Properties

Label 2160.2.q.c.1441.1
Level $2160$
Weight $2$
Character 2160.1441
Analytic conductor $17.248$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(721,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.721");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1441.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2160.1441
Dual form 2160.2.q.c.721.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{5} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{5} +(2.50000 + 4.33013i) q^{11} -3.00000 q^{17} -5.00000 q^{19} +(-3.00000 + 5.19615i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-5.00000 - 8.66025i) q^{29} +(-1.00000 + 1.73205i) q^{31} +4.00000 q^{37} +(-1.50000 + 2.59808i) q^{41} +(1.50000 + 2.59808i) q^{43} +(-2.00000 - 3.46410i) q^{47} +(3.50000 - 6.06218i) q^{49} +6.00000 q^{53} -5.00000 q^{55} +(1.50000 - 2.59808i) q^{59} +(-1.00000 - 1.73205i) q^{61} +(-5.50000 + 9.52628i) q^{67} -14.0000 q^{71} -15.0000 q^{73} +(5.00000 + 8.66025i) q^{79} +(6.00000 + 10.3923i) q^{83} +(1.50000 - 2.59808i) q^{85} -14.0000 q^{89} +(2.50000 - 4.33013i) q^{95} +(6.50000 + 11.2583i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{5} + 5 q^{11} - 6 q^{17} - 10 q^{19} - 6 q^{23} - q^{25} - 10 q^{29} - 2 q^{31} + 8 q^{37} - 3 q^{41} + 3 q^{43} - 4 q^{47} + 7 q^{49} + 12 q^{53} - 10 q^{55} + 3 q^{59} - 2 q^{61} - 11 q^{67} - 28 q^{71} - 30 q^{73} + 10 q^{79} + 12 q^{83} + 3 q^{85} - 28 q^{89} + 5 q^{95} + 13 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.50000 + 4.33013i 0.753778 + 1.30558i 0.945979 + 0.324227i \(0.105104\pi\)
−0.192201 + 0.981356i \(0.561563\pi\)
\(12\) 0 0
\(13\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.00000 8.66025i −0.928477 1.60817i −0.785872 0.618389i \(-0.787786\pi\)
−0.142605 0.989780i \(-0.545548\pi\)
\(30\) 0 0
\(31\) −1.00000 + 1.73205i −0.179605 + 0.311086i −0.941745 0.336327i \(-0.890815\pi\)
0.762140 + 0.647412i \(0.224149\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.50000 + 2.59808i −0.234261 + 0.405751i −0.959058 0.283211i \(-0.908600\pi\)
0.724797 + 0.688963i \(0.241934\pi\)
\(42\) 0 0
\(43\) 1.50000 + 2.59808i 0.228748 + 0.396203i 0.957437 0.288641i \(-0.0932035\pi\)
−0.728689 + 0.684844i \(0.759870\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.00000 3.46410i −0.291730 0.505291i 0.682489 0.730896i \(-0.260898\pi\)
−0.974219 + 0.225605i \(0.927564\pi\)
\(48\) 0 0
\(49\) 3.50000 6.06218i 0.500000 0.866025i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −5.00000 −0.674200
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.50000 2.59808i 0.195283 0.338241i −0.751710 0.659494i \(-0.770771\pi\)
0.946993 + 0.321253i \(0.104104\pi\)
\(60\) 0 0
\(61\) −1.00000 1.73205i −0.128037 0.221766i 0.794879 0.606768i \(-0.207534\pi\)
−0.922916 + 0.385002i \(0.874201\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −5.50000 + 9.52628i −0.671932 + 1.16382i 0.305424 + 0.952217i \(0.401202\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −14.0000 −1.66149 −0.830747 0.556650i \(-0.812086\pi\)
−0.830747 + 0.556650i \(0.812086\pi\)
\(72\) 0 0
\(73\) −15.0000 −1.75562 −0.877809 0.479012i \(-0.840995\pi\)
−0.877809 + 0.479012i \(0.840995\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5.00000 + 8.66025i 0.562544 + 0.974355i 0.997274 + 0.0737937i \(0.0235106\pi\)
−0.434730 + 0.900561i \(0.643156\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.00000 + 10.3923i 0.658586 + 1.14070i 0.980982 + 0.194099i \(0.0621783\pi\)
−0.322396 + 0.946605i \(0.604488\pi\)
\(84\) 0 0
\(85\) 1.50000 2.59808i 0.162698 0.281801i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.50000 4.33013i 0.256495 0.444262i
\(96\) 0 0
\(97\) 6.50000 + 11.2583i 0.659975 + 1.14311i 0.980622 + 0.195911i \(0.0627665\pi\)
