \(-0.00432598\pi\)
−0.511723 + 0.859150i \(0.670993\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 39.3810 22.7367i 0.837895 0.483759i −0.0186534 0.999826i \(-0.505938\pi\)
0.856548 + 0.516067i \(0.172605\pi\)
\(48\) 0 0
\(49\) 17.4839 30.2829i 0.356814 0.618019i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.8323i 0.204383i 0.994765 + 0.102192i \(0.0325855\pi\)
−0.994765 + 0.102192i \(0.967415\pi\)
\(54\) 0 0
\(55\) −26.1270 −0.475037
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −31.8810 18.4065i −0.540357 0.311975i 0.204867 0.978790i \(-0.434324\pi\)
−0.745224 + 0.666815i \(0.767657\pi\)
\(60\) 0 0
\(61\) 22.6190 + 39.1772i 0.370802 + 0.642249i 0.989689 0.143232i \(-0.0457494\pi\)
−0.618887 + 0.785480i \(0.712416\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.36492 2.52009i 0.0671526 0.0387706i
\(66\) 0 0
\(67\) −49.9758 + 86.5606i −0.745907 + 1.29195i 0.203862 + 0.979000i \(0.434651\pi\)
−0.949770 + 0.312950i \(0.898683\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 102.603i 1.44511i 0.691312 + 0.722557i \(0.257033\pi\)
−0.691312 + 0.722557i \(0.742967\pi\)
\(72\) 0 0
\(73\) −13.7621 −0.188522 −0.0942610 0.995548i \(-0.530049\pi\)
−0.0942610 + 0.995548i \(0.530049\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −37.9052 21.8846i −0.492276 0.284216i
\(78\) 0 0
\(79\) 28.3810 + 49.1574i 0.359254 + 0.622246i 0.987836 0.155497i \(-0.0496979\pi\)
−0.628583 + 0.777743i \(0.716365\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −78.0000 + 45.0333i −0.939759 + 0.542570i −0.889885 0.456185i \(-0.849215\pi\)
−0.0498743 + 0.998756i \(0.515882\pi\)
\(84\) 0 0
\(85\) 13.0635 22.6267i 0.153688 0.266196i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 95.2349i 1.07005i 0.844835 + 0.535027i \(0.179699\pi\)
−0.844835 + 0.535027i \(0.820301\pi\)
\(90\) 0 0
\(91\) 8.44353 0.0927861
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 51.7933 + 29.9029i 0.545193 + 0.314767i
\(96\) 0 0
\(97\) 50.8488 + 88.0727i 0.524214 + 0.907966i 0.999603 + 0.0281897i \(0.00897424\pi\)
−0.475388 + 0.879776i \(0.657692\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 87.7621 50.6695i 0.868932 0.501678i 0.00193860 0.999998i \(-0.499383\pi\)
0.866993 + 0.498320i \(0.166050\pi\)
\(102\) 0 0
\(103\) 8.14315 14.1043i 0.0790597 0.136935i −0.823785 0.566903i \(-0.808142\pi\)
0.902844 + 0.429967i \(0.141475\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 84.8705i 0.793182i −0.917995 0.396591i \(-0.870193\pi\)
0.917995 0.396591i \(-0.129807\pi\)
\(108\) 0 0
\(109\) −161.968 −1.48594 −0.742971 0.669323i \(-0.766584\pi\)
−0.742971 + 0.669323i \(0.766584\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 3.46410i −0.0530973 0.0306558i 0.473216 0.880946i \(-0.343093\pi\)
−0.526314 + 0.850290i \(0.676426\pi\)
\(114\) 0 0
\(115\) −22.2540 38.5451i −0.193513 0.335175i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 37.9052 21.8846i 0.318532 0.183904i
\(120\) 0 0
\(121\) 7.76210 13.4444i 0.0641496 0.111110i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 225.903 1.77877 0.889383 0.457163i \(-0.151135\pi\)
0.889383 + 0.457163i \(0.151135\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −81.7137 47.1774i −0.623769 0.360133i 0.154566 0.987982i \(-0.450602\pi\)
