Properties

Label 2160.2.q.g.1441.2
Level $2160$
Weight $2$
Character 2160.1441
Analytic conductor $17.248$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,2,Mod(721,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.721"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-2,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1441.2
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2160.1441
Dual form 2160.2.q.g.721.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{5} +(1.72474 + 2.98735i) q^{7} +2.00000 q^{17} +6.89898 q^{19} +(3.72474 - 6.45145i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-0.949490 - 1.64456i) q^{29} +(0.550510 - 0.953512i) q^{31} -3.44949 q^{35} -6.00000 q^{37} +(-4.94949 + 8.57277i) q^{41} +(5.89898 + 10.2173i) q^{43} +(4.72474 + 8.18350i) q^{47} +(-2.44949 + 4.24264i) q^{49} -7.79796 q^{53} +(0.550510 - 0.953512i) q^{59} +(1.50000 + 2.59808i) q^{61} +(-6.62372 + 11.4726i) q^{67} +9.79796 q^{71} +13.7980 q^{73} +(-3.44949 - 5.97469i) q^{79} +(2.72474 + 4.71940i) q^{83} +(-1.00000 + 1.73205i) q^{85} -2.79796 q^{89} +(-3.44949 + 5.97469i) q^{95} +(-1.00000 - 1.73205i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} + 2 q^{7} + 8 q^{17} + 8 q^{19} + 10 q^{23} - 2 q^{25} + 6 q^{29} + 12 q^{31} - 4 q^{35} - 24 q^{37} - 10 q^{41} + 4 q^{43} + 14 q^{47} + 8 q^{53} + 12 q^{59} + 6 q^{61} - 2 q^{67} + 16 q^{73}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 1.72474 + 2.98735i 0.651892 + 1.12911i 0.982663 + 0.185399i \(0.0593579\pi\)
−0.330771 + 0.943711i \(0.607309\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0 0
\(13\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 6.89898 1.58273 0.791367 0.611341i \(-0.209370\pi\)
0.791367 + 0.611341i \(0.209370\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.72474 6.45145i 0.776663 1.34522i −0.157192 0.987568i \(-0.550244\pi\)
0.933855 0.357652i \(-0.116422\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.949490 1.64456i −0.176316 0.305388i 0.764300 0.644861i \(-0.223085\pi\)
−0.940616 + 0.339473i \(0.889751\pi\)
\(30\) 0 0
\(31\) 0.550510 0.953512i 0.0988746 0.171256i −0.812345 0.583178i \(-0.801809\pi\)
0.911219 + 0.411922i \(0.135142\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.44949 −0.583070
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.94949 + 8.57277i −0.772980 + 1.33884i 0.162942 + 0.986636i \(0.447902\pi\)
−0.935923 + 0.352206i \(0.885432\pi\)
\(42\) 0 0
\(43\) 5.89898 + 10.2173i 0.899586 + 1.55813i 0.828024 + 0.560692i \(0.189465\pi\)
0.0715617 + 0.997436i \(0.477202\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.72474 + 8.18350i 0.689175 + 1.19369i 0.972105 + 0.234545i \(0.0753602\pi\)
−0.282930 + 0.959140i \(0.591307\pi\)
\(48\) 0 0
\(49\) −2.44949 + 4.24264i −0.349927 + 0.606092i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.79796 −1.07113 −0.535566 0.844493i \(-0.679902\pi\)
−0.535566 + 0.844493i \(0.679902\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.550510 0.953512i 0.0716703 0.124137i −0.827963 0.560783i \(-0.810500\pi\)
0.899633 + 0.436646i \(0.143834\pi\)
\(60\) 0 0
\(61\) 1.50000 + 2.59808i 0.192055 + 0.332650i 0.945931 0.324367i \(-0.105151\pi\)
−0.753876 + 0.657017i \(0.771818\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.62372 + 11.4726i −0.809217 + 1.40160i 0.104190 + 0.994557i \(0.466775\pi\)
−0.913407 + 0.407047i \(0.866558\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.79796 1.16280 0.581402 0.813617i \(-0.302504\pi\)
0.581402 + 0.813617i \(0.302504\pi\)
\(72\) 0 0
\(73\) 13.7980 1.61493 0.807464 0.589916i \(-0.200839\pi\)
0.807464 + 0.589916i \(0.200839\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.44949 5.97469i −0.388098 0.672205i 0.604096 0.796912i \(-0.293534\pi\)
−0.992194 + 0.124706i \(0.960201\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.72474 + 4.71940i 0.299080 + 0.518021i 0.975926 0.218104i \(-0.0699871\pi\)
−0.676846 + 0.736125i \(0.736654\pi\)
\(84\) 0 0
\(85\) −1.00000 + 1.73205i −0.108465 + 0.187867i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.79796 −0.296583 −0.148292 0.988944i \(-0.547377\pi\)