−0.320647 + 0.947199i \(0.603900\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 10.3923i −0.597022 1.03407i −0.993258 0.115924i \(-0.963017\pi\)
0.396236 0.918149i \(-0.370316\pi\)
\(102\) 0 0
\(103\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −17.0000 −1.64345 −0.821726 0.569883i \(-0.806989\pi\)
−0.821726 + 0.569883i \(0.806989\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.00000 + 5.19615i −0.282216 + 0.488813i −0.971930 0.235269i \(-0.924403\pi\)
0.689714 + 0.724082i \(0.257736\pi\)
\(114\) 0 0
\(115\) −3.00000 5.19615i −0.279751 0.484544i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 + 12.1244i −0.636364 + 1.10221i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −10.0000 −0.887357 −0.443678 0.896186i \(-0.646327\pi\)
−0.443678 + 0.896186i \(0.646327\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.00000 3.46410i 0.174741 0.302660i −0.765331 0.643637i \(-0.777425\pi\)
0.940072 + 0.340977i \(0.110758\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.50000 + 6.06218i 0.299025 + 0.517927i 0.975913 0.218159i \(-0.0700052\pi\)
−0.676888 + 0.736086i \(0.736672\pi\)
\(138\) 0 0
\(139\) 3.50000 6.06218i 0.296866 0.514187i −0.678551 0.734553i \(-0.737392\pi\)
0.975417 + 0.220366i \(0.0707252\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.00000 3.46410i 0.163846 0.283790i −0.772399 0.635138i \(-0.780943\pi\)
0.936245 + 0.351348i \(0.114277\pi\)
\(150\) 0 0
\(151\) 11.0000 + 19.0526i 0.895167 + 1.55048i 0.833597 + 0.552372i \(0.186277\pi\)
0.0615699 + 0.998103i \(0.480389\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.00000 1.73205i −0.0803219 0.139122i
\(156\) 0 0
\(157\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.0000 19.0526i 0.851206 1.47433i −0.0289155 0.999582i \(-0.509205\pi\)
0.880121 0.474749i \(-0.157461\pi\)
\(168\) 0 0
\(169\) 6.50000 + 11.2583i 0.500000 + 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.00000 1.73205i −0.0760286 0.131685i 0.825505 0.564396i \(-0.190891\pi\)
−0.901533 + 0.432710i \(0.857557\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −4.00000 −0.297318 −0.148659 0.988889i \(-0.547496\pi\)
−0.148659 + 0.988889i \(0.547496\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.00000 + 3.46410i −0.147043 + 0.254686i
\(186\) 0 0
\(187\) −7.50000 12.9904i −0.548454 0.949951i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.00000 10.3923i −0.434145 0.751961i 0.563081 0.826402i \(-0.309616\pi\)
−0.997225 + 0.0744412i \(0.976283\pi\)
\(192\) 0 0
\(193\) −9.50000 + 16.4545i −0.683825 + 1.18442i 0.289980 + 0.957033i \(0.406351\pi\)
−0.973805 + 0.227387i \(0.926982\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.00000 0.569976 0.284988 0.958531i \(-0.408010\pi\)
0.284988 + 0.958531i \(0.408010\pi\)
\(198\) 0 0
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.50000 2.59808i −0.104765 0.181458i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −12.5000 21.6506i −0.864643 1.49761i
\(210\) 0 0
\(211\) 6.00000 10.3923i 0.413057 0.715436i −0.582165 0.813070i \(-0.697794\pi\)
0.995222 + 0.0976347i \(0.0311277\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.00000 −0.204598
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.00000 + 1.73205i 0.0669650 + 0.115987i 0.897564 0.440884i \(-0.145335\pi\)
−0.830599 + 0.556871i \(0.812002\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.50000 11.2583i −0.431420 0.747242i 0.565576 0.824696i \(-0.308654\pi\)
−0.996996 + 0.0774548i \(0.975321\pi\)
\(228\) 0 0
\(229\) 8.00000 13.8564i 0.528655 0.915657i −0.470787 0.882247i \(-0.656030\pi\)
0.999442 0.0334101i \(-0.0106368\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.0000 0.720634 0.360317 0.932830i \(-0.382669\pi\)
