Properties

Label 2160.3.bs.a.881.1
Level $2160$
Weight $3$
Character 2160.881
Analytic conductor $58.856$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,3,Mod(881,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.881");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 881.1
Root \(1.93649 + 1.11803i\) of defining polynomial
Character \(\chi\) \(=\) 2160.881
Dual form 2160.3.bs.a.1601.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.93649 - 1.11803i) q^{5} +(-5.87298 - 10.1723i) q^{7} +O(q^{10})\) \(q+(-1.93649 - 1.11803i) q^{5} +(-5.87298 - 10.1723i) q^{7} +(13.1190 - 7.57423i) q^{11} +(8.87298 - 15.3685i) q^{13} +15.1485i q^{17} +11.2540 q^{19} +(29.2379 + 16.8805i) q^{23} +(2.50000 + 4.33013i) q^{25} +(-8.23790 + 4.75615i) q^{29} +(28.1109 - 48.6895i) q^{31} +26.2648i q^{35} +14.0000 q^{37} +(22.5000 + 12.9904i) q^{41} +(-9.99193 - 17.3065i) q^{43} +(62.6190 - 36.1531i) q^{47} +(-44.4839 + 77.0483i) q^{49} +37.6651i q^{53} -33.8730 q^{55} +(-55.1190 - 31.8229i) q^{59} +(-0.618950 - 1.07205i) q^{61} +(-34.3649 + 19.8406i) q^{65} +(42.9758 - 74.4363i) q^{67} +22.1046i q^{71} -60.2379 q^{73} +(-154.095 - 88.9666i) q^{77} +(51.6190 + 89.4066i) q^{79} +(-78.0000 + 45.0333i) q^{83} +(16.9365 - 29.3349i) q^{85} -12.0964i q^{89} -208.444 q^{91} +(-21.7933 - 12.5824i) q^{95} +(-49.8488 - 86.3406i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{7} + 6 q^{11} + 20 q^{13} + 76 q^{19} + 24 q^{23} + 10 q^{25} + 60 q^{29} + 4 q^{31} + 56 q^{37} + 90 q^{41} + 22 q^{43} + 204 q^{47} - 54 q^{49} - 120 q^{55} - 174 q^{59} + 44 q^{61} - 60 q^{65} - 14 q^{67} - 148 q^{73} - 384 q^{77} + 160 q^{79} - 312 q^{83} + 60 q^{85} - 400 q^{91} + 60 q^{95} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.93649 1.11803i −0.387298 0.223607i
\(6\) 0 0
\(7\) −5.87298 10.1723i −0.838998 1.45319i −0.890734 0.454526i \(-0.849809\pi\)
0.0517360 0.998661i \(-0.483525\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 13.1190 7.57423i 1.19263 0.688566i 0.233729 0.972302i \(-0.424907\pi\)
0.958903 + 0.283735i \(0.0915737\pi\)
\(12\) 0 0
\(13\) 8.87298 15.3685i 0.682537 1.18219i −0.291667 0.956520i \(-0.594210\pi\)
0.974204 0.225669i \(-0.0724568\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 15.1485i 0.891086i 0.895261 + 0.445543i \(0.146989\pi\)
−0.895261 + 0.445543i \(0.853011\pi\)
\(18\) 0 0
\(19\) 11.2540 0.592318 0.296159 0.955139i \(-0.404294\pi\)
0.296159 + 0.955139i \(0.404294\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 29.2379 + 16.8805i 1.27121 + 0.733935i 0.975216 0.221254i \(-0.0710149\pi\)
0.295997 + 0.955189i \(0.404348\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.23790 + 4.75615i −0.284066 + 0.164005i −0.635262 0.772296i \(-0.719108\pi\)
0.351197 + 0.936302i \(0.385775\pi\)
\(30\) 0 0
\(31\) 28.1109 48.6895i 0.906803 1.57063i 0.0883237 0.996092i \(-0.471849\pi\)
0.818479 0.574537i \(-0.194818\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 26.2648i 0.750422i
\(36\) 0 0
\(37\) 14.0000 0.378378 0.189189 0.981941i \(-0.439414\pi\)
0.189189 + 0.981941i \(0.439414\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 22.5000 + 12.9904i 0.548780 + 0.316839i 0.748630 0.662988i \(-0.230712\pi\)
−0.199849 + 0.979827i \(0.564045\pi\)
\(42\) 0 0
\(43\) −9.99193 17.3065i −0.232371 0.402478i 0.726135 0.687552i \(-0.241315\pi\)
−0.958505 + 0.285075i \(0.907982\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 62.6190 36.1531i 1.33232 0.769214i 0.346664 0.937990i \(-0.387315\pi\)
0.985655 + 0.168775i \(0.0539812\pi\)
\(48\) 0 0
\(49\) −44.4839 + 77.0483i −0.907834 + 1.57241i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 37.6651i 0.710663i 0.934740 + 0.355331i \(0.115632\pi\)