−0.778335 + 0.627849i \(0.783935\pi\)
\(132\) 0 0
\(133\) 50.0948 + 86.7667i 0.376652 + 0.652381i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −179.595 + 103.689i −1.31091 + 0.756855i −0.982247 0.187592i \(-0.939932\pi\)
−0.328664 + 0.944447i \(0.606598\pi\)
\(138\) 0 0
\(139\) 16.3569 28.3309i 0.117675 0.203819i −0.801171 0.598436i \(-0.795789\pi\)
0.918846 + 0.394616i \(0.129123\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 26.3369i 0.184174i
\(144\) 0 0
\(145\) 98.7298 0.680895
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18.3327 10.5844i −0.123038 0.0710360i 0.437218 0.899356i \(-0.355964\pi\)
−0.560256 + 0.828320i \(0.689297\pi\)
\(150\) 0 0
\(151\) −137.714 238.527i −0.912011 1.57965i −0.811219 0.584742i \(-0.801196\pi\)
−0.100792 0.994908i \(-0.532138\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −101.127 + 58.3857i −0.652432 + 0.376682i
\(156\) 0 0
\(157\) −89.9677 + 155.829i −0.573043 + 0.992539i 0.423208 + 0.906032i \(0.360904\pi\)
−0.996251 + 0.0865070i \(0.972430\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 74.5620i 0.463118i
\(162\) 0 0
\(163\) 264.411 1.62216 0.811078 0.584939i \(-0.198881\pi\)
0.811078 + 0.584939i \(0.198881\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 149.522 + 86.3267i 0.895342 + 0.516926i 0.875686 0.482881i \(-0.160410\pi\)
0.0196561 + 0.999807i \(0.493743\pi\)
\(168\) 0 0
\(169\) 81.9597 + 141.958i 0.484968 + 0.839990i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −254.903 + 147.168i −1.47343 + 0.850685i −0.999553 0.0299069i \(-0.990479\pi\)
−0.473876 + 0.880591i \(0.657146\pi\)
\(174\) 0 0
\(175\) −9.36492 + 16.2205i −0.0535138 + 0.0926886i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 64.1138i 0.358178i 0.983833 + 0.179089i \(0.0573150\pi\)
−0.983833 + 0.179089i \(0.942685\pi\)
\(180\) 0 0
\(181\) 291.206 1.60887 0.804435 0.594040i \(-0.202468\pi\)
0.804435 + 0.594040i \(0.202468\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 27.1109 + 15.6525i 0.146545 + 0.0846080i
\(186\) 0 0
\(187\) 68.2621 + 118.233i 0.365038 + 0.632264i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.8085 7.97231i 0.0722956 0.0417399i −0.463416 0.886141i \(-0.653377\pi\)
0.535712 + 0.844401i \(0.320043\pi\)
\(192\) 0 0
\(193\) 122.357 211.928i 0.633973 1.09807i −0.352758 0.935714i \(-0.614756\pi\)
0.986732 0.162360i \(-0.0519104\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 210.374i 1.06789i 0.845519 + 0.533945i \(0.179291\pi\)
−0.845519 + 0.533945i \(0.820709\pi\)
\(198\) 0 0
\(199\) 102.730 0.516230 0.258115 0.966114i \(-0.416899\pi\)
0.258115 + 0.966114i \(0.416899\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 143.238 + 82.6984i 0.705605 + 0.407381i
\(204\) 0 0
\(205\) 29.0474 + 50.3115i 0.141695 + 0.245422i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −270.641 + 156.255i −1.29493 + 0.747630i
\(210\) 0 0
\(211\) −113.984 + 197.426i −0.540208 + 0.935668i 0.458684 + 0.888600i \(0.348321\pi\)
−0.998892 + 0.0470680i \(0.985012\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 93.8788i 0.436645i
\(216\) 0 0
\(217\) −195.621 −0.901479
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −22.8085 13.1685i −0.103206 0.0595858i
\(222\) 0 0
\(223\) −139.681 241.935i −0.626374 1.08491i −0.988273 0.152695i \(-0.951205\pi\)