−0.148292 + 0.988944i \(0.547377\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.44949 + 5.97469i −0.353910 + 0.612990i
\(96\) 0 0
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.00000 1.73205i −0.0995037 0.172345i 0.811976 0.583691i \(-0.198392\pi\)
−0.911479 + 0.411346i \(0.865059\pi\)
\(102\) 0 0
\(103\) 5.00000 8.66025i 0.492665 0.853320i −0.507300 0.861770i \(-0.669356\pi\)
0.999964 + 0.00844953i \(0.00268960\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.3485 −1.19377 −0.596886 0.802326i \(-0.703595\pi\)
−0.596886 + 0.802326i \(0.703595\pi\)
\(108\) 0 0
\(109\) −10.7980 −1.03426 −0.517128 0.855908i \(-0.672999\pi\)
−0.517128 + 0.855908i \(0.672999\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.89898 + 8.48528i −0.460857 + 0.798228i −0.999004 0.0446231i \(-0.985791\pi\)
0.538147 + 0.842851i \(0.319125\pi\)
\(114\) 0 0
\(115\) 3.72474 + 6.45145i 0.347334 + 0.601601i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.44949 + 5.97469i 0.316214 + 0.547699i
\(120\) 0 0
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −0.348469 −0.0309216 −0.0154608 0.999880i \(-0.504922\pi\)
−0.0154608 + 0.999880i \(0.504922\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.44949 + 2.51059i −0.126643 + 0.219351i −0.922374 0.386299i \(-0.873753\pi\)
0.795731 + 0.605650i \(0.207087\pi\)
\(132\) 0 0
\(133\) 11.8990 + 20.6096i 1.03177 + 1.78708i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.79796 + 16.9706i 0.837096 + 1.44989i 0.892312 + 0.451419i \(0.149082\pi\)
−0.0552162 + 0.998474i \(0.517585\pi\)
\(138\) 0 0
\(139\) 9.79796 16.9706i 0.831052 1.43942i −0.0661527 0.997810i \(-0.521072\pi\)
0.897205 0.441615i \(-0.145594\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.89898 0.157702
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.5000 + 18.1865i −0.860194 + 1.48990i 0.0115483 + 0.999933i \(0.496324\pi\)
−0.871742 + 0.489966i \(0.837009\pi\)
\(150\) 0 0
\(151\) 6.00000 + 10.3923i 0.488273 + 0.845714i 0.999909 0.0134886i \(-0.00429367\pi\)
−0.511636 + 0.859202i \(0.670960\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.550510 + 0.953512i 0.0442180 + 0.0765879i
\(156\) 0 0
\(157\) 11.8990 20.6096i 0.949642 1.64483i 0.203463 0.979083i \(-0.434780\pi\)
0.746179 0.665745i \(-0.231886\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 25.6969 2.02520
\(162\) 0 0
\(163\) 7.79796 0.610783 0.305392 0.952227i \(-0.401213\pi\)
0.305392 + 0.952227i \(0.401213\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.17423 + 7.22999i −0.323012 + 0.559473i −0.981108 0.193461i \(-0.938029\pi\)
0.658096 + 0.752934i \(0.271362\pi\)
\(168\) 0 0
\(169\) 6.50000 + 11.2583i 0.500000 + 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.00000 10.3923i −0.456172 0.790112i 0.542583 0.840002i \(-0.317446\pi\)
−0.998755 + 0.0498898i \(0.984113\pi\)
\(174\) 0 0
\(175\) 1.72474 2.98735i 0.130378 0.225822i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −13.7980 −1.03131 −0.515654 0.856797i \(-0.672451\pi\)
−0.515654 + 0.856797i \(0.672451\pi\)
\(180\) 0 0
\(181\) −9.69694 −0.720768 −0.360384 0.932804i \(-0.617354\pi\)
−0.360384 + 0.932804i \(0.617354\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 5.19615i 0.220564 0.382029i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.44949 + 12.9029i 0.539026 + 0.933621i 0.998957 + 0.0456658i \(0.0145409\pi\)
−0.459931 + 0.887955i \(0.652126\pi\)
\(192\) 0 0
\(193\) 1.10102 1.90702i 0.0792532 0.137271i −0.823675 0.567063i \(-0.808080\pi\)
0.902928 + 0.429792i \(0.141413\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 15.5959 1.11116 0.555582 0.831462i \(-0.312496\pi\)
0.555582 + 0.831462i \(0.312496\pi\)
\(198\) 0 0
\(199\) −22.8990 −1.62327 −0.811633 0.584168i \(-0.801421\pi\)
−0.811633 + 0.584168i \(0.801421\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.27526 5.67291i 0.229878 0.398160i
\(204\) 0 0
\(205\) −4.94949 8.57277i −0.345687 0.598748i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 6.00000 10.3923i 0.413057 0.715436i −0.582165 0.813070i \(-0.697794\pi\)
0.995222 + 0.0976347i \(0.0311277\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.7980 −0.804614