−0.934740 + 0.355331i \(0.884368\pi\)
\(54\) 0 0
\(55\) −33.8730 −0.615872
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −55.1190 31.8229i −0.934219 0.539372i −0.0460759 0.998938i \(-0.514672\pi\)
−0.888144 + 0.459566i \(0.848005\pi\)
\(60\) 0 0
\(61\) −0.618950 1.07205i −0.0101467 0.0175746i 0.860907 0.508762i \(-0.169897\pi\)
−0.871054 + 0.491187i \(0.836563\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −34.3649 + 19.8406i −0.528691 + 0.305240i
\(66\) 0 0
\(67\) 42.9758 74.4363i 0.641430 1.11099i −0.343684 0.939085i \(-0.611675\pi\)
0.985114 0.171904i \(-0.0549918\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 22.1046i 0.311332i 0.987810 + 0.155666i \(0.0497524\pi\)
−0.987810 + 0.155666i \(0.950248\pi\)
\(72\) 0 0
\(73\) −60.2379 −0.825177 −0.412588 0.910918i \(-0.635375\pi\)
−0.412588 + 0.910918i \(0.635375\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −154.095 88.9666i −2.00123 1.15541i
\(78\) 0 0
\(79\) 51.6190 + 89.4066i 0.653404 + 1.13173i 0.982291 + 0.187360i \(0.0599932\pi\)
−0.328887 + 0.944369i \(0.606673\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −78.0000 + 45.0333i −0.939759 + 0.542570i −0.889885 0.456185i \(-0.849215\pi\)
−0.0498743 + 0.998756i \(0.515882\pi\)
\(84\) 0 0
\(85\) 16.9365 29.3349i 0.199253 0.345116i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.0964i 0.135915i −0.997688 0.0679574i \(-0.978352\pi\)
0.997688 0.0679574i \(-0.0216482\pi\)
\(90\) 0 0
\(91\) −208.444 −2.29059
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −21.7933 12.5824i −0.229404 0.132446i
\(96\) 0 0
\(97\) −49.8488 86.3406i −0.513905 0.890110i −0.999870 0.0161312i \(-0.994865\pi\)
0.485965 0.873978i \(-0.338468\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 134.238 77.5023i 1.32909 0.767349i 0.343929 0.938995i \(-0.388242\pi\)
0.985159 + 0.171646i \(0.0549086\pi\)
\(102\) 0 0
\(103\) 77.8569 134.852i 0.755892 1.30924i −0.189038 0.981970i \(-0.560537\pi\)
0.944930 0.327273i \(-0.106130\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 84.8705i 0.793182i −0.917995 0.396591i \(-0.870193\pi\)
0.917995 0.396591i \(-0.129807\pi\)
\(108\) 0 0
\(109\) −38.0323 −0.348920 −0.174460 0.984664i \(-0.555818\pi\)
−0.174460 + 0.984664i \(0.555818\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 3.46410i −0.0530973 0.0306558i 0.473216 0.880946i \(-0.343093\pi\)
−0.526314 + 0.850290i \(0.676426\pi\)
\(114\) 0 0
\(115\) −37.7460 65.3779i −0.328226 0.568504i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 154.095 88.9666i 1.29491 0.747619i
\(120\) 0 0
\(121\) 54.2379 93.9428i 0.448247 0.776387i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) −145.903 −1.14884 −0.574422 0.818559i \(-0.694773\pi\)
−0.574422 + 0.818559i \(0.694773\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 57.7137 + 33.3210i 0.440563 + 0.254359i 0.703836 0.710362i \(-0.251469\pi\)
−0.263274 + 0.964721i \(0.584802\pi\)
\(132\) 0 0
\(133\) −66.0948 114.479i −0.496953 0.860748i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −63.4052 + 36.6070i −0.462812 + 0.267205i −0.713226 0.700934i \(-0.752767\pi\)
0.250414 + 0.968139i \(0.419433\pi\)
\(138\) 0 0
\(139\) −53.3569 + 92.4168i −0.383862 + 0.664869i −0.991611 0.129261i \(-0.958740\pi\)
0.607748 + 0.794130i \(0.292073\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 268.824i 1.87989i
\(144\) 0 0
\(145\) 21.2702 0.146691
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 144.333 + 83.3305i 0.968676 + 0.559265i 0.898832 0.438293i \(-0.144417\pi\)
0.0698433 + 0.997558i \(0.477750\pi\)
\(150\) 0 0
\(151\) 1.71370 + 2.96822i 0.0113490 + 0.0196571i 0.871644 0.490139i \(-0.163054\pi\)
