Properties

Label 2160.2.q.g.1441.1
Level $2160$
Weight $2$
Character 2160.1441
Analytic conductor $17.248$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,2,Mod(721,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.721"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-2,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1441.1
Root \(1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2160.1441
Dual form 2160.2.q.g.721.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{5} +(-0.724745 - 1.25529i) q^{7} +2.00000 q^{17} -2.89898 q^{19} +(1.27526 - 2.20881i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(3.94949 + 6.84072i) q^{29} +(5.44949 - 9.43879i) q^{31} +1.44949 q^{35} -6.00000 q^{37} +(-0.0505103 + 0.0874863i) q^{41} +(-3.89898 - 6.75323i) q^{43} +(2.27526 + 3.94086i) q^{47} +(2.44949 - 4.24264i) q^{49} +11.7980 q^{53} +(5.44949 - 9.43879i) q^{59} +(1.50000 + 2.59808i) q^{61} +(5.62372 - 9.74058i) q^{67} -9.79796 q^{71} -5.79796 q^{73} +(1.44949 + 2.51059i) q^{79} +(0.275255 + 0.476756i) q^{83} +(-1.00000 + 1.73205i) q^{85} +16.7980 q^{89} +(1.44949 - 2.51059i) q^{95} +(-1.00000 - 1.73205i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} + 2 q^{7} + 8 q^{17} + 8 q^{19} + 10 q^{23} - 2 q^{25} + 6 q^{29} + 12 q^{31} - 4 q^{35} - 24 q^{37} - 10 q^{41} + 4 q^{43} + 14 q^{47} + 8 q^{53} + 12 q^{59} + 6 q^{61} - 2 q^{67} + 16 q^{73}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) −0.724745 1.25529i −0.273928 0.474457i 0.695936 0.718104i \(-0.254990\pi\)
−0.969864 + 0.243647i \(0.921656\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0 0
\(13\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −2.89898 −0.665072 −0.332536 0.943091i \(-0.607904\pi\)
−0.332536 + 0.943091i \(0.607904\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.27526 2.20881i 0.265909 0.460568i −0.701892 0.712283i \(-0.747661\pi\)
0.967801 + 0.251715i \(0.0809946\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.94949 + 6.84072i 0.733402 + 1.27029i 0.955421 + 0.295247i \(0.0954019\pi\)
−0.222019 + 0.975042i \(0.571265\pi\)
\(30\) 0 0
\(31\) 5.44949 9.43879i 0.978757 1.69526i 0.311824 0.950140i \(-0.399060\pi\)
0.666933 0.745117i \(-0.267607\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.44949 0.245008
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.0505103 + 0.0874863i −0.00788838 + 0.0136631i −0.869943 0.493153i \(-0.835844\pi\)
0.862054 + 0.506816i \(0.169178\pi\)
\(42\) 0 0
\(43\) −3.89898 6.75323i −0.594589 1.02986i −0.993605 0.112914i \(-0.963982\pi\)
0.399016 0.916944i \(-0.369352\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.27526 + 3.94086i 0.331880 + 0.574833i 0.982880 0.184244i \(-0.0589837\pi\)
−0.651000 + 0.759077i \(0.725650\pi\)
\(48\) 0 0
\(49\) 2.44949 4.24264i 0.349927 0.606092i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.7980 1.62057 0.810287 0.586033i \(-0.199311\pi\)
0.810287 + 0.586033i \(0.199311\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.44949 9.43879i 0.709463 1.22883i −0.255593 0.966784i \(-0.582271\pi\)
0.965057 0.262042i \(-0.0843958\pi\)
\(60\) 0 0
\(61\) 1.50000 + 2.59808i 0.192055 + 0.332650i 0.945931 0.324367i \(-0.105151\pi\)
−0.753876 + 0.657017i \(0.771818\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.62372 9.74058i 0.687047 1.19000i −0.285741 0.958307i \(-0.592240\pi\)
0.972789 0.231694i \(-0.0744268\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.79796 −1.16280 −0.581402 0.813617i \(-0.697496\pi\)
−0.581402 + 0.813617i \(0.697496\pi\)
\(72\) 0 0
\(73\) −5.79796 −0.678600 −0.339300 0.940678i \(-0.610190\pi\)
−0.339300 + 0.940678i \(0.610190\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.44949 + 2.51059i 0.163080 + 0.282463i 0.935972 0.352075i \(-0.114524\pi\)
−0.772892 + 0.634538i \(0.781190\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.275255 + 0.476756i 0.0302132 + 0.0523308i 0.880737 0.473606i \(-0.157048\pi\)
−0.850523 + 0.525937i \(0.823715\pi\)
\(84\) 0 0
\(85\) −1.00000 + 1.73205i −0.108465 + 0.187867i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.7980 1.78058 0.890290 0.455394i \(-0.150502\pi\)
