Properties

Label 2160.3.bs.a.1601.1
Level $2160$
Weight $3$
Character 2160.1601
Analytic conductor $58.856$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,3,Mod(881,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.881");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1601.1
Root \(1.93649 - 1.11803i\) of defining polynomial
Character \(\chi\) \(=\) 2160.1601
Dual form 2160.3.bs.a.881.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.93649 + 1.11803i) q^{5} +(-5.87298 + 10.1723i) q^{7} +O(q^{10})\) \(q+(-1.93649 + 1.11803i) q^{5} +(-5.87298 + 10.1723i) q^{7} +(13.1190 + 7.57423i) q^{11} +(8.87298 + 15.3685i) q^{13} -15.1485i q^{17} +11.2540 q^{19} +(29.2379 - 16.8805i) q^{23} +(2.50000 - 4.33013i) q^{25} +(-8.23790 - 4.75615i) q^{29} +(28.1109 + 48.6895i) q^{31} -26.2648i q^{35} +14.0000 q^{37} +(22.5000 - 12.9904i) q^{41} +(-9.99193 + 17.3065i) q^{43} +(62.6190 + 36.1531i) q^{47} +(-44.4839 - 77.0483i) q^{49} -37.6651i q^{53} -33.8730 q^{55} +(-55.1190 + 31.8229i) q^{59} +(-0.618950 + 1.07205i) q^{61} +(-34.3649 - 19.8406i) q^{65} +(42.9758 + 74.4363i) q^{67} -22.1046i q^{71} -60.2379 q^{73} +(-154.095 + 88.9666i) q^{77} +(51.6190 - 89.4066i) q^{79} +(-78.0000 - 45.0333i) q^{83} +(16.9365 + 29.3349i) q^{85} +12.0964i q^{89} -208.444 q^{91} +(-21.7933 + 12.5824i) q^{95} +(-49.8488 + 86.3406i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{7} + 6 q^{11} + 20 q^{13} + 76 q^{19} + 24 q^{23} + 10 q^{25} + 60 q^{29} + 4 q^{31} + 56 q^{37} + 90 q^{41} + 22 q^{43} + 204 q^{47} - 54 q^{49} - 120 q^{55} - 174 q^{59} + 44 q^{61} - 60 q^{65} - 14 q^{67} - 148 q^{73} - 384 q^{77} + 160 q^{79} - 312 q^{83} + 60 q^{85} - 400 q^{91} + 60 q^{95} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.93649 + 1.11803i −0.387298 + 0.223607i
\(6\) 0 0
\(7\) −5.87298 + 10.1723i −0.838998 + 1.45319i 0.0517360 + 0.998661i \(0.483525\pi\)
−0.890734 + 0.454526i \(0.849809\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 13.1190 + 7.57423i 1.19263 + 0.688566i 0.958903 0.283735i \(-0.0915737\pi\)
0.233729 + 0.972302i \(0.424907\pi\)
\(12\) 0 0
\(13\) 8.87298 + 15.3685i 0.682537 + 1.18219i 0.974204 + 0.225669i \(0.0724568\pi\)
−0.291667 + 0.956520i \(0.594210\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 15.1485i 0.891086i −0.895261 0.445543i \(-0.853011\pi\)
0.895261 0.445543i \(-0.146989\pi\)
\(18\) 0 0
\(19\) 11.2540 0.592318 0.296159 0.955139i \(-0.404294\pi\)
0.296159 + 0.955139i \(0.404294\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 29.2379 16.8805i 1.27121 0.733935i 0.295997 0.955189i \(-0.404348\pi\)
0.975216 + 0.221254i \(0.0710149\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.23790 4.75615i −0.284066 0.164005i 0.351197 0.936302i \(-0.385775\pi\)
−0.635262 + 0.772296i \(0.719108\pi\)
\(30\) 0 0
\(31\) 28.1109 + 48.6895i 0.906803 + 1.57063i 0.818479 + 0.574537i \(0.194818\pi\)
0.0883237 + 0.996092i \(0.471849\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 26.2648i 0.750422i
\(36\) 0 0
\(37\) 14.0000 0.378378 0.189189 0.981941i \(-0.439414\pi\)
0.189189 + 0.981941i \(0.439414\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 22.5000 12.9904i 0.548780 0.316839i −0.199849 0.979827i \(-0.564045\pi\)
0.748630 + 0.662988i \(0.230712\pi\)
\(42\) 0 0
\(43\) −9.99193 + 17.3065i −0.232371 + 0.402478i −0.958505 0.285075i \(-0.907982\pi\)
0.726135 + 0.687552i \(0.241315\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 62.6190 + 36.1531i 1.33232 + 0.769214i 0.985655 0.168775i \(-0.0539812\pi\)
0.346664 + 0.937990i \(0.387315\pi\)
\(48\) 0 0
\(49\) −44.4839 77.0483i −0.907834 1.57241i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 37.6651i 0.710663i −0.934740 0.355331i \(-0.884368\pi\)