−0.860295 + 0.509796i \(0.829721\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −108.873 + 62.8578i −0.702406 + 0.405534i
\(156\) 0 0
\(157\) 33.9677 58.8338i 0.216355 0.374738i −0.737336 0.675526i \(-0.763916\pi\)
0.953691 + 0.300788i \(0.0972498\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 396.556i 2.46308i
\(162\) 0 0
\(163\) −76.4113 −0.468781 −0.234390 0.972143i \(-0.575309\pi\)
−0.234390 + 0.972143i \(0.575309\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −245.522 141.752i −1.47019 0.848816i −0.470752 0.882266i \(-0.656017\pi\)
−0.999440 + 0.0334495i \(0.989351\pi\)
\(168\) 0 0
\(169\) −72.9597 126.370i −0.431714 0.747751i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 116.903 67.4941i 0.675741 0.390139i −0.122507 0.992468i \(-0.539094\pi\)
0.798248 + 0.602328i \(0.205760\pi\)
\(174\) 0 0
\(175\) 29.3649 50.8615i 0.167800 0.290637i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 171.445i 0.957794i 0.877871 + 0.478897i \(0.158963\pi\)
−0.877871 + 0.478897i \(0.841037\pi\)
\(180\) 0 0
\(181\) 120.794 0.667372 0.333686 0.942684i \(-0.391707\pi\)
0.333686 + 0.942684i \(0.391707\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −27.1109 15.6525i −0.146545 0.0846080i
\(186\) 0 0
\(187\) 114.738 + 198.732i 0.613572 + 1.06274i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −241.808 + 139.608i −1.26601 + 0.730933i −0.974231 0.225552i \(-0.927581\pi\)
−0.291782 + 0.956485i \(0.594248\pi\)
\(192\) 0 0
\(193\) 52.6431 91.1806i 0.272762 0.472438i −0.696806 0.717260i \(-0.745396\pi\)
0.969568 + 0.244822i \(0.0787294\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 57.9538i 0.294182i −0.989123 0.147091i \(-0.953009\pi\)
0.989123 0.147091i \(-0.0469910\pi\)
\(198\) 0 0
\(199\) 25.2702 0.126986 0.0634929 0.997982i \(-0.479776\pi\)
0.0634929 + 0.997982i \(0.479776\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 96.7621 + 55.8656i 0.476661 + 0.275200i
\(204\) 0 0
\(205\) −29.0474 50.3115i −0.141695 0.245422i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 147.641 85.2406i 0.706417 0.407850i
\(210\) 0 0
\(211\) −52.0161 + 90.0946i −0.246522 + 0.426989i −0.962558 0.271074i \(-0.912621\pi\)
0.716036 + 0.698063i \(0.245954\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 44.6853i 0.207839i
\(216\) 0 0
\(217\) −660.379 −3.04322
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 232.808 + 134.412i 1.05343 + 0.608199i
\(222\) 0 0
\(223\) 123.681 + 214.223i 0.554625 + 0.960639i 0.997933 + 0.0642694i \(0.0204717\pi\)
−0.443307 + 0.896370i \(0.646195\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 261.738 151.114i 1.15303 0.665702i 0.203407 0.979094i \(-0.434799\pi\)
0.949624 + 0.313392i \(0.101465\pi\)
\(228\) 0 0
\(229\) −133.111 + 230.555i −0.581270 + 1.00679i 0.414059 + 0.910250i \(0.364111\pi\)
−0.995329 + 0.0965395i \(0.969223\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 176.969i 0.759526i −0.925084 0.379763i \(-0.876006\pi\)
0.925084 0.379763i \(-0.123994\pi\)
\(234\) 0 0
\(235\) −161.681 −0.688006
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 68.2863 + 39.4251i 0.285717 + 0.164959i 0.636009 0.771682i \(-0.280584\pi\)
−0.350292 + 0.936641i \(0.613918\pi\)
\(240\) 0 0
\(241\) 110.246 + 190.952i 0.457452 + 0.792330i 0.998826 0.0484519i \(-0.0154288\pi\)
−0.541373 + 0.840782i \(0.682095\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 172.285 99.4689i 0.703205 0.405996i
\(246\) 0 0
\(247\) 99.8569 172.957i 0.404279 0.700231i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 277.373i 1.10507i −0.833490 0.552535i \(-0.813661\pi\)
0.833490 0.552535i \(-0.186339\pi\)
\(252\) 0 0
\(253\) 511.427 2.02145