0.890290 + 0.455394i \(0.150502\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.44949 2.51059i 0.148715 0.257581i
\(96\) 0 0
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.00000 1.73205i −0.0995037 0.172345i 0.811976 0.583691i \(-0.198392\pi\)
−0.911479 + 0.411346i \(0.865059\pi\)
\(102\) 0 0
\(103\) 5.00000 8.66025i 0.492665 0.853320i −0.507300 0.861770i \(-0.669356\pi\)
0.999964 + 0.00844953i \(0.00268960\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.34847 0.227035 0.113518 0.993536i \(-0.463788\pi\)
0.113518 + 0.993536i \(0.463788\pi\)
\(108\) 0 0
\(109\) 8.79796 0.842692 0.421346 0.906900i \(-0.361558\pi\)
0.421346 + 0.906900i \(0.361558\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.89898 8.48528i 0.460857 0.798228i −0.538147 0.842851i \(-0.680875\pi\)
0.999004 + 0.0446231i \(0.0142087\pi\)
\(114\) 0 0
\(115\) 1.27526 + 2.20881i 0.118918 + 0.205972i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.44949 2.51059i −0.132875 0.230145i
\(120\) 0 0
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 14.3485 1.27322 0.636610 0.771186i \(-0.280336\pi\)
0.636610 + 0.771186i \(0.280336\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.44949 5.97469i 0.301383 0.522011i −0.675066 0.737757i \(-0.735885\pi\)
0.976450 + 0.215746i \(0.0692183\pi\)
\(132\) 0 0
\(133\) 2.10102 + 3.63907i 0.182182 + 0.315548i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.79796 16.9706i −0.837096 1.44989i −0.892312 0.451419i \(-0.850918\pi\)
0.0552162 0.998474i \(-0.482415\pi\)
\(138\) 0 0
\(139\) −9.79796 + 16.9706i −0.831052 + 1.43942i 0.0661527 + 0.997810i \(0.478928\pi\)
−0.897205 + 0.441615i \(0.854406\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −7.89898 −0.655975
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.5000 + 18.1865i −0.860194 + 1.48990i 0.0115483 + 0.999933i \(0.496324\pi\)
−0.871742 + 0.489966i \(0.837009\pi\)
\(150\) 0 0
\(151\) 6.00000 + 10.3923i 0.488273 + 0.845714i 0.999909 0.0134886i \(-0.00429367\pi\)
−0.511636 + 0.859202i \(0.670960\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.44949 + 9.43879i 0.437714 + 0.758142i
\(156\) 0 0
\(157\) 2.10102 3.63907i 0.167680 0.290430i −0.769924 0.638136i \(-0.779706\pi\)
0.937604 + 0.347706i \(0.113039\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.69694 −0.291360
\(162\) 0 0
\(163\) −11.7980 −0.924087 −0.462044 0.886857i \(-0.652884\pi\)
−0.462044 + 0.886857i \(0.652884\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.17423 5.49794i 0.245630 0.425443i −0.716679 0.697403i \(-0.754339\pi\)
0.962308 + 0.271960i \(0.0876720\pi\)
\(168\) 0 0
\(169\) 6.50000 + 11.2583i 0.500000 + 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.00000 10.3923i −0.456172 0.790112i 0.542583 0.840002i \(-0.317446\pi\)
−0.998755 + 0.0498898i \(0.984113\pi\)
\(174\) 0 0
\(175\) −0.724745 + 1.25529i −0.0547856 + 0.0948914i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.79796 0.433360 0.216680 0.976243i \(-0.430477\pi\)
0.216680 + 0.976243i \(0.430477\pi\)
\(180\) 0 0
\(181\) 19.6969 1.46406 0.732031 0.681271i \(-0.238573\pi\)
0.732031 + 0.681271i \(0.238573\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 5.19615i 0.220564 0.382029i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.55051 + 4.41761i 0.184548 + 0.319647i 0.943424 0.331588i \(-0.107584\pi\)
−0.758876 + 0.651235i \(0.774251\pi\)
\(192\) 0 0
\(193\) 10.8990 18.8776i 0.784526 1.35884i −0.144756 0.989467i \(-0.546240\pi\)
0.929282 0.369371i \(-0.120427\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23.5959 −1.68114 −0.840570 0.541703i \(-0.817780\pi\)
−0.840570 + 0.541703i \(0.817780\pi\)
\(198\) 0 0
\(199\) −13.1010 −0.928707 −0.464353 0.885650i \(-0.653713\pi\)
−0.464353 + 0.885650i \(0.653713\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.72474 9.91555i 0.401798 0.695935i
\(204\) 0 0
\(205\) −0.0505103 0.0874863i −0.00352779 0.00611031i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 6.00000 10.3923i 0.413057 0.715436i −0.582165 0.813070i \(-0.697794\pi\)
0.995222 + 0.0976347i \(0.0311277\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.79796 0.531816