0.934740 0.355331i \(-0.115632\pi\)
\(54\) 0 0
\(55\) −33.8730 −0.615872
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −55.1190 + 31.8229i −0.934219 + 0.539372i −0.888144 0.459566i \(-0.848005\pi\)
−0.0460759 + 0.998938i \(0.514672\pi\)
\(60\) 0 0
\(61\) −0.618950 + 1.07205i −0.0101467 + 0.0175746i −0.871054 0.491187i \(-0.836563\pi\)
0.860907 + 0.508762i \(0.169897\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −34.3649 19.8406i −0.528691 0.305240i
\(66\) 0 0
\(67\) 42.9758 + 74.4363i 0.641430 + 1.11099i 0.985114 + 0.171904i \(0.0549918\pi\)
−0.343684 + 0.939085i \(0.611675\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 22.1046i 0.311332i −0.987810 0.155666i \(-0.950248\pi\)
0.987810 0.155666i \(-0.0497524\pi\)
\(72\) 0 0
\(73\) −60.2379 −0.825177 −0.412588 0.910918i \(-0.635375\pi\)
−0.412588 + 0.910918i \(0.635375\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −154.095 + 88.9666i −2.00123 + 1.15541i
\(78\) 0 0
\(79\) 51.6190 89.4066i 0.653404 1.13173i −0.328887 0.944369i \(-0.606673\pi\)
0.982291 0.187360i \(-0.0599932\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −78.0000 45.0333i −0.939759 0.542570i −0.0498743 0.998756i \(-0.515882\pi\)
−0.889885 + 0.456185i \(0.849215\pi\)
\(84\) 0 0
\(85\) 16.9365 + 29.3349i 0.199253 + 0.345116i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.0964i 0.135915i 0.997688 + 0.0679574i \(0.0216482\pi\)
−0.997688 + 0.0679574i \(0.978352\pi\)
\(90\) 0 0
\(91\) −208.444 −2.29059
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −21.7933 + 12.5824i −0.229404 + 0.132446i
\(96\) 0 0
\(97\) −49.8488 + 86.3406i −0.513905 + 0.890110i 0.485965 + 0.873978i \(0.338468\pi\)
−0.999870 + 0.0161312i \(0.994865\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 134.238 + 77.5023i 1.32909 + 0.767349i 0.985159 0.171646i \(-0.0549086\pi\)
0.343929 + 0.938995i \(0.388242\pi\)
\(102\) 0 0
\(103\) 77.8569 + 134.852i 0.755892 + 1.30924i 0.944930 + 0.327273i \(0.106130\pi\)
−0.189038 + 0.981970i \(0.560537\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 84.8705i 0.793182i 0.917995 + 0.396591i \(0.129807\pi\)
−0.917995 + 0.396591i \(0.870193\pi\)
\(108\) 0 0
\(109\) −38.0323 −0.348920 −0.174460 0.984664i \(-0.555818\pi\)
−0.174460 + 0.984664i \(0.555818\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 + 3.46410i −0.0530973 + 0.0306558i −0.526314 0.850290i \(-0.676426\pi\)
0.473216 + 0.880946i \(0.343093\pi\)
\(114\) 0 0
\(115\) −37.7460 + 65.3779i −0.328226 + 0.568504i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 154.095 + 88.9666i 1.29491 + 0.747619i
\(120\) 0 0
\(121\) 54.2379 + 93.9428i 0.448247 + 0.776387i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) −145.903 −1.14884 −0.574422 0.818559i \(-0.694773\pi\)
−0.574422 + 0.818559i \(0.694773\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 57.7137 33.3210i 0.440563 0.254359i −0.263274 0.964721i \(-0.584802\pi\)
0.703836 + 0.710362i \(0.251469\pi\)
\(132\) 0 0
\(133\) −66.0948 + 114.479i −0.496953 + 0.860748i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −63.4052 36.6070i −0.462812 0.267205i 0.250414 0.968139i \(-0.419433\pi\)
−0.713226 + 0.700934i \(0.752767\pi\)
\(138\) 0 0
\(139\) −53.3569 92.4168i −0.383862 0.664869i 0.607748 0.794130i \(-0.292073\pi\)
−0.991611 + 0.129261i \(0.958740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 268.824i 1.87989i
\(144\) 0 0
\(145\) 21.2702 0.146691
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 144.333 83.3305i 0.968676 0.559265i 0.0698433 0.997558i \(-0.477750\pi\)
0.898832 + 0.438293i \(0.144417\pi\)
\(150\) 0 0
\(151\) 1.71370 2.96822i 0.0113490 0.0196571i −0.860295 0.509796i \(-0.829721\pi\)