\(216\) 0 0
\(217\) 3.79796 0.257822
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2.72474 + 4.71940i 0.182462 + 0.316034i 0.942718 0.333589i \(-0.108260\pi\)
−0.760256 + 0.649623i \(0.774927\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.10102 + 7.10318i 0.272194 + 0.471454i 0.969423 0.245394i \(-0.0789173\pi\)
−0.697229 + 0.716848i \(0.745584\pi\)
\(228\) 0 0
\(229\) 2.05051 3.55159i 0.135502 0.234696i −0.790287 0.612736i \(-0.790069\pi\)
0.925789 + 0.378041i \(0.123402\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.7980 1.29701 0.648504 0.761211i \(-0.275395\pi\)
0.648504 + 0.761211i \(0.275395\pi\)
\(234\) 0 0
\(235\) −9.44949 −0.616417
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.10102 + 1.90702i −0.0712191 + 0.123355i −0.899436 0.437053i \(-0.856022\pi\)
0.828217 + 0.560408i \(0.189356\pi\)
\(240\) 0 0
\(241\) 1.84847 + 3.20164i 0.119070 + 0.206236i 0.919400 0.393325i \(-0.128675\pi\)
−0.800329 + 0.599561i \(0.795342\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.44949 4.24264i −0.156492 0.271052i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.89898 0.182982 0.0914910 0.995806i \(-0.470837\pi\)
0.0914910 + 0.995806i \(0.470837\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.8990 24.0737i 0.866995 1.50168i 0.00194150 0.999998i \(-0.499382\pi\)
0.865053 0.501680i \(-0.167285\pi\)
\(258\) 0 0
\(259\) −10.3485 17.9241i −0.643023 1.11375i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.00000 15.5885i −0.554964 0.961225i −0.997906 0.0646755i \(-0.979399\pi\)
0.442943 0.896550i \(-0.353935\pi\)
\(264\) 0 0
\(265\) 3.89898 6.75323i 0.239512 0.414848i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −22.5959 −1.37770 −0.688849 0.724905i \(-0.741884\pi\)
−0.688849 + 0.724905i \(0.741884\pi\)
\(270\) 0 0
\(271\) −30.8990 −1.87698 −0.938490 0.345307i \(-0.887775\pi\)
−0.938490 + 0.345307i \(0.887775\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7.00000 + 12.1244i 0.420589 + 0.728482i 0.995997 0.0893846i \(-0.0284900\pi\)
−0.575408 + 0.817867i \(0.695157\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.05051 7.01569i −0.241633 0.418521i 0.719546 0.694444i \(-0.244350\pi\)
−0.961180 + 0.275923i \(0.911016\pi\)
\(282\) 0 0
\(283\) −1.82577 + 3.16232i −0.108530 + 0.187980i −0.915175 0.403056i \(-0.867948\pi\)
0.806645 + 0.591037i \(0.201281\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −34.1464 −2.01560
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.79796 15.2385i 0.513982 0.890243i −0.485886 0.874022i \(-0.661503\pi\)
0.999868 0.0162213i \(-0.00516362\pi\)
\(294\) 0 0
\(295\) 0.550510 + 0.953512i 0.0320519 + 0.0555156i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −20.3485 + 35.2446i −1.17287 + 2.03146i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.00000 −0.171780
\(306\) 0 0
\(307\) 4.75255 0.271242 0.135621 0.990761i \(-0.456697\pi\)
0.135621 + 0.990761i \(0.456697\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.44949 5.97469i 0.195603 0.338794i −0.751495 0.659738i \(-0.770667\pi\)
0.947098 + 0.320945i \(0.104000\pi\)
\(312\) 0 0
\(313\) 7.79796 + 13.5065i 0.440767 + 0.763430i 0.997747 0.0670957i \(-0.0213733\pi\)
−0.556980 + 0.830526i \(0.688040\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.8990 22.3417i −0.724479 1.25483i −0.959188 0.282769i \(-0.908747\pi\)
0.234709 0.972066i \(-0.424586\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.7980 0.767739
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −16.2980 + 28.2289i −0.898536 + 1.55631i
\(330\) 0 0
\(331\) −3.44949 5.97469i −0.189601 0.328399i 0.755516 0.655130i \(-0.227386\pi\)
−0.945117 + 0.326731i \(0.894053\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.62372 11.4726i −0.361893 0.626817i
\(336\) 0 0
\(337\) 14.8990 25.8058i 0.811599 1.40573i −0.100145 0.994973i \(-0.531931\pi\)
0.911744 0.410758i \(-0.134736\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 7.24745 0.391325
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.7980 22.1667i 0.687030 1.18997i −0.285764 0.958300i \(-0.592247\pi\)