\(216\) 0 0
\(217\) −15.7980 −1.07244
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.275255 + 0.476756i 0.0184324 + 0.0319259i 0.875094 0.483952i \(-0.160799\pi\)
−0.856662 + 0.515878i \(0.827466\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.8990 + 24.0737i 0.922508 + 1.59783i 0.795521 + 0.605926i \(0.207197\pi\)
0.126986 + 0.991904i \(0.459470\pi\)
\(228\) 0 0
\(229\) 6.94949 12.0369i 0.459235 0.795419i −0.539686 0.841867i \(-0.681457\pi\)
0.998921 + 0.0464480i \(0.0147902\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.202041 0.0132361 0.00661807 0.999978i \(-0.497893\pi\)
0.00661807 + 0.999978i \(0.497893\pi\)
\(234\) 0 0
\(235\) −4.55051 −0.296843
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.8990 + 18.8776i −0.704996 + 1.22109i 0.261696 + 0.965150i \(0.415718\pi\)
−0.966693 + 0.255939i \(0.917615\pi\)
\(240\) 0 0
\(241\) −12.8485 22.2542i −0.827643 1.43352i −0.899883 0.436132i \(-0.856348\pi\)
0.0722401 0.997387i \(-0.476985\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.44949 + 4.24264i 0.156492 + 0.271052i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.89898 −0.435460 −0.217730 0.976009i \(-0.569865\pi\)
−0.217730 + 0.976009i \(0.569865\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.10102 7.10318i 0.255815 0.443084i −0.709302 0.704905i \(-0.750990\pi\)
0.965116 + 0.261821i \(0.0843230\pi\)
\(258\) 0 0
\(259\) 4.34847 + 7.53177i 0.270201 + 0.468001i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.00000 15.5885i −0.554964 0.961225i −0.997906 0.0646755i \(-0.979399\pi\)
0.442943 0.896550i \(-0.353935\pi\)
\(264\) 0 0
\(265\) −5.89898 + 10.2173i −0.362371 + 0.627646i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 16.5959 1.01187 0.505935 0.862571i \(-0.331147\pi\)
0.505935 + 0.862571i \(0.331147\pi\)
\(270\) 0 0
\(271\) −21.1010 −1.28180 −0.640898 0.767626i \(-0.721438\pi\)
−0.640898 + 0.767626i \(0.721438\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7.00000 + 12.1244i 0.420589 + 0.728482i 0.995997 0.0893846i \(-0.0284900\pi\)
−0.575408 + 0.817867i \(0.695157\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.94949 15.5010i −0.533882 0.924710i −0.999217 0.0395756i \(-0.987399\pi\)
0.465335 0.885135i \(-0.345934\pi\)
\(282\) 0 0
\(283\) −9.17423 + 15.8902i −0.545352 + 0.944577i 0.453233 + 0.891392i \(0.350271\pi\)
−0.998585 + 0.0531847i \(0.983063\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.146428 0.00864338
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.7980 + 18.7026i −0.630823 + 1.09262i 0.356560 + 0.934272i \(0.383949\pi\)
−0.987384 + 0.158346i \(0.949384\pi\)
\(294\) 0 0
\(295\) 5.44949 + 9.43879i 0.317282 + 0.549548i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −5.65153 + 9.78874i −0.325749 + 0.564214i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.00000 −0.171780
\(306\) 0 0
\(307\) 29.2474 1.66924 0.834620 0.550826i \(-0.185687\pi\)
0.834620 + 0.550826i \(0.185687\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.44949 + 2.51059i −0.0821930 + 0.142362i −0.904192 0.427127i \(-0.859526\pi\)
0.821999 + 0.569489i \(0.192859\pi\)
\(312\) 0 0
\(313\) −11.7980 20.4347i −0.666860 1.15504i −0.978777 0.204926i \(-0.934305\pi\)
0.311917 0.950109i \(-0.399029\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.10102 5.37113i −0.174171 0.301672i 0.765703 0.643194i \(-0.222391\pi\)
−0.939874 + 0.341522i \(0.889058\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.79796 −0.322607
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.29796 5.71223i 0.181822 0.314926i
\(330\) 0 0
\(331\) 1.44949 + 2.51059i 0.0796712 + 0.137994i 0.903108 0.429413i \(-0.141280\pi\)
−0.823437 + 0.567408i \(0.807946\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.62372 + 9.74058i 0.307257 + 0.532185i
\(336\) 0 0
\(337\) 5.10102 8.83523i 0.277870 0.481285i −0.692985 0.720952i \(-0.743705\pi\)
0.970855 + 0.239667i \(0.0770381\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −17.2474 −0.931275
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.79796 + 11.7744i −0.364934 + 0.632083i −0.988765 0.149475i \(-0.952242\pi\)
0.623832 + 0.781559i \(0.285575\pi\)