0.871644 + 0.490139i \(0.163054\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −108.873 62.8578i −0.702406 0.405534i
\(156\) 0 0
\(157\) 33.9677 + 58.8338i 0.216355 + 0.374738i 0.953691 0.300788i \(-0.0972498\pi\)
−0.737336 + 0.675526i \(0.763916\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 396.556i 2.46308i
\(162\) 0 0
\(163\) −76.4113 −0.468781 −0.234390 0.972143i \(-0.575309\pi\)
−0.234390 + 0.972143i \(0.575309\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −245.522 + 141.752i −1.47019 + 0.848816i −0.999440 0.0334495i \(-0.989351\pi\)
−0.470752 + 0.882266i \(0.656017\pi\)
\(168\) 0 0
\(169\) −72.9597 + 126.370i −0.431714 + 0.747751i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 116.903 + 67.4941i 0.675741 + 0.390139i 0.798248 0.602328i \(-0.205760\pi\)
−0.122507 + 0.992468i \(0.539094\pi\)
\(174\) 0 0
\(175\) 29.3649 + 50.8615i 0.167800 + 0.290637i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 171.445i 0.957794i −0.877871 0.478897i \(-0.841037\pi\)
0.877871 0.478897i \(-0.158963\pi\)
\(180\) 0 0
\(181\) 120.794 0.667372 0.333686 0.942684i \(-0.391707\pi\)
0.333686 + 0.942684i \(0.391707\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −27.1109 + 15.6525i −0.146545 + 0.0846080i
\(186\) 0 0
\(187\) 114.738 198.732i 0.613572 1.06274i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −241.808 139.608i −1.26601 0.730933i −0.291782 0.956485i \(-0.594248\pi\)
−0.974231 + 0.225552i \(0.927581\pi\)
\(192\) 0 0
\(193\) 52.6431 + 91.1806i 0.272762 + 0.472438i 0.969568 0.244822i \(-0.0787294\pi\)
−0.696806 + 0.717260i \(0.745396\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 57.9538i 0.294182i 0.989123 + 0.147091i \(0.0469910\pi\)
−0.989123 + 0.147091i \(0.953009\pi\)
\(198\) 0 0
\(199\) 25.2702 0.126986 0.0634929 0.997982i \(-0.479776\pi\)
0.0634929 + 0.997982i \(0.479776\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 96.7621 55.8656i 0.476661 0.275200i
\(204\) 0 0
\(205\) −29.0474 + 50.3115i −0.141695 + 0.245422i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 147.641 + 85.2406i 0.706417 + 0.407850i
\(210\) 0 0
\(211\) −52.0161 90.0946i −0.246522 0.426989i 0.716036 0.698063i \(-0.245954\pi\)
−0.962558 + 0.271074i \(0.912621\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 44.6853i 0.207839i
\(216\) 0 0
\(217\) −660.379 −3.04322
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 232.808 134.412i 1.05343 0.608199i
\(222\) 0 0
\(223\) 123.681 214.223i 0.554625 0.960639i −0.443307 0.896370i \(-0.646195\pi\)
0.997933 0.0642694i \(-0.0204717\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 261.738 + 151.114i 1.15303 + 0.665702i 0.949624 0.313392i \(-0.101465\pi\)
0.203407 + 0.979094i \(0.434799\pi\)
\(228\) 0 0
\(229\) −133.111 230.555i −0.581270 1.00679i −0.995329 0.0965395i \(-0.969223\pi\)
0.414059 0.910250i \(-0.364111\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 176.969i 0.759526i 0.925084 + 0.379763i \(0.123994\pi\)
−0.925084 + 0.379763i \(0.876006\pi\)
\(234\) 0 0
\(235\) −161.681 −0.688006
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 68.2863 39.4251i 0.285717 0.164959i −0.350292 0.936641i \(-0.613918\pi\)
0.636009 + 0.771682i \(0.280584\pi\)
\(240\) 0 0
\(241\) 110.246 190.952i 0.457452 0.792330i −0.541373 0.840782i \(-0.682095\pi\)
0.998826 + 0.0484519i \(0.0154288\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 172.285 + 99.4689i 0.703205 + 0.405996i
\(246\) 0 0
\(247\) 99.8569 + 172.957i 0.404279 + 0.700231i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 277.373i 1.10507i 0.833490 + 0.552535i \(0.186339\pi\)
−0.833490 + 0.552535i \(0.813661\pi\)
\(252\) 0 0
\(253\) 511.427 2.02145