0.361899 0.932217i \(-0.382128\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 215.262 124.282i 0.948291 0.547496i 0.0557415 0.998445i \(-0.482248\pi\)
0.892550 + 0.450949i \(0.148914\pi\)
\(228\) 0 0
\(229\) −78.8891 + 136.640i −0.344494 + 0.596681i −0.985262 0.171054i \(-0.945283\pi\)
0.640768 + 0.767735i \(0.278616\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 332.854i 1.42856i 0.699861 + 0.714279i \(0.253245\pi\)
−0.699861 + 0.714279i \(0.746755\pi\)
\(234\) 0 0
\(235\) 101.681 0.432687
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 207.714 + 119.924i 0.869095 + 0.501772i 0.867047 0.498226i \(-0.166015\pi\)
0.00204759 + 0.999998i \(0.499348\pi\)
\(240\) 0 0
\(241\) 94.7540 + 164.119i 0.393170 + 0.680991i 0.992866 0.119237i \(-0.0380450\pi\)
−0.599696 + 0.800228i \(0.704712\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 67.7147 39.0951i 0.276387 0.159572i
\(246\) 0 0
\(247\) 30.1431 52.2095i 0.122037 0.211374i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 447.114i 1.78133i 0.454661 + 0.890664i \(0.349760\pi\)
−0.454661 + 0.890664i \(0.650240\pi\)
\(252\) 0 0
\(253\) 232.573 0.919259
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 387.308 + 223.613i 1.50704 + 0.870088i 0.999967 + 0.00818336i \(0.00260487\pi\)
0.507070 + 0.861905i \(0.330728\pi\)
\(258\) 0 0
\(259\) 26.2218 + 45.4174i 0.101242 + 0.175357i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −307.046 + 177.273i −1.16748 + 0.674043i −0.953084 0.302705i \(-0.902110\pi\)
−0.214392 + 0.976748i \(0.568777\pi\)
\(264\) 0 0
\(265\) −12.1109 + 20.9767i −0.0457014 + 0.0791572i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 227.367i 0.845229i 0.906310 + 0.422614i \(0.138888\pi\)
−0.906310 + 0.422614i \(0.861112\pi\)
\(270\) 0 0
\(271\) −228.573 −0.843441 −0.421721 0.906726i \(-0.638574\pi\)
−0.421721 + 0.906726i \(0.638574\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −50.5948 29.2109i −0.183981 0.106221i
\(276\) 0 0
\(277\) −220.222 381.435i −0.795024 1.37702i −0.922824 0.385223i \(-0.874125\pi\)
0.127799 0.991800i \(-0.459209\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 272.190 157.149i 0.968646 0.559248i 0.0698227 0.997559i \(-0.477757\pi\)
0.898823 + 0.438311i \(0.144423\pi\)
\(282\) 0 0
\(283\) 133.984 232.067i 0.473441 0.820024i −0.526097 0.850425i \(-0.676345\pi\)
0.999538 + 0.0304006i \(0.00967830\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 97.3231i 0.339105i
\(288\) 0 0
\(289\) 152.476 0.527598
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −268.524 155.033i −0.916465 0.529121i −0.0339593 0.999423i \(-0.510812\pi\)
−0.882506 + 0.470302i \(0.844145\pi\)
\(294\) 0 0
\(295\) −41.1583 71.2882i −0.139520 0.241655i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −38.8548 + 22.4328i −0.129949 + 0.0750262i
\(300\) 0 0
\(301\) −78.6351 + 136.200i −0.261246 + 0.452492i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 101.155i 0.331656i
\(306\) 0 0
\(307\) 495.952 1.61548 0.807739 0.589541i \(-0.200691\pi\)
0.807739 + 0.589541i \(0.200691\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −195.762 113.023i −0.629460 0.363419i 0.151083 0.988521i \(-0.451724\pi\)
−0.780543 + 0.625102i \(0.785057\pi\)
\(312\) 0 0