\(348\) 0 0
\(349\) 15.8485 + 27.4504i 0.848349 + 1.46938i 0.882681 + 0.469973i \(0.155736\pi\)
−0.0343315 + 0.999410i \(0.510930\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) 4.89898 8.48528i 0.260011 0.450352i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.696938 −0.0367830 −0.0183915 0.999831i \(-0.505855\pi\)
−0.0183915 + 0.999831i \(0.505855\pi\)
\(360\) 0 0
\(361\) −10.5959 −0.557680
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.89898 5.02118i 0.151740 0.262821i
\(366\) 0 0
\(367\) 11.0000 + 19.0526i 0.574195 + 0.994535i 0.996129 + 0.0879086i \(0.0280183\pi\)
−0.421933 + 0.906627i \(0.638648\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.55051 14.8099i −0.443920 0.768893i
\(372\) 0 0
\(373\) 8.79796 15.2385i 0.455541 0.789020i −0.543178 0.839618i \(-0.682779\pi\)
0.998719 + 0.0505973i \(0.0161125\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −17.1010 −0.878420 −0.439210 0.898384i \(-0.644742\pi\)
−0.439210 + 0.898384i \(0.644742\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.00000 + 1.73205i −0.0510976 + 0.0885037i −0.890443 0.455095i \(-0.849605\pi\)
0.839345 + 0.543599i \(0.182939\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11.2980 + 19.5686i 0.572829 + 0.992169i 0.996274 + 0.0862473i \(0.0274875\pi\)
−0.423444 + 0.905922i \(0.639179\pi\)
\(390\) 0 0
\(391\) 2.55051 4.41761i 0.128985 0.223408i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.89898 −0.145863
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.79796 + 11.7744i −0.339474 + 0.587986i −0.984334 0.176315i \(-0.943582\pi\)
0.644860 + 0.764301i \(0.276916\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −14.7980 + 25.6308i −0.731712 + 1.26736i 0.224439 + 0.974488i \(0.427945\pi\)
−0.956151 + 0.292874i \(0.905388\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −15.7980 −0.777367
\(414\) 0 0
\(415\) −0.550510 −0.0270235
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10.0000 + 17.3205i −0.488532 + 0.846162i −0.999913 0.0131919i \(-0.995801\pi\)
0.511381 + 0.859354i \(0.329134\pi\)
\(420\) 0 0
\(421\) 6.79796 + 11.7744i 0.331312 + 0.573850i 0.982769 0.184836i \(-0.0591753\pi\)
−0.651457 + 0.758685i \(0.725842\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.00000 1.73205i −0.0485071 0.0840168i
\(426\) 0 0
\(427\) 2.17423 3.76588i 0.105219 0.182244i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.10102 0.245708 0.122854 0.992425i \(-0.460795\pi\)
0.122854 + 0.992425i \(0.460795\pi\)
\(432\) 0 0
\(433\) 7.79796 0.374746 0.187373 0.982289i \(-0.440003\pi\)
0.187373 + 0.982289i \(0.440003\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.69694 + 6.40329i −0.176849 + 0.306311i
\(438\) 0 0
\(439\) 0.898979 + 1.55708i 0.0429059 + 0.0743153i 0.886681 0.462382i \(-0.153005\pi\)
−0.843775 + 0.536697i \(0.819672\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.0732 22.6435i −0.621127 1.07582i −0.989276 0.146057i \(-0.953342\pi\)
0.368149 0.929767i \(-0.379992\pi\)
\(444\) 0 0
\(445\) −8.39898 + 14.5475i −0.398150 + 0.689616i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 17.5959 0.830403 0.415201 0.909730i \(-0.363711\pi\)
0.415201 + 0.909730i \(0.363711\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 10.7980 + 18.7026i 0.505107 + 0.874871i 0.999983 + 0.00590738i \(0.00188039\pi\)
−0.494875 + 0.868964i \(0.664786\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.9495 + 18.9651i 0.509969 + 0.883291i 0.999933 + 0.0115492i \(0.00367632\pi\)
−0.489965 + 0.871742i \(0.662990\pi\)
\(462\) 0 0
\(463\) 15.8990 27.5378i 0.738888 1.27979i −0.214108 0.976810i \(-0.568684\pi\)
0.952996 0.302982i \(-0.0979822\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.7980 −0.545944 −0.272972 0.962022i \(-0.588007\pi\)
−0.272972 + 0.962022i \(0.588007\pi\)
\(468\) 0 0
\(469\) −16.3031 −0.752805
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1.44949 + 2.51059i 0.0665072 + 0.115194i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.24745 + 16.0171i 0.422527 + 0.731838i 0.996186 0.0872564i \(-0.0278099\pi\)