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 131.692 76.0322i 0.512418 0.295845i −0.221409 0.975181i \(-0.571065\pi\)
0.733827 + 0.679336i \(0.237732\pi\)
\(258\) 0 0
\(259\) −82.2218 + 142.412i −0.317459 + 0.549854i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.95365 2.85999i −0.0188352 0.0108745i 0.490553 0.871411i \(-0.336795\pi\)
−0.509388 + 0.860537i \(0.670128\pi\)
\(264\) 0 0
\(265\) 42.1109 + 72.9382i 0.158909 + 0.275238i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 361.531i 1.34398i −0.740560 0.671990i \(-0.765440\pi\)
0.740560 0.671990i \(-0.234560\pi\)
\(270\) 0 0
\(271\) −507.427 −1.87243 −0.936213 0.351433i \(-0.885694\pi\)
−0.936213 + 0.351433i \(0.885694\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 65.5948 37.8711i 0.238526 0.137713i
\(276\) 0 0
\(277\) −111.778 + 193.606i −0.403532 + 0.698937i −0.994149 0.108014i \(-0.965551\pi\)
0.590618 + 0.806951i \(0.298884\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 39.8105 + 22.9846i 0.141674 + 0.0817957i 0.569162 0.822226i \(-0.307268\pi\)
−0.427487 + 0.904021i \(0.640601\pi\)
\(282\) 0 0
\(283\) 72.0161 + 124.736i 0.254474 + 0.440762i 0.964753 0.263159i \(-0.0847643\pi\)
−0.710279 + 0.703921i \(0.751431\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 305.169i 1.06331i
\(288\) 0 0
\(289\) 59.5242 0.205966
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −361.476 + 208.698i −1.23371 + 0.712280i −0.967800 0.251719i \(-0.919004\pi\)
−0.265905 + 0.963999i \(0.585671\pi\)
\(294\) 0 0
\(295\) 71.1583 123.250i 0.241214 0.417796i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 518.855 + 299.561i 1.73530 + 1.00188i
\(300\) 0 0
\(301\) −117.365 203.282i −0.389917 0.675355i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.76803i 0.00907550i
\(306\) 0 0
\(307\) 310.048 1.00993 0.504965 0.863140i \(-0.331505\pi\)
0.504965 + 0.863140i \(0.331505\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −242.238 + 139.856i −0.778900 + 0.449698i −0.836040 0.548668i \(-0.815135\pi\)
0.0571403 + 0.998366i \(0.481802\pi\)
\(312\) 0 0
\(313\) 14.5786 25.2509i 0.0465771 0.0806738i −0.841797 0.539794i \(-0.818502\pi\)
0.888374 + 0.459120i \(0.151835\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −109.095 62.9859i −0.344147 0.198694i 0.317957 0.948105i \(-0.397003\pi\)
−0.662105 + 0.749411i \(0.730337\pi\)
\(318\) 0 0
\(319\) −72.0484 124.791i −0.225857 0.391196i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 170.481i 0.527806i
\(324\) 0 0
\(325\) 88.7298 0.273015
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −735.520 + 424.653i −2.23562 + 1.29074i
\(330\) 0 0
\(331\) −232.903 + 403.400i −0.703635 + 1.21873i 0.263547 + 0.964647i \(0.415108\pi\)
−0.967182 + 0.254085i \(0.918226\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −166.445 96.0968i −0.496849 0.286856i
\(336\) 0 0
\(337\) −175.087 303.259i −0.519545 0.899878i −0.999742 0.0227177i \(-0.992768\pi\)
0.480197 0.877161i \(-0.340565\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 851.673i 2.49758i
\(342\) 0 0
\(343\) 469.460 1.36869
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 71.1169 41.0594i 0.204948 0.118327i −0.394013 0.919105i \(-0.628914\pi\)
0.598961 + 0.800778i \(0.295580\pi\)
\(348\) 0 0
\(349\) −22.7621 + 39.4251i −0.0652209 + 0.112966i −0.896792 0.442452i \(-0.854109\pi\)
0.831571 + 0.555418i \(0.187442\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −453.877 262.046i −1.28577 0.742340i −0.307873 0.951427i \(-0.599617\pi\)
−0.977897 + 0.209087i \(0.932951\pi\)
\(354\) 0 0
\(355\) 24.7137 + 42.8054i 0.0696161 + 0.120579i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 295.601i 0.823401i 0.911319 + 0.411701i \(0.135065\pi\)