\(313\) −163.579 283.326i −0.522615 0.905196i −0.999654 0.0263139i \(-0.991623\pi\)
0.477038 0.878882i \(-0.341710\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.09475 4.09616i 0.0223809 0.0129216i −0.488768 0.872414i \(-0.662553\pi\)
0.511149 + 0.859492i \(0.329220\pi\)
\(318\) 0 0
\(319\) −257.952 + 446.785i −0.808626 + 1.40058i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 312.509i 0.967521i
\(324\) 0 0
\(325\) 11.2702 0.0346774
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 147.520 + 85.1708i 0.448389 + 0.258878i
\(330\) 0 0
\(331\) 138.903 + 240.587i 0.419647 + 0.726850i 0.995904 0.0904186i \(-0.0288205\pi\)
−0.576257 + 0.817269i \(0.695487\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −193.555 + 111.749i −0.577777 + 0.333580i
\(336\) 0 0
\(337\) −27.9133 + 48.3473i −0.0828288 + 0.143464i −0.904464 0.426550i \(-0.859729\pi\)
0.821635 + 0.570014i \(0.193062\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 610.178i 1.78938i
\(342\) 0 0
\(343\) 314.540 0.917027
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −440.117 254.102i −1.26835 0.732281i −0.293673 0.955906i \(-0.594878\pi\)
−0.974675 + 0.223625i \(0.928211\pi\)
\(348\) 0 0
\(349\) −69.2379 119.924i −0.198389 0.343621i 0.749617 0.661872i \(-0.230238\pi\)
−0.948006 + 0.318251i \(0.896904\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 498.877 288.027i 1.41325 0.815940i 0.417556 0.908651i \(-0.362887\pi\)
0.995693 + 0.0927114i \(0.0295534\pi\)
\(354\) 0 0
\(355\) −114.714 + 198.690i −0.323137 + 0.559690i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 267.888i 0.746207i 0.927790 + 0.373103i \(0.121706\pi\)
−0.927790 + 0.373103i \(0.878294\pi\)
\(360\) 0 0
\(361\) 354.347 0.981570
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −26.6502 15.3865i −0.0730142 0.0421548i
\(366\) 0 0
\(367\) 30.2379 + 52.3736i 0.0823921 + 0.142707i 0.904277 0.426946i \(-0.140411\pi\)
−0.821885 + 0.569654i \(0.807077\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −35.1411 + 20.2887i −0.0947199 + 0.0546866i
\(372\) 0 0
\(373\) 108.254 187.501i 0.290225 0.502685i −0.683638 0.729822i \(-0.739603\pi\)
0.973863 + 0.227137i \(0.0729364\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 99.5231i 0.263987i
\(378\) 0 0
\(379\) −285.254 −0.752649 −0.376325 0.926488i \(-0.622812\pi\)
−0.376325 + 0.926488i \(0.622812\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 141.665 + 81.7905i 0.369883 + 0.213552i 0.673407 0.739272i \(-0.264830\pi\)
−0.303524 + 0.952824i \(0.598163\pi\)
\(384\) 0 0
\(385\) −48.9355 84.7587i −0.127105 0.220153i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −250.760 + 144.776i −0.644627 + 0.372176i −0.786395 0.617724i \(-0.788055\pi\)
0.141767 + 0.989900i \(0.454721\pi\)
\(390\) 0 0
\(391\) −116.286 + 201.414i −0.297407 + 0.515125i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 126.924i 0.321326i
\(396\) 0 0
\(397\) −66.5081 −0.167527 −0.0837633 0.996486i \(-0.526694\pi\)
−0.0837633 + 0.996486i \(0.526694\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 392.165 + 226.417i 0.977968 + 0.564630i 0.901656 0.432454i \(-0.142352\pi\)
0.0763122 + 0.997084i \(0.475685\pi\)
\(402\) 0 0
\(403\) 58.8548 + 101.940i 0.146042 + 0.252952i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −141.665 + 81.7905i −0.348072 + 0.200959i