0.972794 0.231671i \(-0.0744194\pi\)
\(348\) 0 0
\(349\) 1.15153 + 1.99451i 0.0616400 + 0.106764i 0.895199 0.445667i \(-0.147034\pi\)
−0.833559 + 0.552431i \(0.813700\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) −4.89898 + 8.48528i −0.260011 + 0.450352i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 28.6969 1.51457 0.757283 0.653087i \(-0.226526\pi\)
0.757283 + 0.653087i \(0.226526\pi\)
\(360\) 0 0
\(361\) 28.5959 1.50505
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.89898 + 11.9494i −0.361109 + 0.625459i
\(366\) 0 0
\(367\) 11.0000 + 19.0526i 0.574195 + 0.994535i 0.996129 + 0.0879086i \(0.0280183\pi\)
−0.421933 + 0.906627i \(0.638648\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −13.4495 23.2952i −0.698263 1.20943i
\(372\) 0 0
\(373\) −10.7980 + 18.7026i −0.559097 + 0.968385i 0.438475 + 0.898743i \(0.355519\pi\)
−0.997572 + 0.0696412i \(0.977815\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −26.8990 −1.38171 −0.690854 0.722994i \(-0.742765\pi\)
−0.690854 + 0.722994i \(0.742765\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.00000 + 1.73205i −0.0510976 + 0.0885037i −0.890443 0.455095i \(-0.849605\pi\)
0.839345 + 0.543599i \(0.182939\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8.29796 14.3725i −0.420723 0.728714i 0.575287 0.817952i \(-0.304890\pi\)
−0.996010 + 0.0892375i \(0.971557\pi\)
\(390\) 0 0
\(391\) 7.44949 12.9029i 0.376737 0.652527i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.89898 0.347125
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.7980 22.1667i 0.639100 1.10695i −0.346531 0.938038i \(-0.612641\pi\)
0.985631 0.168914i \(-0.0540262\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 4.79796 8.31031i 0.237244 0.410918i −0.722679 0.691184i \(-0.757089\pi\)
0.959922 + 0.280266i \(0.0904226\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.79796 0.186885
\(414\) 0 0
\(415\) −5.44949 −0.267505
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10.0000 + 17.3205i −0.488532 + 0.846162i −0.999913 0.0131919i \(-0.995801\pi\)
0.511381 + 0.859354i \(0.329134\pi\)
\(420\) 0 0
\(421\) −12.7980 22.1667i −0.623734 1.08034i −0.988784 0.149352i \(-0.952281\pi\)
0.365050 0.930988i \(-0.381052\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.00000 1.73205i −0.0485071 0.0840168i
\(426\) 0 0
\(427\) −5.17423 + 8.96204i −0.250399 + 0.433703i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14.8990 0.717659 0.358829 0.933403i \(-0.383176\pi\)
0.358829 + 0.933403i \(0.383176\pi\)
\(432\) 0 0
\(433\) −11.7980 −0.566974 −0.283487 0.958976i \(-0.591491\pi\)
−0.283487 + 0.958976i \(0.591491\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 25.6969 44.5084i 1.22925 2.12913i
\(438\) 0 0
\(439\) −8.89898 15.4135i −0.424725 0.735645i 0.571670 0.820484i \(-0.306296\pi\)
−0.996395 + 0.0848384i \(0.972963\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.07321 + 7.05501i 0.193524 + 0.335194i 0.946416 0.322951i \(-0.104675\pi\)
−0.752892 + 0.658145i \(0.771342\pi\)
\(444\) 0 0
\(445\) 1.39898 2.42310i 0.0663180 0.114866i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −21.5959 −1.01917 −0.509587 0.860419i \(-0.670202\pi\)
−0.509587 + 0.860419i \(0.670202\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −8.79796 15.2385i −0.411551 0.712828i 0.583508 0.812107i \(-0.301680\pi\)
−0.995060 + 0.0992796i \(0.968346\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.05051 + 10.4798i 0.281800 + 0.488093i 0.971828 0.235690i \(-0.0757351\pi\)
−0.690028 + 0.723783i \(0.742402\pi\)
\(462\) 0 0
\(463\) 6.10102 10.5673i 0.283538 0.491103i −0.688715 0.725032i \(-0.741825\pi\)
0.972254 + 0.233929i \(0.0751583\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.79796 0.360847 0.180423 0.983589i \(-0.442253\pi\)
0.180423 + 0.983589i \(0.442253\pi\)
\(468\) 0 0
\(469\) −45.6969 −2.11009
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −3.44949 5.97469i −0.158273 0.274138i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.2474 26.4094i −0.696674 1.20667i −0.969613 0.244643i \(-0.921329\pi\)