−0.573659 + 0.819094i \(0.694477\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) −25.5959 −1.15986 −0.579931 0.814666i \(-0.696920\pi\)
−0.579931 + 0.814666i \(0.696920\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.89898 + 5.02118i −0.130829 + 0.226603i −0.923996 0.382401i \(-0.875097\pi\)
0.793167 + 0.609004i \(0.208431\pi\)
\(492\) 0 0
\(493\) 7.89898 + 13.6814i 0.355752 + 0.616181i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.10102 + 12.2993i 0.318524 + 0.551700i
\(498\) 0 0
\(499\) −14.0000 + 24.2487i −0.626726 + 1.08552i 0.361478 + 0.932381i \(0.382272\pi\)
−0.988204 + 0.153141i \(0.951061\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −19.0454 −0.849193 −0.424596 0.905383i \(-0.639584\pi\)
−0.424596 + 0.905383i \(0.639584\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6.94949 + 12.0369i −0.308031 + 0.533525i −0.977931 0.208926i \(-0.933003\pi\)
0.669901 + 0.742451i \(0.266337\pi\)
\(510\) 0 0
\(511\) 4.20204 + 7.27815i 0.185887 + 0.321966i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.00000 + 8.66025i 0.220326 + 0.381616i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.7980 −1.26166 −0.630831 0.775920i \(-0.717286\pi\)
−0.630831 + 0.775920i \(0.717286\pi\)
\(522\) 0 0
\(523\) 19.6515 0.859301 0.429651 0.902995i \(-0.358637\pi\)
0.429651 + 0.902995i \(0.358637\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.8990 18.8776i 0.474767 0.822321i
\(528\) 0 0
\(529\) 8.24745 + 14.2850i 0.358585 + 0.621087i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −1.17423 + 2.03383i −0.0507666 + 0.0879303i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 21.8990 0.941511 0.470755 0.882264i \(-0.343981\pi\)
0.470755 + 0.882264i \(0.343981\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4.39898 + 7.61926i −0.188432 + 0.326373i
\(546\) 0 0
\(547\) −20.6237 35.7213i −0.881807 1.52733i −0.849330 0.527862i \(-0.822994\pi\)
−0.0324764 0.999473i \(-0.510339\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −11.4495 19.8311i −0.487765 0.844833i
\(552\) 0 0
\(553\) 2.10102 3.63907i 0.0893445 0.154749i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −24.2020 −1.02547 −0.512737 0.858546i \(-0.671368\pi\)
−0.512737 + 0.858546i \(0.671368\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.17423 + 3.76588i −0.0916331 + 0.158713i −0.908198 0.418540i \(-0.862542\pi\)
0.816565 + 0.577253i \(0.195875\pi\)
\(564\) 0 0
\(565\) 4.89898 + 8.48528i 0.206102 + 0.356978i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.00000 + 8.66025i 0.209611 + 0.363057i 0.951592 0.307364i \(-0.0994469\pi\)
−0.741981 + 0.670421i \(0.766114\pi\)
\(570\) 0 0
\(571\) 3.10102 5.37113i 0.129774 0.224775i −0.793815 0.608159i \(-0.791908\pi\)
0.923589 + 0.383385i \(0.125242\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.55051 −0.106364
\(576\) 0 0
\(577\) −26.0000 −1.08239 −0.541197 0.840896i \(-0.682029\pi\)
−0.541197 + 0.840896i \(0.682029\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.398979 0.691053i 0.0165525 0.0286697i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −11.1742 19.3543i −0.461210 0.798839i 0.537812 0.843065i \(-0.319251\pi\)
−0.999022 + 0.0442259i \(0.985918\pi\)
\(588\) 0 0
\(589\) −15.7980 + 27.3629i −0.650944 + 1.12747i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −27.3939 −1.12493 −0.562466 0.826821i \(-0.690147\pi\)
−0.562466 + 0.826821i \(0.690147\pi\)
\(594\) 0 0
\(595\) 2.89898 0.118847
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.34847 + 4.06767i −0.0959559 + 0.166200i −0.910007 0.414593i \(-0.863924\pi\)
0.814051 + 0.580793i \(0.197257\pi\)
\(600\) 0 0
\(601\) −7.00000 12.1244i −0.285536 0.494563i 0.687203 0.726465i \(-0.258838\pi\)
−0.972739 + 0.231903i \(0.925505\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.50000 + 9.52628i 0.223607 + 0.387298i
\(606\) 0 0
\(607\) −16.0732 + 27.8396i −0.652392 + 1.12998i 0.330149 + 0.943929i \(0.392901\pi\)
−0.982541 + 0.186047i \(0.940432\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 9.59592 0.387575 0.193788 0.981043i \(-0.437923\pi\)
0.193788 + 0.981043i \(0.437923\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 21.5959 37.4052i 0.869419 1.50588i 0.00682740 0.999977i \(-0.497827\pi\)