\(408\) 0 0
\(409\) −150.435 + 260.562i −0.367813 + 0.637071i −0.989223 0.146415i \(-0.953227\pi\)
0.621410 + 0.783485i \(0.286560\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 137.901i 0.333900i
\(414\) 0 0
\(415\) −201.395 −0.485289
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 103.524 + 59.7697i 0.247074 + 0.142649i 0.618424 0.785845i \(-0.287771\pi\)
−0.371349 + 0.928493i \(0.621105\pi\)
\(420\) 0 0
\(421\) 81.1431 + 140.544i 0.192739 + 0.333834i 0.946157 0.323708i \(-0.104930\pi\)
−0.753418 + 0.657542i \(0.771596\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 50.5948 29.2109i 0.119046 0.0687315i
\(426\) 0 0
\(427\) −84.7298 + 146.756i −0.198431 + 0.343692i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 499.815i 1.15966i −0.814736 0.579832i \(-0.803118\pi\)
0.814736 0.579832i \(-0.196882\pi\)
\(432\) 0 0
\(433\) 739.883 1.70874 0.854368 0.519668i \(-0.173944\pi\)
0.854368 + 0.519668i \(0.173944\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −461.044 266.184i −1.05502 0.609117i
\(438\) 0 0
\(439\) 124.333 + 215.350i 0.283218 + 0.490548i 0.972175 0.234254i \(-0.0752647\pi\)
−0.688958 + 0.724802i \(0.741931\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −78.8831 + 45.5432i −0.178066 + 0.102806i −0.586384 0.810034i \(-0.699449\pi\)
0.408318 + 0.912840i \(0.366116\pi\)
\(444\) 0 0
\(445\) −106.476 + 184.421i −0.239271 + 0.414430i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 93.6705i 0.208620i 0.994545 + 0.104310i \(0.0332634\pi\)
−0.994545 + 0.104310i \(0.966737\pi\)
\(450\) 0 0
\(451\) −303.569 −0.673101
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 16.3508 + 9.44016i 0.0359359 + 0.0207476i
\(456\) 0 0
\(457\) −201.498 349.005i −0.440915 0.763686i 0.556843 0.830618i \(-0.312012\pi\)
−0.997758 + 0.0669313i \(0.978679\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 57.9496 33.4572i 0.125704 0.0725752i −0.435829 0.900029i \(-0.643545\pi\)
0.561533 + 0.827454i \(0.310212\pi\)
\(462\) 0 0
\(463\) 88.8105 153.824i 0.191815 0.332234i −0.754037 0.656832i \(-0.771896\pi\)
0.945852 + 0.324599i \(0.105229\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 620.647i 1.32901i −0.747285 0.664504i \(-0.768643\pi\)
0.747285 0.664504i \(-0.231357\pi\)
\(468\) 0 0
\(469\) −374.415 −0.798327
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −424.833 245.277i −0.898166 0.518557i
\(474\) 0 0
\(475\) 66.8649 + 115.813i 0.140768 + 0.243818i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 146.044 84.3187i 0.304894 0.176031i −0.339745 0.940517i \(-0.610341\pi\)
0.644639 + 0.764487i \(0.277008\pi\)
\(480\) 0 0
\(481\) 15.7782 27.3287i 0.0328030 0.0568164i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 227.403i 0.468871i
\(486\) 0 0
\(487\) −401.935 −0.825330 −0.412665 0.910883i \(-0.635402\pi\)
−0.412665 + 0.910883i \(0.635402\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −307.833 177.727i −0.626950 0.361970i 0.152620 0.988285i \(-0.451229\pi\)
−0.779570 + 0.626315i \(0.784562\pi\)
\(492\) 0 0
\(493\) −257.952 446.785i −0.523228 0.906258i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −332.855 + 192.174i −0.669728 + 0.386668i
\(498\) 0 0
\(499\) −8.30845 + 14.3907i −0.0166502 + 0.0288390i −0.874230 0.485511i \(-0.838634\pi\)