0.272939 0.962031i \(-0.412004\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) 13.5959 0.616090 0.308045 0.951372i \(-0.400325\pi\)
0.308045 + 0.951372i \(0.400325\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.89898 11.9494i 0.311347 0.539268i −0.667308 0.744782i \(-0.732553\pi\)
0.978654 + 0.205514i \(0.0658867\pi\)
\(492\) 0 0
\(493\) −1.89898 3.28913i −0.0855257 0.148135i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 16.8990 + 29.2699i 0.758023 + 1.31293i
\(498\) 0 0
\(499\) −14.0000 + 24.2487i −0.626726 + 1.08552i 0.361478 + 0.932381i \(0.382272\pi\)
−0.988204 + 0.153141i \(0.951061\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 25.0454 1.11672 0.558360 0.829599i \(-0.311431\pi\)
0.558360 + 0.829599i \(0.311431\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.05051 + 3.55159i −0.0908873 + 0.157421i −0.907885 0.419220i \(-0.862304\pi\)
0.816997 + 0.576641i \(0.195637\pi\)
\(510\) 0 0
\(511\) 23.7980 + 41.2193i 1.05276 + 1.82343i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.00000 + 8.66025i 0.220326 + 0.381616i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.20204 −0.403149 −0.201574 0.979473i \(-0.564606\pi\)
−0.201574 + 0.979473i \(0.564606\pi\)
\(522\) 0 0
\(523\) 34.3485 1.50195 0.750977 0.660329i \(-0.229583\pi\)
0.750977 + 0.660329i \(0.229583\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.10102 1.90702i 0.0479612 0.0830712i
\(528\) 0 0
\(529\) −16.2474 28.1414i −0.706411 1.22354i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 6.17423 10.6941i 0.266935 0.462346i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 12.1010 0.520264 0.260132 0.965573i \(-0.416234\pi\)
0.260132 + 0.965573i \(0.416234\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.39898 9.35131i 0.231267 0.400566i
\(546\) 0 0
\(547\) −8.37628 14.5081i −0.358144 0.620323i 0.629507 0.776995i \(-0.283257\pi\)
−0.987651 + 0.156672i \(0.949924\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.55051 11.3458i −0.279061 0.483348i
\(552\) 0 0
\(553\) 11.8990 20.6096i 0.505996 0.876411i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −43.7980 −1.85578 −0.927890 0.372855i \(-0.878379\pi\)
−0.927890 + 0.372855i \(0.878379\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.17423 8.96204i 0.218068 0.377705i −0.736149 0.676819i \(-0.763358\pi\)
0.954217 + 0.299114i \(0.0966912\pi\)
\(564\) 0 0
\(565\) −4.89898 8.48528i −0.206102 0.356978i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.00000 + 8.66025i 0.209611 + 0.363057i 0.951592 0.307364i \(-0.0994469\pi\)
−0.741981 + 0.670421i \(0.766114\pi\)
\(570\) 0 0
\(571\) 12.8990 22.3417i 0.539805 0.934971i −0.459109 0.888380i \(-0.651831\pi\)
0.998914 0.0465904i \(-0.0148355\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7.44949 −0.310665
\(576\) 0 0
\(577\) −26.0000 −1.08239 −0.541197 0.840896i \(-0.682029\pi\)
−0.541197 + 0.840896i \(0.682029\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.39898 + 16.2795i −0.389935 + 0.675388i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.82577 6.62642i −0.157906 0.273502i 0.776207 0.630478i \(-0.217141\pi\)
−0.934113 + 0.356976i \(0.883808\pi\)
\(588\) 0 0
\(589\) 3.79796 6.57826i 0.156492 0.271052i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 31.3939 1.28919 0.644596 0.764523i \(-0.277026\pi\)
0.644596 + 0.764523i \(0.277026\pi\)
\(594\) 0 0
\(595\) −6.89898 −0.282831
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.3485 21.3882i 0.504545 0.873897i −0.495441 0.868641i \(-0.664994\pi\)
0.999986 0.00525583i \(-0.00167299\pi\)
\(600\) 0 0
\(601\) −7.00000 12.1244i −0.285536 0.494563i 0.687203 0.726465i \(-0.258838\pi\)
−0.972739 + 0.231903i \(0.925505\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.50000 + 9.52628i 0.223607 + 0.387298i
\(606\) 0 0
\(607\) 1.07321 1.85886i 0.0435604 0.0754489i −0.843423 0.537250i \(-0.819463\pi\)
0.886984 + 0.461801i \(0.152797\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −29.5959 −1.19537 −0.597684 0.801732i \(-0.703912\pi\)
−0.597684 + 0.801732i \(0.703912\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17.5959 + 30.4770i −0.708385 + 1.22696i 0.257071 + 0.966393i \(0.417243\pi\)