0.360317 + 0.932830i \(0.382669\pi\)
\(234\) 0 0
\(235\) 4.00000 0.260931
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.00000 + 5.19615i −0.194054 + 0.336111i −0.946590 0.322440i \(-0.895497\pi\)
0.752536 + 0.658551i \(0.228830\pi\)
\(240\) 0 0
\(241\) 11.5000 + 19.9186i 0.740780 + 1.28307i 0.952141 + 0.305661i \(0.0988773\pi\)
−0.211360 + 0.977408i \(0.567789\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.50000 + 6.06218i 0.223607 + 0.387298i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 11.0000 0.694314 0.347157 0.937807i \(-0.387147\pi\)
0.347157 + 0.937807i \(0.387147\pi\)
\(252\) 0 0
\(253\) −30.0000 −1.88608
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.5000 + 26.8468i −0.966863 + 1.67466i −0.262341 + 0.964975i \(0.584494\pi\)
−0.704523 + 0.709681i \(0.748839\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.00000 + 10.3923i 0.369976 + 0.640817i 0.989561 0.144112i \(-0.0460326\pi\)
−0.619586 + 0.784929i \(0.712699\pi\)
\(264\) 0 0
\(265\) −3.00000 + 5.19615i −0.184289 + 0.319197i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.50000 4.33013i 0.150756 0.261116i
\(276\) 0 0
\(277\) 7.00000 + 12.1244i 0.420589 + 0.728482i 0.995997 0.0893846i \(-0.0284900\pi\)
−0.575408 + 0.817867i \(0.695157\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.00000 + 8.66025i 0.298275 + 0.516627i 0.975741 0.218926i \(-0.0702554\pi\)
−0.677466 + 0.735554i \(0.736922\pi\)
\(282\) 0 0
\(283\) −2.00000 + 3.46410i −0.118888 + 0.205919i −0.919327 0.393494i \(-0.871266\pi\)
0.800439 + 0.599414i \(0.204600\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.00000 + 8.66025i −0.292103 + 0.505937i −0.974307 0.225225i \(-0.927688\pi\)
0.682204 + 0.731162i \(0.261022\pi\)
\(294\) 0 0
\(295\) 1.50000 + 2.59808i 0.0873334 + 0.151266i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.00000 + 8.66025i −0.283524 + 0.491078i −0.972250 0.233944i \(-0.924837\pi\)
0.688726 + 0.725022i \(0.258170\pi\)
\(312\) 0 0
\(313\) −3.50000 6.06218i −0.197832 0.342655i 0.749993 0.661445i \(-0.230057\pi\)
−0.947825 + 0.318791i \(0.896723\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.0000 + 24.2487i 0.786318 + 1.36194i 0.928208 + 0.372061i \(0.121349\pi\)
−0.141890 + 0.989882i \(0.545318\pi\)
\(318\) 0 0
\(319\) 25.0000 43.3013i 1.39973 2.42441i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 15.0000 0.834622
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10.0000 + 17.3205i 0.549650 + 0.952021i 0.998298 + 0.0583130i \(0.0185721\pi\)
−0.448649 + 0.893708i \(0.648095\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.50000 9.52628i −0.300497 0.520476i
\(336\) 0 0
\(337\) 15.5000 26.8468i 0.844339 1.46244i −0.0418554 0.999124i \(-0.513327\pi\)
0.886194 0.463314i \(-0.153340\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.0000 −0.541530
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.50000 2.59808i 0.0805242 0.139472i −0.822951 0.568112i \(-0.807674\pi\)
0.903475 + 0.428640i \(0.141007\pi\)
\(348\) 0 0
\(349\) −16.0000 27.7128i −0.856460 1.48343i −0.875284 0.483610i \(-0.839325\pi\)
0.0188232 0.999823i \(-0.494008\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.5000 + 21.6506i 0.665308 + 1.15235i 0.979202 + 0.202889i \(0.0650330\pi\)
−0.313894 + 0.949458i \(0.601634\pi\)
\(354\) 0 0
\(355\) 7.00000 12.1244i 0.371521 0.643494i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.50000 12.9904i 0.392568 0.679948i
\(366\) 0 0
\(367\) −4.00000 6.92820i −0.208798 0.361649i 0.742538 0.669804i \(-0.233622\pi\)
−0.951336 + 0.308155i \(0.900289\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 13.0000 22.5167i 0.673114 1.16587i −0.303902 0.952703i \(-0.598289\pi\)