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 131.692 + 76.0322i 0.512418 + 0.295845i 0.733827 0.679336i \(-0.237732\pi\)
−0.221409 + 0.975181i \(0.571065\pi\)
\(258\) 0 0
\(259\) −82.2218 142.412i −0.317459 0.549854i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.95365 + 2.85999i −0.0188352 + 0.0108745i −0.509388 0.860537i \(-0.670128\pi\)
0.490553 + 0.871411i \(0.336795\pi\)
\(264\) 0 0
\(265\) 42.1109 72.9382i 0.158909 0.275238i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 361.531i 1.34398i 0.740560 + 0.671990i \(0.234560\pi\)
−0.740560 + 0.671990i \(0.765440\pi\)
\(270\) 0 0
\(271\) −507.427 −1.87243 −0.936213 0.351433i \(-0.885694\pi\)
−0.936213 + 0.351433i \(0.885694\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 65.5948 + 37.8711i 0.238526 + 0.137713i
\(276\) 0 0
\(277\) −111.778 193.606i −0.403532 0.698937i 0.590618 0.806951i \(-0.298884\pi\)
−0.994149 + 0.108014i \(0.965551\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 39.8105 22.9846i 0.141674 0.0817957i −0.427487 0.904021i \(-0.640601\pi\)
0.569162 + 0.822226i \(0.307268\pi\)
\(282\) 0 0
\(283\) 72.0161 124.736i 0.254474 0.440762i −0.710279 0.703921i \(-0.751431\pi\)
0.964753 + 0.263159i \(0.0847643\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 305.169i 1.06331i
\(288\) 0 0
\(289\) 59.5242 0.205966
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −361.476 208.698i −1.23371 0.712280i −0.265905 0.963999i \(-0.585671\pi\)
−0.967800 + 0.251719i \(0.919004\pi\)
\(294\) 0 0
\(295\) 71.1583 + 123.250i 0.241214 + 0.417796i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 518.855 299.561i 1.73530 1.00188i
\(300\) 0 0
\(301\) −117.365 + 203.282i −0.389917 + 0.675355i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.76803i 0.00907550i
\(306\) 0 0
\(307\) 310.048 1.00993 0.504965 0.863140i \(-0.331505\pi\)
0.504965 + 0.863140i \(0.331505\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −242.238 139.856i −0.778900 0.449698i 0.0571403 0.998366i \(-0.481802\pi\)
−0.836040 + 0.548668i \(0.815135\pi\)
\(312\) 0 0
\(313\) 14.5786 + 25.2509i 0.0465771 + 0.0806738i 0.888374 0.459120i \(-0.151835\pi\)
−0.841797 + 0.539794i \(0.818502\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −109.095 + 62.9859i −0.344147 + 0.198694i −0.662105 0.749411i \(-0.730337\pi\)
0.317957 + 0.948105i \(0.397003\pi\)
\(318\) 0 0
\(319\) −72.0484 + 124.791i −0.225857 + 0.391196i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 170.481i 0.527806i
\(324\) 0 0
\(325\) 88.7298 0.273015
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −735.520 424.653i −2.23562 1.29074i
\(330\) 0 0
\(331\) −232.903 403.400i −0.703635 1.21873i −0.967182 0.254085i \(-0.918226\pi\)
0.263547 0.964647i \(-0.415108\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −166.445 + 96.0968i −0.496849 + 0.286856i
\(336\) 0 0
\(337\) −175.087 + 303.259i −0.519545 + 0.899878i 0.480197 + 0.877161i \(0.340565\pi\)
−0.999742 + 0.0227177i \(0.992768\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 851.673i 2.49758i
\(342\) 0 0
\(343\) 469.460 1.36869
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 71.1169 + 41.0594i 0.204948 + 0.118327i 0.598961 0.800778i \(-0.295580\pi\)
−0.394013 + 0.919105i \(0.628914\pi\)
\(348\) 0 0
\(349\) −22.7621 39.4251i −0.0652209 0.112966i 0.831571 0.555418i \(-0.187442\pi\)
−0.896792 + 0.442452i \(0.854109\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −453.877 + 262.046i −1.28577 + 0.742340i −0.977897 0.209087i \(-0.932951\pi\)
−0.307873 + 0.951427i \(0.599617\pi\)
\(354\) 0 0
\(355\) 24.7137 42.8054i 0.0696161 0.120579i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 295.601i 0.823401i −0.911319 0.411701i \(-0.864935\pi\)
0.911319 0.411701i \(-0.135065\pi\)