−0.965456 + 0.260566i \(0.916091\pi\)
\(618\) 0 0
\(619\) −12.3485 21.3882i −0.496327 0.859663i 0.503664 0.863900i \(-0.331985\pi\)
−0.999991 + 0.00423617i \(0.998652\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.82577 8.35847i −0.193340 0.334875i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 15.5959 0.620864 0.310432 0.950596i \(-0.399526\pi\)
0.310432 + 0.950596i \(0.399526\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.174235 0.301783i 0.00691429 0.0119759i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.94949 12.0369i −0.274488 0.475428i 0.695518 0.718509i \(-0.255175\pi\)
−0.970006 + 0.243081i \(0.921842\pi\)
\(642\) 0 0
\(643\) −10.0732 + 17.4473i −0.397249 + 0.688055i −0.993385 0.114828i \(-0.963368\pi\)
0.596137 + 0.802883i \(0.296702\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.55051 0.257527 0.128764 0.991675i \(-0.458899\pi\)
0.128764 + 0.991675i \(0.458899\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.8990 24.0737i 0.543909 0.942078i −0.454766 0.890611i \(-0.650277\pi\)
0.998675 0.0514670i \(-0.0163897\pi\)
\(654\) 0 0
\(655\) −1.44949 2.51059i −0.0566363 0.0980969i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5.10102 8.83523i −0.198708 0.344172i 0.749402 0.662115i \(-0.230341\pi\)
−0.948110 + 0.317944i \(0.897008\pi\)
\(660\) 0 0
\(661\) −5.00000 + 8.66025i −0.194477 + 0.336845i −0.946729 0.322031i \(-0.895634\pi\)
0.752252 + 0.658876i \(0.228968\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −23.7980 −0.922845
\(666\) 0 0
\(667\) −14.1464 −0.547752
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 8.00000 + 13.8564i 0.308377 + 0.534125i 0.978008 0.208569i \(-0.0668807\pi\)
−0.669630 + 0.742695i \(0.733547\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.10102 + 12.2993i 0.272914 + 0.472702i 0.969607 0.244668i \(-0.0786791\pi\)
−0.696692 + 0.717370i \(0.745346\pi\)
\(678\) 0 0
\(679\) 3.44949 5.97469i 0.132379 0.229288i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 23.3939 0.895142 0.447571 0.894248i \(-0.352289\pi\)
0.447571 + 0.894248i \(0.352289\pi\)
\(684\) 0 0
\(685\) −19.5959 −0.748722
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 19.4495 + 33.6875i 0.739893 + 1.28153i 0.952543 + 0.304404i \(0.0984574\pi\)
−0.212649 + 0.977129i \(0.568209\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.79796 + 16.9706i 0.371658 + 0.643730i
\(696\) 0 0
\(697\) −9.89898 + 17.1455i −0.374951 + 0.649433i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −30.3939 −1.14796 −0.573980 0.818869i \(-0.694601\pi\)
−0.573980 + 0.818869i \(0.694601\pi\)
\(702\) 0 0
\(703\) −41.3939 −1.56120
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.44949 5.97469i 0.129731 0.224701i
\(708\) 0 0
\(709\) −4.84847 8.39780i −0.182088 0.315386i 0.760503 0.649334i \(-0.224952\pi\)
−0.942591 + 0.333948i \(0.891619\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.10102 7.10318i −0.153584 0.266016i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −28.2929 −1.05515 −0.527573 0.849510i \(-0.676898\pi\)
−0.527573 + 0.849510i \(0.676898\pi\)
\(720\) 0 0
\(721\) 34.4949 1.28466
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.949490 + 1.64456i −0.0352632 + 0.0610776i
\(726\) 0 0
\(727\) −15.6237 27.0611i −0.579452 1.00364i −0.995542 0.0943168i \(-0.969933\pi\)
0.416090 0.909323i \(-0.363400\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 11.7980 + 20.4347i 0.436363 + 0.755803i
\(732\) 0 0
\(733\) 14.7980 25.6308i 0.546575 0.946696i −0.451931 0.892053i \(-0.649265\pi\)
0.998506 0.0546429i \(-0.0174020\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 33.1010 1.21764 0.608820 0.793308i \(-0.291643\pi\)
0.608820 + 0.793308i \(0.291643\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.52270 6.10150i 0.129235 0.223842i −0.794145 0.607728i \(-0.792081\pi\)
0.923381 + 0.383886i \(0.125414\pi\)
\(744\) 0 0
\(745\) −10.5000 18.1865i −0.384690 0.666303i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −21.2980 36.8891i −0.778210 1.34790i
\(750\) 0 0
\(751\) 13.1010 22.6916i 0.478063 0.828029i −0.521621 0.853177i \(-0.674672\pi\)