0.857580 + 0.514350i \(0.171967\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 362.522i 0.720721i −0.932813 0.360360i \(-0.882654\pi\)
0.932813 0.360360i \(-0.117346\pi\)
\(504\) 0 0
\(505\) 226.601 0.448714
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 578.286 + 333.874i 1.13612 + 0.655941i 0.945467 0.325717i \(-0.105606\pi\)
0.190655 + 0.981657i \(0.438939\pi\)
\(510\) 0 0
\(511\) −25.7762 44.6457i −0.0504426 0.0873692i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 31.5383 18.2086i 0.0612394 0.0353566i
\(516\) 0 0
\(517\) −265.663 + 460.142i −0.513855 + 0.890024i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 676.352i 1.29818i −0.760712 0.649090i \(-0.775150\pi\)
0.760712 0.649090i \(-0.224850\pi\)
\(522\) 0 0
\(523\) −189.427 −0.362194 −0.181097 0.983465i \(-0.557965\pi\)
−0.181097 + 0.983465i \(0.557965\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 528.429 + 305.089i 1.00271 + 0.578916i
\(528\) 0 0
\(529\) −66.4032 115.014i −0.125526 0.217417i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 50.7157 29.2808i 0.0951515 0.0549357i
\(534\) 0 0
\(535\) 94.8881 164.351i 0.177361 0.307198i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 408.575i 0.758025i
\(540\) 0 0
\(541\) −590.629 −1.09174 −0.545868 0.837871i \(-0.683800\pi\)
−0.545868 + 0.837871i \(0.683800\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −313.649 181.085i −0.575503 0.332267i
\(546\) 0 0
\(547\) −394.782 683.783i −0.721722 1.25006i −0.960309 0.278939i \(-0.910017\pi\)
0.238586 0.971121i \(-0.423316\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1022.71 590.462i 1.85610 1.07162i
\(552\) 0 0
\(553\) −106.314 + 184.142i −0.192250 + 0.332987i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1004.69i 1.80376i −0.431987 0.901880i \(-0.642187\pi\)
0.431987 0.901880i \(-0.357813\pi\)
\(558\) 0 0
\(559\) 94.6330 0.169290
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −272.976 157.603i −0.484859 0.279934i 0.237580 0.971368i \(-0.423646\pi\)
−0.722439 + 0.691434i \(0.756979\pi\)
\(564\) 0 0
\(565\) −7.74597 13.4164i −0.0137097 0.0237459i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 823.923 475.692i 1.44802 0.836015i 0.449656 0.893202i \(-0.351546\pi\)
0.998363 + 0.0571870i \(0.0182131\pi\)
\(570\) 0 0
\(571\) 229.183 396.957i 0.401372 0.695197i −0.592520 0.805556i \(-0.701867\pi\)
0.993892 + 0.110359i \(0.0352001\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 99.5231i 0.173084i
\(576\) 0 0
\(577\) 991.190 1.71783 0.858916 0.512116i \(-0.171138\pi\)
0.858916 + 0.512116i \(0.171138\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −292.185 168.693i −0.502901 0.290350i
\(582\) 0 0
\(583\) −63.2843 109.612i −0.108549 0.188013i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 144.883 83.6483i 0.246820 0.142501i −0.371488 0.928438i \(-0.621152\pi\)
0.618307 + 0.785937i \(0.287819\pi\)
\(588\) 0 0
\(589\) −698.361 + 1209.60i −1.18567 + 2.05364i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 868.330i 1.46430i 0.681143 + 0.732150i \(0.261483\pi\)
−0.681143 + 0.732150i \(0.738517\pi\)
\(594\) 0 0
\(595\) 97.8709 0.164489
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −170.335 98.3428i −0.284365 0.164178i 0.351033 0.936363i \(-0.385831\pi\)