\(360\) 0 0
\(361\) −234.347 −0.649160
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 116.650 + 67.3480i 0.319590 + 0.184515i
\(366\) 0 0
\(367\) −16.2379 28.1249i −0.0442450 0.0766345i 0.843055 0.537828i \(-0.180755\pi\)
−0.887300 + 0.461193i \(0.847422\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 383.141 221.207i 1.03273 0.596244i
\(372\) 0 0
\(373\) 123.746 214.334i 0.331759 0.574623i −0.651098 0.758994i \(-0.725691\pi\)
0.982857 + 0.184371i \(0.0590247\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 168.805i 0.447759i
\(378\) 0 0
\(379\) −300.746 −0.793525 −0.396762 0.917921i \(-0.629866\pi\)
−0.396762 + 0.917921i \(0.629866\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −183.665 106.039i −0.479544 0.276865i 0.240683 0.970604i \(-0.422629\pi\)
−0.720226 + 0.693739i \(0.755962\pi\)
\(384\) 0 0
\(385\) 198.935 + 344.566i 0.516715 + 0.894977i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 190.760 110.135i 0.490386 0.283124i −0.234349 0.972153i \(-0.575296\pi\)
0.724734 + 0.689028i \(0.241962\pi\)
\(390\) 0 0
\(391\) −255.714 + 442.909i −0.653999 + 1.13276i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 230.847i 0.584423i
\(396\) 0 0
\(397\) −97.4919 −0.245572 −0.122786 0.992433i \(-0.539183\pi\)
−0.122786 + 0.992433i \(0.539183\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 66.8347 + 38.5870i 0.166670 + 0.0962270i 0.581015 0.813893i \(-0.302656\pi\)
−0.414345 + 0.910120i \(0.635989\pi\)
\(402\) 0 0
\(403\) −498.855 864.042i −1.23785 2.14402i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 183.665 106.039i 0.451266 0.260539i
\(408\) 0 0
\(409\) 97.4355 168.763i 0.238229 0.412624i −0.721978 0.691917i \(-0.756767\pi\)
0.960206 + 0.279293i \(0.0900999\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 747.582i 1.81013i
\(414\) 0 0
\(415\) 201.395 0.485289
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 196.476 + 113.435i 0.468916 + 0.270729i 0.715786 0.698320i \(-0.246069\pi\)
−0.246870 + 0.969049i \(0.579402\pi\)
\(420\) 0 0
\(421\) 150.857 + 261.292i 0.358330 + 0.620645i 0.987682 0.156475i \(-0.0500130\pi\)
−0.629352 + 0.777120i \(0.716680\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −65.5948 + 37.8711i −0.154341 + 0.0891086i
\(426\) 0 0
\(427\) −7.27017 + 12.5923i −0.0170262 + 0.0294902i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 707.661i 1.64191i 0.570996 + 0.820953i \(0.306557\pi\)
−0.570996 + 0.820953i \(0.693443\pi\)
\(432\) 0 0
\(433\) −669.883 −1.54707 −0.773537 0.633751i \(-0.781514\pi\)
−0.773537 + 0.633751i \(0.781514\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 329.044 + 189.974i 0.752962 + 0.434723i
\(438\) 0 0
\(439\) −38.3327 66.3941i −0.0873181 0.151239i 0.819059 0.573710i \(-0.194496\pi\)
−0.906377 + 0.422471i \(0.861163\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −590.117 + 340.704i −1.33209 + 0.769084i −0.985620 0.168976i \(-0.945954\pi\)
−0.346472 + 0.938060i \(0.612621\pi\)
\(444\) 0 0
\(445\) −13.5242 + 23.4246i −0.0303915 + 0.0526396i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 630.327i 1.40385i 0.712253 + 0.701923i \(0.247675\pi\)
−0.712253 + 0.701923i \(0.752325\pi\)
\(450\) 0 0
\(451\) 393.569 0.872657
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 403.649 + 233.047i 0.887141 + 0.512191i
\(456\) 0 0
\(457\) 286.498 + 496.229i 0.626910 + 1.08584i 0.988168 + 0.153374i \(0.0490140\pi\)
−0.361258 + 0.932466i \(0.617653\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −615.950 + 355.619i −1.33612 + 0.771407i −0.986229 0.165385i \(-0.947113\pi\)
−0.349887 + 0.936792i \(0.613780\pi\)
\(462\) 0 0
\(463\) 321.190 556.317i 0.693714 1.20155i −0.276899 0.960899i \(-0.589307\pi\)