0.977016 0.213165i \(-0.0683772\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 35.0000 1.79783 0.898915 0.438124i \(-0.144357\pi\)
0.898915 + 0.438124i \(0.144357\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.00000 + 10.3923i −0.306586 + 0.531022i −0.977613 0.210411i \(-0.932520\pi\)
0.671027 + 0.741433i \(0.265853\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12.0000 20.7846i −0.608424 1.05382i −0.991500 0.130105i \(-0.958469\pi\)
0.383076 0.923717i \(-0.374865\pi\)
\(390\) 0 0
\(391\) 9.00000 15.5885i 0.455150 0.788342i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −10.0000 −0.503155
\(396\) 0 0
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.50000 + 6.06218i −0.174782 + 0.302731i −0.940086 0.340938i \(-0.889255\pi\)
0.765304 + 0.643669i \(0.222589\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.0000 + 17.3205i 0.495682 + 0.858546i
\(408\) 0 0
\(409\) 3.50000 6.06218i 0.173064 0.299755i −0.766426 0.642333i \(-0.777967\pi\)
0.939490 + 0.342578i \(0.111300\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(420\) 0 0
\(421\) −19.0000 32.9090i −0.926003 1.60388i −0.789940 0.613185i \(-0.789888\pi\)
−0.136064 0.990700i \(-0.543445\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.50000 + 2.59808i 0.0727607 + 0.126025i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.0000 1.34871 0.674356 0.738406i \(-0.264421\pi\)
0.674356 + 0.738406i \(0.264421\pi\)
\(432\) 0 0
\(433\) 27.0000 1.29754 0.648769 0.760986i \(-0.275284\pi\)
0.648769 + 0.760986i \(0.275284\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.0000 25.9808i 0.717547 1.24283i
\(438\) 0 0
\(439\) −7.00000 12.1244i −0.334092 0.578664i 0.649218 0.760602i \(-0.275096\pi\)
−0.983310 + 0.181938i \(0.941763\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.5000 + 25.1147i 0.688916 + 1.19324i 0.972189 + 0.234198i \(0.0752464\pi\)
−0.283273 + 0.959039i \(0.591420\pi\)
\(444\) 0 0
\(445\) 7.00000 12.1244i 0.331832 0.574750i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) −15.0000 −0.706322
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 12.5000 + 21.6506i 0.584725 + 1.01277i 0.994910 + 0.100771i \(0.0321310\pi\)
−0.410184 + 0.912003i \(0.634536\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.00000 + 3.46410i 0.0931493 + 0.161339i 0.908835 0.417156i \(-0.136973\pi\)
−0.815685 + 0.578496i \(0.803640\pi\)
\(462\) 0 0
\(463\) −2.00000 + 3.46410i −0.0929479 + 0.160990i −0.908750 0.417340i \(-0.862962\pi\)
0.815802 + 0.578331i \(0.196296\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.0000 −0.509019 −0.254510 0.967070i \(-0.581914\pi\)
−0.254510 + 0.967070i \(0.581914\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7.50000 + 12.9904i −0.344850 + 0.597298i
\(474\) 0 0
\(475\) 2.50000 + 4.33013i 0.114708 + 0.198680i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −13.0000 22.5167i −0.593985 1.02881i −0.993689 0.112168i \(-0.964220\pi\)
0.399704 0.916644i \(-0.369113\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −13.0000 −0.590300
\(486\) 0 0
\(487\) −34.0000 −1.54069 −0.770344 0.637629i \(-0.779915\pi\)
−0.770344 + 0.637629i \(0.779915\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7.50000 + 12.9904i −0.338470 + 0.586248i −0.984145 0.177365i \(-0.943243\pi\)
0.645675 + 0.763612i \(0.276576\pi\)
\(492\) 0 0
\(493\) 15.0000 + 25.9808i 0.675566 + 1.17011i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −11.5000 + 19.9186i −0.514811 + 0.891678i 0.485042 + 0.874491i \(0.338804\pi\)
−0.999852 + 0.0171872i \(0.994529\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 34.0000 1.51599 0.757993 0.652263i \(-0.226180\pi\)
0.757993 + 0.652263i \(0.226180\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 22.0000 38.1051i 0.975133 1.68898i 0.295637 0.955300i \(-0.404468\pi\)