0.999684 + 0.0251480i \(0.00800571\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −12.0000 −0.436725
\(756\) 0 0
\(757\) 31.5959 1.14837 0.574187 0.818724i \(-0.305318\pi\)
0.574187 + 0.818724i \(0.305318\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17.5000 30.3109i 0.634375 1.09877i −0.352273 0.935897i \(-0.614591\pi\)
0.986647 0.162872i \(-0.0520756\pi\)
\(762\) 0 0
\(763\) −18.6237 32.2572i −0.674224 1.16779i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 2.60102 4.50510i 0.0937952 0.162458i −0.815310 0.579025i \(-0.803433\pi\)
0.909105 + 0.416567i \(0.136767\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.20204 −0.223072 −0.111536 0.993760i \(-0.535577\pi\)
−0.111536 + 0.993760i \(0.535577\pi\)
\(774\) 0 0
\(775\) −1.10102 −0.0395498
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −34.1464 + 59.1433i −1.22342 + 2.11903i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.8990 + 20.6096i 0.424693 + 0.735589i
\(786\) 0 0
\(787\) −24.7980 + 42.9513i −0.883952 + 1.53105i −0.0370414 + 0.999314i \(0.511793\pi\)
−0.846910 + 0.531736i \(0.821540\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −33.7980 −1.20172
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.00000 + 6.92820i −0.141687 + 0.245410i −0.928132 0.372251i \(-0.878586\pi\)
0.786445 + 0.617661i \(0.211919\pi\)
\(798\) 0 0
\(799\) 9.44949 + 16.3670i 0.334299 + 0.579023i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −12.8485 + 22.2542i −0.452849 + 0.784358i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) −13.1010 −0.460039 −0.230020 0.973186i \(-0.573879\pi\)
−0.230020 + 0.973186i \(0.573879\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.89898 + 6.75323i −0.136575 + 0.236555i
\(816\) 0 0
\(817\) 40.6969 + 70.4892i 1.42381 + 2.46610i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.39898 + 2.42310i 0.0488247 + 0.0845669i 0.889405 0.457120i \(-0.151119\pi\)
−0.840580 + 0.541687i \(0.817786\pi\)
\(822\) 0 0
\(823\) −4.17423 + 7.22999i −0.145505 + 0.252021i −0.929561 0.368668i \(-0.879814\pi\)
0.784056 + 0.620690i \(0.213147\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 53.5403 1.86178 0.930889 0.365301i \(-0.119034\pi\)
0.930889 + 0.365301i \(0.119034\pi\)
\(828\) 0 0
\(829\) 50.1918 1.74323 0.871617 0.490187i \(-0.163072\pi\)
0.871617 + 0.490187i \(0.163072\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.89898 + 8.48528i −0.169740 + 0.293998i
\(834\) 0 0
\(835\) −4.17423 7.22999i −0.144455 0.250204i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.34847 4.06767i −0.0810782 0.140431i 0.822635 0.568570i \(-0.192503\pi\)
−0.903713 + 0.428138i \(0.859170\pi\)
\(840\) 0 0
\(841\) 12.6969 21.9917i 0.437825 0.758336i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −13.0000 −0.447214
\(846\) 0 0
\(847\) 37.9444 1.30378
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −22.3485 + 38.7087i −0.766096 + 1.32692i
\(852\) 0 0
\(853\) −9.10102 15.7634i −0.311613 0.539730i 0.667099 0.744969i \(-0.267536\pi\)
−0.978712 + 0.205240i \(0.934203\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.202041 + 0.349945i 0.00690159 + 0.0119539i 0.869456 0.494011i \(-0.164470\pi\)
−0.862554 + 0.505965i \(0.831136\pi\)
\(858\) 0 0
\(859\) 19.5959 33.9411i 0.668604 1.15806i −0.309691 0.950837i \(-0.600225\pi\)
0.978295 0.207219i \(-0.0664412\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 57.4495 1.95560 0.977802 0.209532i \(-0.0671942\pi\)
0.977802 + 0.209532i \(0.0671942\pi\)
\(864\) 0 0
\(865\) 12.0000 0.408012
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.72474 + 2.98735i 0.0583070 + 0.100991i
\(876\) 0 0
\(877\) 0.202041 0.349945i 0.00682244 0.0118168i −0.862594 0.505897i \(-0.831162\pi\)
0.869416 + 0.494080i \(0.164495\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −6.10102 −0.205549 −0.102774 0.994705i \(-0.532772\pi\)
−0.102774 + 0.994705i \(0.532772\pi\)
\(882\) 0 0
\(883\) 0.954592 0.0321246 0.0160623 0.999871i \(-0.494887\pi\)
0.0160623 + 0.999871i \(0.494887\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −0.797959 + 1.38211i −0.0267928 + 0.0464066i −0.879111 0.476617i \(-0.841863\pi\)