0.970612 0.240648i \(-0.0773601\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 506.331i 1.08422i 0.840307 + 0.542111i \(0.182375\pi\)
−0.840307 + 0.542111i \(0.817625\pi\)
\(468\) 0 0
\(469\) −1009.58 −2.15263
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −262.167 151.362i −0.554265 0.320005i
\(474\) 0 0
\(475\) 28.1351 + 48.7314i 0.0592318 + 0.102592i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −644.044 + 371.839i −1.34456 + 0.776282i −0.987473 0.157789i \(-0.949563\pi\)
−0.357087 + 0.934071i \(0.616230\pi\)
\(480\) 0 0
\(481\) 124.222 215.158i 0.258257 0.447315i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 222.931i 0.459651i
\(486\) 0 0
\(487\) −154.065 −0.316354 −0.158177 0.987411i \(-0.550562\pi\)
−0.158177 + 0.987411i \(0.550562\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −145.167 83.8124i −0.295657 0.170697i 0.344833 0.938664i \(-0.387935\pi\)
−0.640490 + 0.767967i \(0.721269\pi\)
\(492\) 0 0
\(493\) −72.0484 124.791i −0.146143 0.253127i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 224.855 129.820i 0.452424 0.261207i
\(498\) 0 0
\(499\) 247.308 428.351i 0.495608 0.858418i −0.504379 0.863482i \(-0.668279\pi\)
0.999987 + 0.00506391i \(0.00161190\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 711.349i 1.41421i −0.707107 0.707106i \(-0.750000\pi\)
0.707107 0.707106i \(-0.250000\pi\)
\(504\) 0 0
\(505\) −346.601 −0.686338
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 717.714 + 414.372i 1.41005 + 0.814091i 0.995392 0.0958882i \(-0.0305691\pi\)
0.414654 + 0.909979i \(0.363902\pi\)
\(510\) 0 0
\(511\) 353.776 + 612.758i 0.692321 + 1.19914i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −301.538 + 174.093i −0.585511 + 0.338045i
\(516\) 0 0
\(517\) 547.663 948.581i 1.05931 1.83478i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 622.686i 1.19518i −0.801804 0.597588i \(-0.796126\pi\)
0.801804 0.597588i \(-0.203874\pi\)
\(522\) 0 0
\(523\) 89.4274 0.170989 0.0854946 0.996339i \(-0.472753\pi\)
0.0854946 + 0.996339i \(0.472753\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 737.571 + 425.837i 1.39956 + 0.808039i
\(528\) 0 0
\(529\) 305.403 + 528.974i 0.577322 + 0.999951i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 399.284 230.527i 0.749126 0.432508i
\(534\) 0 0
\(535\) −94.8881 + 164.351i −0.177361 + 0.307198i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1347.72i 2.50042i
\(540\) 0 0
\(541\) 834.629 1.54275 0.771376 0.636380i \(-0.219569\pi\)
0.771376 + 0.636380i \(0.219569\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 73.6492 + 42.5214i 0.135136 + 0.0780209i
\(546\) 0 0
\(547\) 441.782 + 765.189i 0.807646 + 1.39888i 0.914490 + 0.404608i \(0.132592\pi\)
−0.106845 + 0.994276i \(0.534075\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −92.7096 + 53.5259i −0.168257 + 0.0971432i
\(552\) 0 0
\(553\) 606.314 1050.17i 1.09641 1.89904i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 256.448i 0.460410i 0.973142 + 0.230205i \(0.0739396\pi\)
−0.973142 + 0.230205i \(0.926060\pi\)
\(558\) 0 0
\(559\) −354.633 −0.634406
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −180.024 103.937i −0.319759 0.184613i 0.331526 0.943446i \(-0.392436\pi\)
−0.651285 + 0.758833i \(0.725770\pi\)
\(564\) 0 0
\(565\) 7.74597 + 13.4164i 0.0137097 + 0.0237459i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −430.923 + 248.794i −0.757334 + 0.437247i −0.828338 0.560229i \(-0.810713\pi\)
0.0710034 + 0.997476i \(0.477380\pi\)
\(570\) 0 0
\(571\) 453.817 786.033i 0.794775 1.37659i −0.128207 0.991747i \(-0.540922\pi\)
0.922982 0.384843i \(-0.125744\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 168.805i 0.293574i