−0.911319 + 0.411701i \(0.864935\pi\)
\(360\) 0 0
\(361\) −234.347 −0.649160
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 116.650 67.3480i 0.319590 0.184515i
\(366\) 0 0
\(367\) −16.2379 + 28.1249i −0.0442450 + 0.0766345i −0.887300 0.461193i \(-0.847422\pi\)
0.843055 + 0.537828i \(0.180755\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 383.141 + 221.207i 1.03273 + 0.596244i
\(372\) 0 0
\(373\) 123.746 + 214.334i 0.331759 + 0.574623i 0.982857 0.184371i \(-0.0590247\pi\)
−0.651098 + 0.758994i \(0.725691\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 168.805i 0.447759i
\(378\) 0 0
\(379\) −300.746 −0.793525 −0.396762 0.917921i \(-0.629866\pi\)
−0.396762 + 0.917921i \(0.629866\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −183.665 + 106.039i −0.479544 + 0.276865i −0.720226 0.693739i \(-0.755962\pi\)
0.240683 + 0.970604i \(0.422629\pi\)
\(384\) 0 0
\(385\) 198.935 344.566i 0.516715 0.894977i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 190.760 + 110.135i 0.490386 + 0.283124i 0.724734 0.689028i \(-0.241962\pi\)
−0.234349 + 0.972153i \(0.575296\pi\)
\(390\) 0 0
\(391\) −255.714 442.909i −0.653999 1.13276i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 230.847i 0.584423i
\(396\) 0 0
\(397\) −97.4919 −0.245572 −0.122786 0.992433i \(-0.539183\pi\)
−0.122786 + 0.992433i \(0.539183\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 66.8347 38.5870i 0.166670 0.0962270i −0.414345 0.910120i \(-0.635989\pi\)
0.581015 + 0.813893i \(0.302656\pi\)
\(402\) 0 0
\(403\) −498.855 + 864.042i −1.23785 + 2.14402i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 183.665 + 106.039i 0.451266 + 0.260539i
\(408\) 0 0
\(409\) 97.4355 + 168.763i 0.238229 + 0.412624i 0.960206 0.279293i \(-0.0900999\pi\)
−0.721978 + 0.691917i \(0.756767\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 747.582i 1.81013i
\(414\) 0 0
\(415\) 201.395 0.485289
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 196.476 113.435i 0.468916 0.270729i −0.246870 0.969049i \(-0.579402\pi\)
0.715786 + 0.698320i \(0.246069\pi\)
\(420\) 0 0
\(421\) 150.857 261.292i 0.358330 0.620645i −0.629352 0.777120i \(-0.716680\pi\)
0.987682 + 0.156475i \(0.0500130\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −65.5948 37.8711i −0.154341 0.0891086i
\(426\) 0 0
\(427\) −7.27017 12.5923i −0.0170262 0.0294902i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 707.661i 1.64191i −0.570996 0.820953i \(-0.693443\pi\)
0.570996 0.820953i \(-0.306557\pi\)
\(432\) 0 0
\(433\) −669.883 −1.54707 −0.773537 0.633751i \(-0.781514\pi\)
−0.773537 + 0.633751i \(0.781514\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 329.044 189.974i 0.752962 0.434723i
\(438\) 0 0
\(439\) −38.3327 + 66.3941i −0.0873181 + 0.151239i −0.906377 0.422471i \(-0.861163\pi\)
0.819059 + 0.573710i \(0.194496\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −590.117 340.704i −1.33209 0.769084i −0.346472 0.938060i \(-0.612621\pi\)
−0.985620 + 0.168976i \(0.945954\pi\)
\(444\) 0 0
\(445\) −13.5242 23.4246i −0.0303915 0.0526396i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 630.327i 1.40385i −0.712253 0.701923i \(-0.752325\pi\)
0.712253 0.701923i \(-0.247675\pi\)
\(450\) 0 0
\(451\) 393.569 0.872657
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 403.649 233.047i 0.887141 0.512191i
\(456\) 0 0
\(457\) 286.498 496.229i 0.626910 1.08584i −0.361258 0.932466i \(-0.617653\pi\)
0.988168 0.153374i \(-0.0490140\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −615.950 355.619i −1.33612 0.771407i −0.349887 0.936792i \(-0.613780\pi\)
−0.986229 + 0.165385i \(0.947113\pi\)
\(462\) 0 0