0.862592 0.505901i \(-0.168840\pi\)
\(618\) 0 0
\(619\) 2.34847 + 4.06767i 0.0943929 + 0.163493i 0.909355 0.416021i \(-0.136576\pi\)
−0.814962 + 0.579514i \(0.803242\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.1742 21.0864i −0.487750 0.844808i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −23.5959 −0.939339 −0.469669 0.882842i \(-0.655627\pi\)
−0.469669 + 0.882842i \(0.655627\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7.17423 + 12.4261i −0.284701 + 0.493116i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.05051 3.55159i −0.0809903 0.140279i 0.822685 0.568497i \(-0.192475\pi\)
−0.903676 + 0.428218i \(0.859142\pi\)
\(642\) 0 0
\(643\) 7.07321 12.2512i 0.278940 0.483139i −0.692181 0.721724i \(-0.743350\pi\)
0.971122 + 0.238585i \(0.0766835\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.4495 0.450126 0.225063 0.974344i \(-0.427741\pi\)
0.225063 + 0.974344i \(0.427741\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.10102 7.10318i 0.160485 0.277969i −0.774558 0.632503i \(-0.782027\pi\)
0.935043 + 0.354535i \(0.115361\pi\)
\(654\) 0 0
\(655\) 3.44949 + 5.97469i 0.134783 + 0.233451i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −14.8990 25.8058i −0.580382 1.00525i −0.995434 0.0954532i \(-0.969570\pi\)
0.415052 0.909798i \(-0.363763\pi\)
\(660\) 0 0
\(661\) −5.00000 + 8.66025i −0.194477 + 0.336845i −0.946729 0.322031i \(-0.895634\pi\)
0.752252 + 0.658876i \(0.228968\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.20204 −0.162948
\(666\) 0 0
\(667\) 20.1464 0.780073
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 8.00000 + 13.8564i 0.308377 + 0.534125i 0.978008 0.208569i \(-0.0668807\pi\)
−0.669630 + 0.742695i \(0.733547\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16.8990 + 29.2699i 0.649481 + 1.12493i 0.983247 + 0.182278i \(0.0583469\pi\)
−0.333767 + 0.942656i \(0.608320\pi\)
\(678\) 0 0
\(679\) −1.44949 + 2.51059i −0.0556263 + 0.0963476i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −35.3939 −1.35431 −0.677155 0.735841i \(-0.736787\pi\)
−0.677155 + 0.735841i \(0.736787\pi\)
\(684\) 0 0
\(685\) 19.5959 0.748722
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 14.5505 + 25.2022i 0.553527 + 0.958738i 0.998016 + 0.0629534i \(0.0200520\pi\)
−0.444489 + 0.895784i \(0.646615\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.79796 16.9706i −0.371658 0.643730i
\(696\) 0 0
\(697\) −0.101021 + 0.174973i −0.00382642 + 0.00662756i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.3939 1.07242 0.536211 0.844084i \(-0.319855\pi\)
0.536211 + 0.844084i \(0.319855\pi\)
\(702\) 0 0
\(703\) 17.3939 0.656022
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.44949 + 2.51059i −0.0545137 + 0.0944205i
\(708\) 0 0
\(709\) 9.84847 + 17.0580i 0.369867 + 0.640628i 0.989544 0.144228i \(-0.0460699\pi\)
−0.619677 + 0.784857i \(0.712737\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −13.8990 24.0737i −0.520521 0.901569i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 40.2929 1.50267 0.751335 0.659921i \(-0.229410\pi\)
0.751335 + 0.659921i \(0.229410\pi\)
\(720\) 0 0
\(721\) −14.4949 −0.539818
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.94949 6.84072i 0.146680 0.254058i
\(726\) 0 0
\(727\) −3.37628 5.84788i −0.125219 0.216886i 0.796599 0.604508i \(-0.206630\pi\)
−0.921819 + 0.387622i \(0.873297\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −7.79796 13.5065i −0.288418 0.499555i
\(732\) 0 0
\(733\) −4.79796 + 8.31031i −0.177217 + 0.306948i −0.940926 0.338612i \(-0.890043\pi\)
0.763710 + 0.645560i \(0.223376\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 42.8990 1.57806 0.789032 0.614352i \(-0.210582\pi\)
0.789032 + 0.614352i \(0.210582\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −18.5227 + 32.0823i −0.679532 + 1.17698i 0.295590 + 0.955315i \(0.404484\pi\)
−0.975122 + 0.221669i \(0.928849\pi\)
\(744\) 0 0
\(745\) −10.5000 18.1865i −0.384690 0.666303i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.70204 2.94802i −0.0621912 0.107718i
\(750\) 0 0
\(751\) 22.8990 39.6622i 0.835596 1.44729i −0.0579489 0.998320i \(-0.518456\pi\)