\(576\) 0 0
\(577\) 758.810 1.31510 0.657548 0.753413i \(-0.271594\pi\)
0.657548 + 0.753413i \(0.271594\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 916.185 + 528.960i 1.57691 + 0.910430i
\(582\) 0 0
\(583\) 285.284 + 494.127i 0.489338 + 0.847559i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 656.117 378.809i 1.11775 0.645331i 0.176921 0.984225i \(-0.443386\pi\)
0.940825 + 0.338894i \(0.110053\pi\)
\(588\) 0 0
\(589\) 316.361 547.953i 0.537115 0.930311i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 258.648i 0.436169i −0.975930 0.218084i \(-0.930019\pi\)
0.975930 0.218084i \(-0.0699808\pi\)
\(594\) 0 0
\(595\) −397.871 −0.668691
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −495.665 286.172i −0.827488 0.477750i 0.0255038 0.999675i \(-0.491881\pi\)
−0.852992 + 0.521924i \(0.825214\pi\)
\(600\) 0 0
\(601\) −68.8186 119.197i −0.114507 0.198332i 0.803076 0.595877i \(-0.203195\pi\)
−0.917582 + 0.397545i \(0.869862\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −210.062 + 121.280i −0.347211 + 0.200462i
\(606\) 0 0
\(607\) 9.23790 16.0005i 0.0152189 0.0263600i −0.858316 0.513122i \(-0.828489\pi\)
0.873535 + 0.486762i \(0.161822\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1283.14i 2.10007i
\(612\) 0 0
\(613\) 392.569 0.640405 0.320203 0.947349i \(-0.396249\pi\)
0.320203 + 0.947349i \(0.396249\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −230.353 132.994i −0.373343 0.215550i 0.301575 0.953443i \(-0.402488\pi\)
−0.674918 + 0.737893i \(0.735821\pi\)
\(618\) 0 0
\(619\) 416.736 + 721.808i 0.673240 + 1.16609i 0.976980 + 0.213332i \(0.0684315\pi\)
−0.303739 + 0.952755i \(0.598235\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −123.048 + 71.0420i −0.197509 + 0.114032i
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 212.078i 0.337168i
\(630\) 0 0
\(631\) 351.875 0.557647 0.278823 0.960342i \(-0.410056\pi\)
0.278823 + 0.960342i \(0.410056\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 282.540 + 163.125i 0.444945 + 0.256889i
\(636\) 0 0
\(637\) 789.409 + 1367.30i 1.23926 + 2.14646i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −355.645 + 205.332i −0.554829 + 0.320331i −0.751067 0.660226i \(-0.770461\pi\)
0.196239 + 0.980556i \(0.437127\pi\)
\(642\) 0 0
\(643\) −110.593 + 191.552i −0.171995 + 0.297904i −0.939117 0.343597i \(-0.888355\pi\)
0.767122 + 0.641501i \(0.221688\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1095.26i 1.69282i 0.532529 + 0.846412i \(0.321242\pi\)
−0.532529 + 0.846412i \(0.678758\pi\)
\(648\) 0 0
\(649\) −964.137 −1.48557
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −894.048 516.179i −1.36914 0.790473i −0.378322 0.925674i \(-0.623499\pi\)
−0.990818 + 0.135201i \(0.956832\pi\)
\(654\) 0 0
\(655\) −74.5081 129.052i −0.113753 0.197026i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −988.851 + 570.913i −1.50053 + 0.866333i −0.500532 + 0.865718i \(0.666862\pi\)
−1.00000 0.000614829i \(0.999804\pi\)
\(660\) 0 0
\(661\) 513.282 889.031i 0.776524 1.34498i −0.157410 0.987533i \(-0.550315\pi\)
0.933934 0.357445i \(-0.116352\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 295.585i 0.444488i
\(666\) 0 0
\(667\) −321.145 −0.481477
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −16.2399 9.37614i −0.0242026 0.0139734i
\(672\) 0 0
\(673\) 139.952 + 242.403i 0.207952 + 0.360183i 0.951069 0.308978i \(-0.0999869\pi\)
−0.743117 + 0.669161i \(0.766654\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 249.520 144.060i 0.368567 0.212792i −0.304265 0.952587i \(-0.598411\pi\)
0.672832 + 0.739795i \(0.265078\pi\)
\(678\) 0 0