0.852318 + 0.523024i \(0.175196\pi\)
\(888\) 0 0
\(889\) −0.601021 1.04100i −0.0201576 0.0349140i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 32.5959 + 56.4578i 1.09078 + 1.88929i
\(894\) 0 0
\(895\) 6.89898 11.9494i 0.230607 0.399424i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.09082 −0.0697326
\(900\) 0 0
\(901\) −15.5959 −0.519575
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.84847 8.39780i 0.161169 0.279152i
\(906\) 0 0
\(907\) −10.8258 18.7508i −0.359464 0.622609i 0.628408 0.777884i \(-0.283707\pi\)
−0.987871 + 0.155275i \(0.950374\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.24745 9.08885i −0.173856 0.301127i 0.765909 0.642949i \(-0.222289\pi\)
−0.939765 + 0.341822i \(0.888956\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10.0000 −0.330229
\(918\) 0 0
\(919\) −24.6969 −0.814677 −0.407338 0.913277i \(-0.633543\pi\)
−0.407338 + 0.913277i \(0.633543\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 3.00000 + 5.19615i 0.0986394 + 0.170848i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 18.7980 + 32.5590i 0.616741 + 1.06823i 0.990076 + 0.140530i \(0.0448808\pi\)
−0.373335 + 0.927696i \(0.621786\pi\)
\(930\) 0 0
\(931\) −16.8990 + 29.2699i −0.553842 + 0.959282i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −40.9898 −1.33908 −0.669539 0.742777i \(-0.733508\pi\)
−0.669539 + 0.742777i \(0.733508\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.848469 + 1.46959i −0.0276593 + 0.0479073i −0.879524 0.475855i \(-0.842139\pi\)
0.851864 + 0.523762i \(0.175472\pi\)
\(942\) 0 0
\(943\) 36.8712 + 63.8627i 1.20069 + 2.07966i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.92679 + 10.2655i 0.192595 + 0.333584i 0.946109 0.323847i \(-0.104976\pi\)
−0.753515 + 0.657431i \(0.771643\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 14.2020 0.460049 0.230025 0.973185i \(-0.426119\pi\)
0.230025 + 0.973185i \(0.426119\pi\)
\(954\) 0 0
\(955\) −14.8990 −0.482120
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −33.7980 + 58.5398i −1.09139 + 1.89035i
\(960\) 0 0
\(961\) 14.8939 + 25.7970i 0.480448 + 0.832160i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.10102 + 1.90702i 0.0354431 + 0.0613893i
\(966\) 0 0
\(967\) 24.4217 42.2996i 0.785348 1.36026i −0.143442 0.989659i \(-0.545817\pi\)
0.928791 0.370605i \(-0.120850\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 31.3031 1.00456 0.502282 0.864704i \(-0.332494\pi\)
0.502282 + 0.864704i \(0.332494\pi\)
\(972\) 0 0
\(973\) 67.5959 2.16703
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −6.69694 + 11.5994i −0.214254 + 0.371099i −0.953042 0.302840i \(-0.902065\pi\)
0.738788 + 0.673938i \(0.235399\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 5.72474 + 9.91555i 0.182591 + 0.316257i 0.942762 0.333466i \(-0.108218\pi\)
−0.760171 + 0.649723i \(0.774885\pi\)
\(984\) 0 0
\(985\) −7.79796 + 13.5065i −0.248464 + 0.430352i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 87.8888 2.79470
\(990\) 0 0
\(991\) −28.6969 −0.911588 −0.455794 0.890085i \(-0.650645\pi\)
−0.455794 + 0.890085i \(0.650645\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11.4495 19.8311i 0.362973 0.628688i
\(996\) 0 0
\(997\) 11.6969 + 20.2597i 0.370446 + 0.641631i 0.989634 0.143612i \(-0.0458716\pi\)
−0.619188 + 0.785242i \(0.712538\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.2.q.g.1441.2 4
3.2 odd 2 720.2.q.g.481.2 4
4.3 odd 2 1080.2.q.c.361.1 4
9.2 odd 6 720.2.q.g.241.2 4
9.4 even 3 6480.2.a.bl.1.1 2
9.5 odd 6 6480.2.a.bc.1.1 2
9.7 even 3 inner 2160.2.q.g.721.2 4
12.11 even 2 360.2.q.c.121.1 4
36.7 odd 6 1080.2.q.c.721.1 4
36.11 even 6 360.2.q.c.241.1 yes 4
36.23 even 6 3240.2.a.j.1.2 2
36.31 odd 6 3240.2.a.o.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.c.121.1 4 12.11 even 2
360.2.q.c.241.1 yes 4 36.11 even 6
720.2.q.g.241.2 4 9.2 odd 6
720.2.q.g.481.2 4 3.2 odd 2
1080.2.q.c.361.1 4 4.3 odd 2
1080.2.q.c.721.1 4 36.7 odd 6
2160.2.q.g.721.2 4 9.7 even 3 inner
2160.2.q.g.1441.2 4 1.1 even 1 trivial
3240.2.a.j.1.2 2 36.23 even 6
3240.2.a.o.1.2 2 36.31 odd 6
6480.2.a.bc.1.1 2 9.5 odd 6
6480.2.a.bl.1.1 2 9.4 even 3