0.679496 0.733679i \(-0.262199\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 10.0000 17.3205i 0.439799 0.761755i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 27.0000 1.18289 0.591446 0.806345i \(-0.298557\pi\)
0.591446 + 0.806345i \(0.298557\pi\)
\(522\) 0 0
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.00000 5.19615i 0.130682 0.226348i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 8.50000 14.7224i 0.367487 0.636506i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 35.0000 1.50756
\(540\) 0 0
\(541\) 24.0000 1.03184 0.515920 0.856637i \(-0.327450\pi\)
0.515920 + 0.856637i \(0.327450\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6.00000 10.3923i 0.257012 0.445157i
\(546\) 0 0
\(547\) −4.50000 7.79423i −0.192406 0.333257i 0.753641 0.657286i \(-0.228296\pi\)
−0.946047 + 0.324029i \(0.894962\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 25.0000 + 43.3013i 1.06504 + 1.84470i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.50000 + 4.33013i −0.105362 + 0.182493i −0.913886 0.405970i \(-0.866934\pi\)
0.808524 + 0.588463i \(0.200267\pi\)
\(564\) 0 0
\(565\) −3.00000 5.19615i −0.126211 0.218604i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.50000 12.9904i −0.314416 0.544585i 0.664897 0.746935i \(-0.268475\pi\)
−0.979313 + 0.202350i \(0.935142\pi\)
\(570\) 0 0
\(571\) −1.50000 + 2.59808i −0.0627730 + 0.108726i −0.895704 0.444651i \(-0.853328\pi\)
0.832931 + 0.553377i \(0.186661\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.00000 0.250217
\(576\) 0 0
\(577\) −31.0000 −1.29055 −0.645273 0.763952i \(-0.723257\pi\)
−0.645273 + 0.763952i \(0.723257\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 15.0000 + 25.9808i 0.621237 + 1.07601i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.50000 + 14.7224i 0.350833 + 0.607660i 0.986396 0.164389i \(-0.0525653\pi\)
−0.635563 + 0.772049i \(0.719232\pi\)
\(588\) 0 0
\(589\) 5.00000 8.66025i 0.206021 0.356840i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8.00000 + 13.8564i −0.326871 + 0.566157i −0.981889 0.189456i \(-0.939328\pi\)
0.655018 + 0.755613i \(0.272661\pi\)
\(600\) 0 0
\(601\) 0.500000 + 0.866025i 0.0203954 + 0.0353259i 0.876043 0.482233i \(-0.160174\pi\)
−0.855648 + 0.517559i \(0.826841\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.00000 12.1244i −0.284590 0.492925i
\(606\) 0 0
\(607\) −16.0000 + 27.7128i −0.649420 + 1.12483i 0.333842 + 0.942629i \(0.391655\pi\)
−0.983262 + 0.182199i \(0.941678\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −2.00000 −0.0807792 −0.0403896 0.999184i \(-0.512860\pi\)
−0.0403896 + 0.999184i \(0.512860\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.5000 21.6506i 0.503231 0.871622i −0.496762 0.867887i \(-0.665478\pi\)
0.999993 0.00373492i \(-0.00118887\pi\)
\(618\) 0 0
\(619\) −9.50000 16.4545i −0.381837 0.661361i 0.609488 0.792796i \(-0.291375\pi\)
−0.991325 + 0.131434i \(0.958042\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −2.00000 −0.0796187 −0.0398094 0.999207i \(-0.512675\pi\)
−0.0398094 + 0.999207i \(0.512675\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.00000 8.66025i 0.198419 0.343672i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 16.5000 + 28.5788i 0.651711 + 1.12880i 0.982708 + 0.185164i \(0.0592817\pi\)
−0.330997 + 0.943632i \(0.607385\pi\)
\(642\) 0 0
\(643\) −20.5000 + 35.5070i −0.808441 + 1.40026i 0.105502 + 0.994419i \(0.466355\pi\)
−0.913943 + 0.405842i \(0.866978\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 30.0000 1.17942 0.589711 0.807614i \(-0.299242\pi\)
0.589711 + 0.807614i \(0.299242\pi\)
\(648\) 0 0
\(649\) 15.0000 0.588802
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.0000 29.4449i 0.665261 1.15227i −0.313953 0.949439i \(-0.601653\pi\)