\(463\) 321.190 + 556.317i 0.693714 + 1.20155i 0.970612 + 0.240648i \(0.0773601\pi\)
−0.276899 + 0.960899i \(0.589307\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 506.331i 1.08422i −0.840307 0.542111i \(-0.817625\pi\)
0.840307 0.542111i \(-0.182375\pi\)
\(468\) 0 0
\(469\) −1009.58 −2.15263
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −262.167 + 151.362i −0.554265 + 0.320005i
\(474\) 0 0
\(475\) 28.1351 48.7314i 0.0592318 0.102592i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −644.044 371.839i −1.34456 0.776282i −0.357087 0.934071i \(-0.616230\pi\)
−0.987473 + 0.157789i \(0.949563\pi\)
\(480\) 0 0
\(481\) 124.222 + 215.158i 0.258257 + 0.447315i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 222.931i 0.459651i
\(486\) 0 0
\(487\) −154.065 −0.316354 −0.158177 0.987411i \(-0.550562\pi\)
−0.158177 + 0.987411i \(0.550562\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −145.167 + 83.8124i −0.295657 + 0.170697i −0.640490 0.767967i \(-0.721269\pi\)
0.344833 + 0.938664i \(0.387935\pi\)
\(492\) 0 0
\(493\) −72.0484 + 124.791i −0.146143 + 0.253127i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 224.855 + 129.820i 0.452424 + 0.261207i
\(498\) 0 0
\(499\) 247.308 + 428.351i 0.495608 + 0.858418i 0.999987 0.00506391i \(-0.00161190\pi\)
−0.504379 + 0.863482i \(0.668279\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 711.349i 1.41421i 0.707107 + 0.707106i \(0.250000\pi\)
−0.707107 + 0.707106i \(0.750000\pi\)
\(504\) 0 0
\(505\) −346.601 −0.686338
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 717.714 414.372i 1.41005 0.814091i 0.414654 0.909979i \(-0.363902\pi\)
0.995392 + 0.0958882i \(0.0305691\pi\)
\(510\) 0 0
\(511\) 353.776 612.758i 0.692321 1.19914i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −301.538 174.093i −0.585511 0.338045i
\(516\) 0 0
\(517\) 547.663 + 948.581i 1.05931 + 1.83478i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 622.686i 1.19518i 0.801804 + 0.597588i \(0.203874\pi\)
−0.801804 + 0.597588i \(0.796126\pi\)
\(522\) 0 0
\(523\) 89.4274 0.170989 0.0854946 0.996339i \(-0.472753\pi\)
0.0854946 + 0.996339i \(0.472753\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 737.571 425.837i 1.39956 0.808039i
\(528\) 0 0
\(529\) 305.403 528.974i 0.577322 0.999951i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 399.284 + 230.527i 0.749126 + 0.432508i
\(534\) 0 0
\(535\) −94.8881 164.351i −0.177361 0.307198i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1347.72i 2.50042i
\(540\) 0 0
\(541\) 834.629 1.54275 0.771376 0.636380i \(-0.219569\pi\)
0.771376 + 0.636380i \(0.219569\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 73.6492 42.5214i 0.135136 0.0780209i
\(546\) 0 0
\(547\) 441.782 765.189i 0.807646 1.39888i −0.106845 0.994276i \(-0.534075\pi\)
0.914490 0.404608i \(-0.132592\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −92.7096 53.5259i −0.168257 0.0971432i
\(552\) 0 0
\(553\) 606.314 + 1050.17i 1.09641 + 1.89904i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 256.448i 0.460410i −0.973142 0.230205i \(-0.926060\pi\)
0.973142 0.230205i \(-0.0739396\pi\)
\(558\) 0 0
\(559\) −354.633 −0.634406
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −180.024 + 103.937i −0.319759 + 0.184613i −0.651285 0.758833i \(-0.725770\pi\)
0.331526 + 0.943446i \(0.392436\pi\)
\(564\) 0 0
\(565\) 7.74597 13.4164i 0.0137097 0.0237459i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −430.923 248.794i −0.757334 0.437247i 0.0710034 0.997476i \(-0.477380\pi\)
−0.828338 + 0.560229i \(0.810713\pi\)
\(570\) 0 0
\(571\) 453.817 + 786.033i 0.794775 + 1.37659i 0.922982 + 0.384843i \(0.125744\pi\)
−0.128207 + 0.991747i \(0.540922\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 168.805i 0.293574i