0.893545 0.448975i \(-0.148211\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −12.0000 −0.436725
\(756\) 0 0
\(757\) −7.59592 −0.276078 −0.138039 0.990427i \(-0.544080\pi\)
−0.138039 + 0.990427i \(0.544080\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17.5000 30.3109i 0.634375 1.09877i −0.352273 0.935897i \(-0.614591\pi\)
0.986647 0.162872i \(-0.0520756\pi\)
\(762\) 0 0
\(763\) −6.37628 11.0440i −0.230837 0.399821i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 12.3990 21.4757i 0.447119 0.774432i −0.551078 0.834453i \(-0.685784\pi\)
0.998197 + 0.0600212i \(0.0191168\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −25.7980 −0.927888 −0.463944 0.885865i \(-0.653566\pi\)
−0.463944 + 0.885865i \(0.653566\pi\)
\(774\) 0 0
\(775\) −10.8990 −0.391503
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.146428 0.253621i 0.00524633 0.00908692i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.10102 + 3.63907i 0.0749886 + 0.129884i
\(786\) 0 0
\(787\) −5.20204 + 9.01020i −0.185433 + 0.321179i −0.943722 0.330739i \(-0.892702\pi\)
0.758290 + 0.651918i \(0.226035\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −14.2020 −0.504966
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.00000 + 6.92820i −0.141687 + 0.245410i −0.928132 0.372251i \(-0.878586\pi\)
0.786445 + 0.617661i \(0.211919\pi\)
\(798\) 0 0
\(799\) 4.55051 + 7.88171i 0.160985 + 0.278835i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 1.84847 3.20164i 0.0651500 0.112843i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) −22.8990 −0.804092 −0.402046 0.915619i \(-0.631701\pi\)
−0.402046 + 0.915619i \(0.631701\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.89898 10.2173i 0.206632 0.357898i
\(816\) 0 0
\(817\) 11.3031 + 19.5775i 0.395444 + 0.684929i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −8.39898 14.5475i −0.293126 0.507710i 0.681421 0.731892i \(-0.261362\pi\)
−0.974547 + 0.224182i \(0.928029\pi\)
\(822\) 0 0
\(823\) 3.17423 5.49794i 0.110647 0.191646i −0.805384 0.592753i \(-0.798041\pi\)
0.916031 + 0.401107i \(0.131374\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −39.5403 −1.37495 −0.687476 0.726208i \(-0.741281\pi\)
−0.687476 + 0.726208i \(0.741281\pi\)
\(828\) 0 0
\(829\) −28.1918 −0.979143 −0.489571 0.871963i \(-0.662847\pi\)
−0.489571 + 0.871963i \(0.662847\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.89898 8.48528i 0.169740 0.293998i
\(834\) 0 0
\(835\) 3.17423 + 5.49794i 0.109849 + 0.190264i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 12.3485 + 21.3882i 0.426317 + 0.738402i 0.996542 0.0830861i \(-0.0264777\pi\)
−0.570226 + 0.821488i \(0.693144\pi\)
\(840\) 0 0
\(841\) −16.6969 + 28.9199i −0.575756 + 0.997240i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −13.0000 −0.447214
\(846\) 0 0
\(847\) −15.9444 −0.547856
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.65153 + 13.2528i −0.262291 + 0.454302i
\(852\) 0 0
\(853\) −18.8990 32.7340i −0.647089 1.12079i −0.983815 0.179188i \(-0.942653\pi\)
0.336726 0.941603i \(-0.390680\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 19.7980 + 34.2911i 0.676285 + 1.17136i 0.976091 + 0.217360i \(0.0697447\pi\)
−0.299806 + 0.954000i \(0.596922\pi\)
\(858\) 0 0
\(859\) −19.5959 + 33.9411i −0.668604 + 1.15806i 0.309691 + 0.950837i \(0.399775\pi\)
−0.978295 + 0.207219i \(0.933559\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 52.5505 1.78884 0.894420 0.447228i \(-0.147589\pi\)
0.894420 + 0.447228i \(0.147589\pi\)
\(864\) 0 0
\(865\) 12.0000 0.408012
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.724745 1.25529i −0.0245008 0.0424367i
\(876\) 0 0
\(877\) 19.7980 34.2911i 0.668530 1.15793i −0.309786 0.950806i \(-0.600257\pi\)
0.978315 0.207121i \(-0.0664093\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −15.8990 −0.535650 −0.267825 0.963468i \(-0.586305\pi\)
−0.267825 + 0.963468i \(0.586305\pi\)
\(882\) 0 0
\(883\) 45.0454 1.51590 0.757949 0.652313i \(-0.226201\pi\)
0.757949 + 0.652313i \(0.226201\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.7980 32.5590i 0.631174 1.09322i −0.356138 0.934433i \(-0.615907\pi\)