−0.635398 + 0.772185i \(0.719164\pi\)
\(600\) 0 0
\(601\) −332.181 575.355i −0.552715 0.957330i −0.998077 0.0619795i \(-0.980259\pi\)
0.445363 0.895350i \(-0.353075\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 30.0625 17.3566i 0.0496901 0.0286886i
\(606\) 0 0
\(607\) −37.2379 + 64.4979i −0.0613474 + 0.106257i −0.895068 0.445930i \(-0.852873\pi\)
0.833720 + 0.552187i \(0.186206\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 102.498i 0.167755i
\(612\) 0 0
\(613\) −304.569 −0.496849 −0.248425 0.968651i \(-0.579913\pi\)
−0.248425 + 0.968651i \(0.579913\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 815.353 + 470.744i 1.32148 + 0.762956i 0.983965 0.178364i \(-0.0570804\pi\)
0.337515 + 0.941320i \(0.390414\pi\)
\(618\) 0 0
\(619\) −117.736 203.924i −0.190203 0.329442i 0.755114 0.655593i \(-0.227581\pi\)
−0.945318 + 0.326151i \(0.894248\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −308.952 + 178.373i −0.495909 + 0.286313i
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 163.581i 0.260065i
\(630\) 0 0
\(631\) 832.125 1.31874 0.659370 0.751819i \(-0.270823\pi\)
0.659370 + 0.751819i \(0.270823\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 437.460 + 252.567i 0.688913 + 0.397744i
\(636\) 0 0
\(637\) −39.4092 68.2588i −0.0618669 0.107157i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −913.355 + 527.326i −1.42489 + 0.822661i −0.996711 0.0810330i \(-0.974178\pi\)
−0.428179 + 0.903694i \(0.640845\pi\)
\(642\) 0 0
\(643\) 493.593 854.928i 0.767640 1.32959i −0.171199 0.985236i \(-0.554764\pi\)
0.938839 0.344356i \(-0.111903\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 75.6097i 0.116862i 0.998291 + 0.0584310i \(0.0186098\pi\)
−0.998291 + 0.0584310i \(0.981390\pi\)
\(648\) 0 0
\(649\) 430.137 0.662769
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1079.95 623.510i −1.65383 0.954840i −0.975476 0.220105i \(-0.929360\pi\)
−0.678355 0.734734i \(-0.737307\pi\)
\(654\) 0 0
\(655\) −105.492 182.717i −0.161056 0.278958i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 544.851 314.570i 0.826784 0.477344i −0.0259662 0.999663i \(-0.508266\pi\)
0.852750 + 0.522319i \(0.174933\pi\)
\(660\) 0 0
\(661\) −323.282 + 559.941i −0.489080 + 0.847112i −0.999921 0.0125632i \(-0.996001\pi\)
0.510841 + 0.859675i \(0.329334\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 224.031i 0.336888i
\(666\) 0 0
\(667\) −878.855 −1.31762
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −457.760 264.288i −0.682206 0.393872i
\(672\) 0 0
\(673\) −45.9516 79.5905i −0.0682788 0.118262i 0.829865 0.557964i \(-0.188417\pi\)
−0.898144 + 0.439702i \(0.855084\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −633.520 + 365.763i −0.935776 + 0.540270i −0.888634 0.458618i \(-0.848345\pi\)
−0.0471421 + 0.998888i \(0.515011\pi\)
\(678\) 0 0
\(679\) −190.478 + 329.917i −0.280527 + 0.485887i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 682.177i 0.998794i −0.866373 0.499397i \(-0.833555\pi\)
0.866373 0.499397i \(-0.166445\pi\)
\(684\) 0 0
\(685\) −463.712 −0.676951
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 21.1452 + 12.2082i 0.0306897 + 0.0177187i
\(690\) 0 0
\(691\) −210.331 364.303i −0.304386 0.527212i 0.672739 0.739880i \(-0.265118\pi\)