\(576\) 0 0
\(577\) 758.810 1.31510 0.657548 0.753413i \(-0.271594\pi\)
0.657548 + 0.753413i \(0.271594\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 916.185 528.960i 1.57691 0.910430i
\(582\) 0 0
\(583\) 285.284 494.127i 0.489338 0.847559i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 656.117 + 378.809i 1.11775 + 0.645331i 0.940825 0.338894i \(-0.110053\pi\)
0.176921 + 0.984225i \(0.443386\pi\)
\(588\) 0 0
\(589\) 316.361 + 547.953i 0.537115 + 0.930311i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 258.648i 0.436169i 0.975930 + 0.218084i \(0.0699808\pi\)
−0.975930 + 0.218084i \(0.930019\pi\)
\(594\) 0 0
\(595\) −397.871 −0.668691
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −495.665 + 286.172i −0.827488 + 0.477750i −0.852992 0.521924i \(-0.825214\pi\)
0.0255038 + 0.999675i \(0.491881\pi\)
\(600\) 0 0
\(601\) −68.8186 + 119.197i −0.114507 + 0.198332i −0.917582 0.397545i \(-0.869862\pi\)
0.803076 + 0.595877i \(0.203195\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −210.062 121.280i −0.347211 0.200462i
\(606\) 0 0
\(607\) 9.23790 + 16.0005i 0.0152189 + 0.0263600i 0.873535 0.486762i \(-0.161822\pi\)
−0.858316 + 0.513122i \(0.828489\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1283.14i 2.10007i
\(612\) 0 0
\(613\) 392.569 0.640405 0.320203 0.947349i \(-0.396249\pi\)
0.320203 + 0.947349i \(0.396249\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −230.353 + 132.994i −0.373343 + 0.215550i −0.674918 0.737893i \(-0.735821\pi\)
0.301575 + 0.953443i \(0.402488\pi\)
\(618\) 0 0
\(619\) 416.736 721.808i 0.673240 1.16609i −0.303739 0.952755i \(-0.598235\pi\)
0.976980 0.213332i \(-0.0684315\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −123.048 71.0420i −0.197509 0.114032i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 212.078i 0.337168i
\(630\) 0 0
\(631\) 351.875 0.557647 0.278823 0.960342i \(-0.410056\pi\)
0.278823 + 0.960342i \(0.410056\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 282.540 163.125i 0.444945 0.256889i
\(636\) 0 0
\(637\) 789.409 1367.30i 1.23926 2.14646i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −355.645 205.332i −0.554829 0.320331i 0.196239 0.980556i \(-0.437127\pi\)
−0.751067 + 0.660226i \(0.770461\pi\)
\(642\) 0 0
\(643\) −110.593 191.552i −0.171995 0.297904i 0.767122 0.641501i \(-0.221688\pi\)
−0.939117 + 0.343597i \(0.888355\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1095.26i 1.69282i −0.532529 0.846412i \(-0.678758\pi\)
0.532529 0.846412i \(-0.321242\pi\)
\(648\) 0 0
\(649\) −964.137 −1.48557
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −894.048 + 516.179i −1.36914 + 0.790473i −0.990818 0.135201i \(-0.956832\pi\)
−0.378322 + 0.925674i \(0.623499\pi\)
\(654\) 0 0
\(655\) −74.5081 + 129.052i −0.113753 + 0.197026i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −988.851 570.913i −1.50053 0.866333i −1.00000 0.000614829i \(-0.999804\pi\)
−0.500532 0.865718i \(-0.666862\pi\)
\(660\) 0 0
\(661\) 513.282 + 889.031i 0.776524 + 1.34498i 0.933934 + 0.357445i \(0.116352\pi\)
−0.157410 + 0.987533i \(0.550315\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 295.585i 0.444488i
\(666\) 0 0
\(667\) −321.145 −0.481477
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −16.2399 + 9.37614i −0.0242026 + 0.0139734i
\(672\) 0 0
\(673\) 139.952 242.403i 0.207952 0.360183i −0.743117 0.669161i \(-0.766654\pi\)
0.951069 + 0.308978i \(0.0999869\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 249.520 + 144.060i 0.368567 + 0.212792i 0.672832 0.739795i \(-0.265078\pi\)
−0.304265 + 0.952587i \(0.598411\pi\)
\(678\) 0 0