\(679\) −585.522 + 1014.15i −0.862330 + 1.49360i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 283.805i 0.415527i 0.978179 + 0.207763i \(0.0666184\pi\)
−0.978179 + 0.207763i \(0.933382\pi\)
\(684\) 0 0
\(685\) 163.712 0.238995
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 578.855 + 334.202i 0.840138 + 0.485054i
\(690\) 0 0
\(691\) 440.331 + 762.675i 0.637237 + 1.10373i 0.986037 + 0.166529i \(0.0532560\pi\)
−0.348800 + 0.937197i \(0.613411\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 206.650 119.310i 0.297338 0.171668i
\(696\) 0 0
\(697\) −196.784 + 340.840i −0.282330 + 0.489011i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 680.500i 0.970757i 0.874304 + 0.485378i \(0.161318\pi\)
−0.874304 + 0.485378i \(0.838682\pi\)
\(702\) 0 0
\(703\) 157.556 0.224120
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1576.75 910.339i −2.23020 1.28761i
\(708\) 0 0
\(709\) 289.696 + 501.767i 0.408597 + 0.707711i 0.994733 0.102502i \(-0.0326847\pi\)
−0.586135 + 0.810213i \(0.699351\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1643.81 949.052i 2.30548 1.33107i
\(714\) 0 0
\(715\) −300.554 + 520.576i −0.420356 + 0.728078i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 597.306i 0.830746i 0.909651 + 0.415373i \(0.136349\pi\)
−0.909651 + 0.415373i \(0.863651\pi\)
\(720\) 0 0
\(721\) −1829.01 −2.53677
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −41.1895 23.7808i −0.0568131 0.0328011i
\(726\) 0 0
\(727\) −336.905 583.537i −0.463419 0.802664i 0.535710 0.844402i \(-0.320044\pi\)
−0.999129 + 0.0417376i \(0.986711\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 262.167 151.362i 0.358642 0.207062i
\(732\) 0 0
\(733\) 390.760 676.816i 0.533097 0.923351i −0.466156 0.884703i \(-0.654361\pi\)
0.999253 0.0386484i \(-0.0123052\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1302.03i 1.76667i
\(738\) 0 0
\(739\) −232.335 −0.314391 −0.157195 0.987568i \(-0.550245\pi\)
−0.157195 + 0.987568i \(0.550245\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 434.806 + 251.036i 0.585204 + 0.337868i 0.763199 0.646164i \(-0.223628\pi\)
−0.177995 + 0.984031i \(0.556961\pi\)
\(744\) 0 0
\(745\) −186.333 322.738i −0.250111 0.433205i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −863.329 + 498.443i −1.15264 + 0.665478i
\(750\) 0 0
\(751\) 477.190 826.516i 0.635405 1.10055i −0.351024 0.936367i \(-0.614166\pi\)
0.986429 0.164188i \(-0.0525004\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7.66390i 0.0101509i
\(756\) 0 0
\(757\) −266.379 −0.351888 −0.175944 0.984400i \(-0.556298\pi\)
−0.175944 + 0.984400i \(0.556298\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −294.665 170.125i −0.387208 0.223555i 0.293742 0.955885i \(-0.405099\pi\)
−0.680950 + 0.732330i \(0.738433\pi\)
\(762\) 0 0
\(763\) 223.363 + 386.876i 0.292743 + 0.507046i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −978.139 + 564.729i −1.27528 + 0.736283i
\(768\) 0 0
\(769\) −644.552 + 1116.40i −0.838170 + 1.45175i 0.0532540 + 0.998581i \(0.483041\pi\)
−0.891423 + 0.453171i \(0.850293\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 919.244i 1.18919i 0.804025 + 0.594595i \(0.202688\pi\)
−0.804025 + 0.594595i \(0.797312\pi\)
\(774\) 0 0
\(775\) 281.109 0.362721
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 253.216 + 146.194i 0.325052 + 0.187669i
\(780\) 0 0
\(781\) 167.425 + 289.989i 0.214373 + 0.371305i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −131.556 + 75.9542i −0.167588 + 0.0967569i
\(786\) 0 0
\(787\) −631.855 + 1094.40i −0.802865 + 1.39060i 0.114858 + 0.993382i \(0.463359\pi\)
−0.917723 + 0.397221i \(0.869975\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 81.3784i 0.102880i
\(792\) 0 0
\(793\) −21.9677 −0.0277021
\(794\) 0 0
\(795\) 0