0.979214 0.202828i \(-0.0650132\pi\)
\(654\) 0 0
\(655\) 2.00000 + 3.46410i 0.0781465 + 0.135354i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −22.0000 38.1051i −0.856998 1.48436i −0.874779 0.484523i \(-0.838993\pi\)
0.0177803 0.999842i \(-0.494340\pi\)
\(660\) 0 0
\(661\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 60.0000 2.32321
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.00000 8.66025i 0.193023 0.334325i
\(672\) 0 0
\(673\) 13.0000 + 22.5167i 0.501113 + 0.867953i 0.999999 + 0.00128586i \(0.000409302\pi\)
−0.498886 + 0.866668i \(0.666257\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.0000 + 24.2487i 0.538064 + 0.931954i 0.999008 + 0.0445248i \(0.0141774\pi\)
−0.460945 + 0.887429i \(0.652489\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −13.0000 −0.497431 −0.248716 0.968577i \(-0.580008\pi\)
−0.248716 + 0.968577i \(0.580008\pi\)
\(684\) 0 0
\(685\) −7.00000 −0.267456
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −4.00000 6.92820i −0.152167 0.263561i 0.779857 0.625958i \(-0.215292\pi\)
−0.932024 + 0.362397i \(0.881959\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.50000 + 6.06218i 0.132763 + 0.229952i
\(696\) 0 0
\(697\) 4.50000 7.79423i 0.170450 0.295227i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) −20.0000 −0.754314
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 23.0000 + 39.8372i 0.863783 + 1.49612i 0.868250 + 0.496126i \(0.165245\pi\)
−0.00446726 + 0.999990i \(0.501422\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −6.00000 10.3923i −0.224702 0.389195i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.00000 + 8.66025i −0.185695 + 0.321634i
\(726\) 0 0
\(727\) 8.00000 + 13.8564i 0.296704 + 0.513906i 0.975380 0.220532i \(-0.0707793\pi\)
−0.678676 + 0.734438i \(0.737446\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.50000 7.79423i −0.166439 0.288280i
\(732\) 0 0
\(733\) −14.0000 + 24.2487i −0.517102 + 0.895647i 0.482701 + 0.875785i \(0.339656\pi\)
−0.999803 + 0.0198613i \(0.993678\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −55.0000 −2.02595
\(738\) 0 0
\(739\) −5.00000 −0.183928 −0.0919640 0.995762i \(-0.529314\pi\)
−0.0919640 + 0.995762i \(0.529314\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17.0000 + 29.4449i −0.623670 + 1.08023i 0.365127 + 0.930958i \(0.381026\pi\)
−0.988797 + 0.149270i \(0.952308\pi\)
\(744\) 0 0
\(745\) 2.00000 + 3.46410i 0.0732743 + 0.126915i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 10.0000 17.3205i 0.364905 0.632034i −0.623856 0.781540i \(-0.714435\pi\)
0.988761 + 0.149505i \(0.0477681\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −22.0000 −0.800662
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.00000 8.66025i 0.181250 0.313934i −0.761057 0.648686i \(-0.775319\pi\)
0.942306 + 0.334752i \(0.108652\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 27.0000 46.7654i 0.973645 1.68640i 0.289309 0.957236i \(-0.406575\pi\)
0.684336 0.729167i \(-0.260092\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 30.0000 1.07903 0.539513 0.841978i \(-0.318609\pi\)
0.539513 + 0.841978i \(0.318609\pi\)
\(774\) 0 0
\(775\) 2.00000 0.0718421
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 7.50000 12.9904i 0.268715 0.465429i
\(780\) 0 0
\(781\) −35.0000 60.6218i −1.25240 2.16922i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 14.0000 24.2487i 0.499046 0.864373i −0.500953 0.865474i \(-0.667017\pi\)
0.999999 + 0.00110111i \(0.000350496\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.0000 27.7128i 0.566749 0.981638i −0.430136 0.902764i \(-0.641534\pi\)
0.996885 0.0788739i \(-0.0251324\pi\)
\(798\) 0 0
\(799\) 6.00000 + 10.3923i 0.212265 + 0.367653i