\(679\) −585.522 1014.15i −0.862330 1.49360i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 283.805i 0.415527i −0.978179 0.207763i \(-0.933382\pi\)
0.978179 0.207763i \(-0.0666184\pi\)
\(684\) 0 0
\(685\) 163.712 0.238995
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 578.855 334.202i 0.840138 0.485054i
\(690\) 0 0
\(691\) 440.331 762.675i 0.637237 1.10373i −0.348800 0.937197i \(-0.613411\pi\)
0.986037 0.166529i \(-0.0532560\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 206.650 + 119.310i 0.297338 + 0.171668i
\(696\) 0 0
\(697\) −196.784 340.840i −0.282330 0.489011i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 680.500i 0.970757i −0.874304 0.485378i \(-0.838682\pi\)
0.874304 0.485378i \(-0.161318\pi\)
\(702\) 0 0
\(703\) 157.556 0.224120
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1576.75 + 910.339i −2.23020 + 1.28761i
\(708\) 0 0
\(709\) 289.696 501.767i 0.408597 0.707711i −0.586135 0.810213i \(-0.699351\pi\)
0.994733 + 0.102502i \(0.0326847\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1643.81 + 949.052i 2.30548 + 1.33107i
\(714\) 0 0
\(715\) −300.554 520.576i −0.420356 0.728078i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 597.306i 0.830746i −0.909651 0.415373i \(-0.863651\pi\)
0.909651 0.415373i \(-0.136349\pi\)
\(720\) 0 0
\(721\) −1829.01 −2.53677
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −41.1895 + 23.7808i −0.0568131 + 0.0328011i
\(726\) 0 0
\(727\) −336.905 + 583.537i −0.463419 + 0.802664i −0.999129 0.0417376i \(-0.986711\pi\)
0.535710 + 0.844402i \(0.320044\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 262.167 + 151.362i 0.358642 + 0.207062i
\(732\) 0 0
\(733\) 390.760 + 676.816i 0.533097 + 0.923351i 0.999253 + 0.0386484i \(0.0123052\pi\)
−0.466156 + 0.884703i \(0.654361\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1302.03i 1.76667i
\(738\) 0 0
\(739\) −232.335 −0.314391 −0.157195 0.987568i \(-0.550245\pi\)
−0.157195 + 0.987568i \(0.550245\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 434.806 251.036i 0.585204 0.337868i −0.177995 0.984031i \(-0.556961\pi\)
0.763199 + 0.646164i \(0.223628\pi\)
\(744\) 0 0
\(745\) −186.333 + 322.738i −0.250111 + 0.433205i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −863.329 498.443i −1.15264 0.665478i
\(750\) 0 0
\(751\) 477.190 + 826.516i 0.635405 + 1.10055i 0.986429 + 0.164188i \(0.0525004\pi\)
−0.351024 + 0.936367i \(0.614166\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7.66390i 0.0101509i
\(756\) 0 0
\(757\) −266.379 −0.351888 −0.175944 0.984400i \(-0.556298\pi\)
−0.175944 + 0.984400i \(0.556298\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −294.665 + 170.125i −0.387208 + 0.223555i −0.680950 0.732330i \(-0.738433\pi\)
0.293742 + 0.955885i \(0.405099\pi\)
\(762\) 0 0
\(763\) 223.363 386.876i 0.292743 0.507046i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −978.139 564.729i −1.27528 0.736283i
\(768\) 0 0
\(769\) −644.552 1116.40i −0.838170 1.45175i −0.891423 0.453171i \(-0.850293\pi\)
0.0532540 0.998581i \(-0.483041\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 919.244i 1.18919i −0.804025 0.594595i \(-0.797312\pi\)
0.804025 0.594595i \(-0.202688\pi\)
\(774\) 0 0
\(775\) 281.109 0.362721
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 253.216 146.194i 0.325052 0.187669i
\(780\) 0 0
\(781\) 167.425 289.989i 0.214373 0.371305i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −131.556 75.9542i −0.167588 0.0967569i
\(786\) 0 0
\(787\) −631.855 1094.40i −0.802865 1.39060i −0.917723 0.397221i \(-0.869975\pi\)
0.114858 0.993382i \(-0.463359\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 81.3784i 0.102880i
\(792\) 0 0
\(793\) −21.9677 −0.0277021
\(794\) 0 0
\(795\)