0.987312 0.158792i \(-0.0507598\pi\)
\(888\) 0 0
\(889\) −10.3990 18.0116i −0.348771 0.604088i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −6.59592 11.4245i −0.220724 0.382305i
\(894\) 0 0
\(895\) −2.89898 + 5.02118i −0.0969022 + 0.167840i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 86.0908 2.87129
\(900\) 0 0
\(901\) 23.5959 0.786094
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9.84847 + 17.0580i −0.327374 + 0.567029i
\(906\) 0 0
\(907\) −18.1742 31.4787i −0.603466 1.04523i −0.992292 0.123922i \(-0.960453\pi\)
0.388826 0.921311i \(-0.372881\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 19.2474 + 33.3376i 0.637696 + 1.10452i 0.985937 + 0.167117i \(0.0534459\pi\)
−0.348241 + 0.937405i \(0.613221\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10.0000 −0.330229
\(918\) 0 0
\(919\) 4.69694 0.154938 0.0774689 0.996995i \(-0.475316\pi\)
0.0774689 + 0.996995i \(0.475316\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 3.00000 + 5.19615i 0.0986394 + 0.170848i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.797959 1.38211i −0.0261802 0.0453454i 0.852638 0.522501i \(-0.175001\pi\)
−0.878819 + 0.477156i \(0.841668\pi\)
\(930\) 0 0
\(931\) −7.10102 + 12.2993i −0.232727 + 0.403094i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 56.9898 1.86178 0.930888 0.365305i \(-0.119035\pi\)
0.930888 + 0.365305i \(0.119035\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 13.8485 23.9863i 0.451447 0.781929i −0.547029 0.837114i \(-0.684241\pi\)
0.998476 + 0.0551842i \(0.0175746\pi\)
\(942\) 0 0
\(943\) 0.128827 + 0.223135i 0.00419518 + 0.00726627i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.0732 + 39.9640i 0.749779 + 1.29865i 0.947929 + 0.318483i \(0.103173\pi\)
−0.198150 + 0.980172i \(0.563493\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 33.7980 1.09482 0.547412 0.836863i \(-0.315613\pi\)
0.547412 + 0.836863i \(0.315613\pi\)
\(954\) 0 0
\(955\) −5.10102 −0.165065
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −14.2020 + 24.5987i −0.458608 + 0.794332i
\(960\) 0 0
\(961\) −43.8939 76.0264i −1.41593 2.45247i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 10.8990 + 18.8776i 0.350851 + 0.607691i
\(966\) 0 0
\(967\) −7.42168 + 12.8547i −0.238665 + 0.413380i −0.960332 0.278861i \(-0.910043\pi\)
0.721666 + 0.692241i \(0.243377\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 60.6969 1.94786 0.973929 0.226854i \(-0.0728441\pi\)
0.973929 + 0.226854i \(0.0728441\pi\)
\(972\) 0 0
\(973\) 28.4041 0.910593
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22.6969 39.3123i 0.726139 1.25771i −0.232364 0.972629i \(-0.574646\pi\)
0.958503 0.285081i \(-0.0920206\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.27526 + 5.67291i 0.104464 + 0.180938i 0.913519 0.406795i \(-0.133354\pi\)
−0.809055 + 0.587733i \(0.800020\pi\)
\(984\) 0 0
\(985\) 11.7980 20.4347i 0.375914 0.651103i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −19.8888 −0.632426
\(990\) 0 0
\(991\) 0.696938 0.0221390 0.0110695 0.999939i \(-0.496476\pi\)
0.0110695 + 0.999939i \(0.496476\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.55051 11.3458i 0.207665 0.359687i
\(996\) 0 0
\(997\) −17.6969 30.6520i −0.560468 0.970758i −0.997456 0.0712911i \(-0.977288\pi\)
0.436988 0.899467i \(-0.356045\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.2.q.g.1441.1 4
3.2 odd 2 720.2.q.g.481.1 4
4.3 odd 2 1080.2.q.c.361.2 4
9.2 odd 6 720.2.q.g.241.1 4
9.4 even 3 6480.2.a.bl.1.2 2
9.5 odd 6 6480.2.a.bc.1.2 2
9.7 even 3 inner 2160.2.q.g.721.1 4
12.11 even 2 360.2.q.c.121.2 4
36.7 odd 6 1080.2.q.c.721.2 4
36.11 even 6 360.2.q.c.241.2 yes 4
36.23 even 6 3240.2.a.j.1.1 2
36.31 odd 6 3240.2.a.o.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.c.121.2 4 12.11 even 2
360.2.q.c.241.2 yes 4 36.11 even 6
720.2.q.g.241.1 4 9.2 odd 6
720.2.q.g.481.1 4 3.2 odd 2
1080.2.q.c.361.2 4 4.3 odd 2
1080.2.q.c.721.2 4 36.7 odd 6
2160.2.q.g.721.1 4 9.7 even 3 inner
2160.2.q.g.1441.1 4 1.1 even 1 trivial
3240.2.a.j.1.1 2 36.23 even 6
3240.2.a.o.1.1 2 36.31 odd 6
6480.2.a.bc.1.2 2 9.5 odd 6
6480.2.a.bl.1.2 2 9.4 even 3