−0.977124 + 0.212669i \(0.931785\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 63.3498 36.5750i 0.0911508 0.0526259i
\(696\) 0 0
\(697\) 151.784 262.898i 0.217768 0.377185i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 70.8185i 0.101025i −0.998723 0.0505125i \(-0.983915\pi\)
0.998723 0.0505125i \(-0.0160855\pi\)
\(702\) 0 0
\(703\) 374.444 0.532637
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 328.754 + 189.806i 0.464998 + 0.268467i
\(708\) 0 0
\(709\) −399.696 692.293i −0.563745 0.976436i −0.997165 0.0752436i \(-0.976027\pi\)
0.433420 0.901192i \(-0.357307\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 900.194 519.727i 1.26254 0.728930i
\(714\) 0 0
\(715\) −29.4456 + 51.0012i −0.0411826 + 0.0713304i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 368.675i 0.512761i −0.966576 0.256381i \(-0.917470\pi\)
0.966576 0.256381i \(-0.0825300\pi\)
\(720\) 0 0
\(721\) 61.0079 0.0846157
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 191.190 + 110.383i 0.263710 + 0.152253i
\(726\) 0 0
\(727\) −453.095 784.783i −0.623239 1.07948i −0.988879 0.148725i \(-0.952483\pi\)
0.365640 0.930757i \(-0.380850\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 424.833 245.277i 0.581166 0.335537i
\(732\) 0 0
\(733\) −50.7601 + 87.9190i −0.0692497 + 0.119944i −0.898571 0.438828i \(-0.855394\pi\)
0.829322 + 0.558772i \(0.188727\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1167.87i 1.58463i
\(738\) 0 0
\(739\) −557.665 −0.754622 −0.377311 0.926087i \(-0.623151\pi\)
−0.377311 + 0.926087i \(0.623151\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −308.806 178.289i −0.415621 0.239959i 0.277581 0.960702i \(-0.410467\pi\)
−0.693202 + 0.720743i \(0.743801\pi\)
\(744\) 0 0
\(745\) −23.6673 40.9931i −0.0317683 0.0550242i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 275.329 158.961i 0.367595 0.212231i
\(750\) 0 0
\(751\) 244.810 424.024i 0.325979 0.564613i −0.655731 0.754995i \(-0.727639\pi\)
0.981710 + 0.190382i \(0.0609727\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 615.874i 0.815728i
\(756\) 0 0
\(757\) 198.379 0.262059 0.131030 0.991378i \(-0.458172\pi\)
0.131030 + 0.991378i \(0.458172\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 30.6653 + 17.7046i 0.0402961 + 0.0232649i 0.520013 0.854159i \(-0.325927\pi\)
−0.479717 + 0.877423i \(0.659261\pi\)
\(762\) 0 0
\(763\) −303.363 525.440i −0.397592 0.688650i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −71.8609 + 41.4889i −0.0936909 + 0.0540925i
\(768\) 0 0
\(769\) 114.552 198.411i 0.148963 0.258011i −0.781882 0.623427i \(-0.785740\pi\)
0.930844 + 0.365416i \(0.119073\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 905.388i 1.17126i −0.810577 0.585632i \(-0.800846\pi\)
0.810577 0.585632i \(-0.199154\pi\)
\(774\) 0 0
\(775\) −261.109 −0.336915
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 601.784 + 347.440i 0.772509 + 0.446008i
\(780\) 0 0
\(781\) −599.425 1038.24i −0.767510 1.32937i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −348.444 + 201.174i −0.443877 + 0.256273i
\(786\) 0 0
\(787\) −74.1452 + 128.423i −0.0942125 + 0.163181i −0.909280 0.416186i \(-0.863367\pi\)
0.815067 + 0.579366i \(0.196700\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 25.9528i 0.0328101i
\(792\) 0 0
\(793\) 101.968 0.128585
\(794\) 0 0
\(795\)