# Properties

 Label 2160.2.q.a Level $2160$ Weight $2$ Character orbit 2160.q Analytic conductor $17.248$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2160,2,Mod(721,2160)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2160, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 0, 4, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2160.721");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2160 = 2^{4} \cdot 3^{3} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2160.q (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$17.2476868366$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 45) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - \zeta_{6} q^{5} + (3 \zeta_{6} - 3) q^{7} +O(q^{10})$$ q - z * q^5 + (3*z - 3) * q^7 $$q - \zeta_{6} q^{5} + (3 \zeta_{6} - 3) q^{7} + ( - 2 \zeta_{6} + 2) q^{11} + 2 \zeta_{6} q^{13} - 4 q^{17} + 8 q^{19} - 3 \zeta_{6} q^{23} + (\zeta_{6} - 1) q^{25} + (\zeta_{6} - 1) q^{29} + 3 q^{35} - 4 q^{37} + 5 \zeta_{6} q^{41} + (8 \zeta_{6} - 8) q^{43} + (7 \zeta_{6} - 7) q^{47} - 2 \zeta_{6} q^{49} + 2 q^{53} - 2 q^{55} + 14 \zeta_{6} q^{59} + (7 \zeta_{6} - 7) q^{61} + ( - 2 \zeta_{6} + 2) q^{65} - 3 \zeta_{6} q^{67} + 2 q^{71} + 4 q^{73} + 6 \zeta_{6} q^{77} + (6 \zeta_{6} - 6) q^{79} + (9 \zeta_{6} - 9) q^{83} + 4 \zeta_{6} q^{85} + 15 q^{89} - 6 q^{91} - 8 \zeta_{6} q^{95} + (2 \zeta_{6} - 2) q^{97} +O(q^{100})$$ q - z * q^5 + (3*z - 3) * q^7 + (-2*z + 2) * q^11 + 2*z * q^13 - 4 * q^17 + 8 * q^19 - 3*z * q^23 + (z - 1) * q^25 + (z - 1) * q^29 + 3 * q^35 - 4 * q^37 + 5*z * q^41 + (8*z - 8) * q^43 + (7*z - 7) * q^47 - 2*z * q^49 + 2 * q^53 - 2 * q^55 + 14*z * q^59 + (7*z - 7) * q^61 + (-2*z + 2) * q^65 - 3*z * q^67 + 2 * q^71 + 4 * q^73 + 6*z * q^77 + (6*z - 6) * q^79 + (9*z - 9) * q^83 + 4*z * q^85 + 15 * q^89 - 6 * q^91 - 8*z * q^95 + (2*z - 2) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{5} - 3 q^{7}+O(q^{10})$$ 2 * q - q^5 - 3 * q^7 $$2 q - q^{5} - 3 q^{7} + 2 q^{11} + 2 q^{13} - 8 q^{17} + 16 q^{19} - 3 q^{23} - q^{25} - q^{29} + 6 q^{35} - 8 q^{37} + 5 q^{41} - 8 q^{43} - 7 q^{47} - 2 q^{49} + 4 q^{53} - 4 q^{55} + 14 q^{59} - 7 q^{61} + 2 q^{65} - 3 q^{67} + 4 q^{71} + 8 q^{73} + 6 q^{77} - 6 q^{79} - 9 q^{83} + 4 q^{85} + 30 q^{89} - 12 q^{91} - 8 q^{95} - 2 q^{97}+O(q^{100})$$ 2 * q - q^5 - 3 * q^7 + 2 * q^11 + 2 * q^13 - 8 * q^17 + 16 * q^19 - 3 * q^23 - q^25 - q^29 + 6 * q^35 - 8 * q^37 + 5 * q^41 - 8 * q^43 - 7 * q^47 - 2 * q^49 + 4 * q^53 - 4 * q^55 + 14 * q^59 - 7 * q^61 + 2 * q^65 - 3 * q^67 + 4 * q^71 + 8 * q^73 + 6 * q^77 - 6 * q^79 - 9 * q^83 + 4 * q^85 + 30 * q^89 - 12 * q^91 - 8 * q^95 - 2 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times$$.

 $$n$$ $$271$$ $$1297$$ $$1621$$ $$2081$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$-\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
721.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 0 0 −0.500000 0.866025i 0 −1.50000 + 2.59808i 0 0 0
1441.1 0 0 0 −0.500000 + 0.866025i 0 −1.50000 2.59808i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.2.q.a 2
3.b odd 2 1 720.2.q.d 2
4.b odd 2 1 135.2.e.a 2
9.c even 3 1 inner 2160.2.q.a 2
9.c even 3 1 6480.2.a.x 1
9.d odd 6 1 720.2.q.d 2
9.d odd 6 1 6480.2.a.k 1
12.b even 2 1 45.2.e.a 2
20.d odd 2 1 675.2.e.a 2
20.e even 4 2 675.2.k.a 4
36.f odd 6 1 135.2.e.a 2
36.f odd 6 1 405.2.a.b 1
36.h even 6 1 45.2.e.a 2
36.h even 6 1 405.2.a.e 1
60.h even 2 1 225.2.e.a 2
60.l odd 4 2 225.2.k.a 4
180.n even 6 1 225.2.e.a 2
180.n even 6 1 2025.2.a.b 1
180.p odd 6 1 675.2.e.a 2
180.p odd 6 1 2025.2.a.e 1
180.v odd 12 2 225.2.k.a 4
180.v odd 12 2 2025.2.b.c 2
180.x even 12 2 675.2.k.a 4
180.x even 12 2 2025.2.b.d 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.2.e.a 2 12.b even 2 1
45.2.e.a 2 36.h even 6 1
135.2.e.a 2 4.b odd 2 1
135.2.e.a 2 36.f odd 6 1
225.2.e.a 2 60.h even 2 1
225.2.e.a 2 180.n even 6 1
225.2.k.a 4 60.l odd 4 2
225.2.k.a 4 180.v odd 12 2
405.2.a.b 1 36.f odd 6 1
405.2.a.e 1 36.h even 6 1
675.2.e.a 2 20.d odd 2 1
675.2.e.a 2 180.p odd 6 1
675.2.k.a 4 20.e even 4 2
675.2.k.a 4 180.x even 12 2
720.2.q.d 2 3.b odd 2 1
720.2.q.d 2 9.d odd 6 1
2025.2.a.b 1 180.n even 6 1
2025.2.a.e 1 180.p odd 6 1
2025.2.b.c 2 180.v odd 12 2
2025.2.b.d 2 180.x even 12 2
2160.2.q.a 2 1.a even 1 1 trivial
2160.2.q.a 2 9.c even 3 1 inner
6480.2.a.k 1 9.d odd 6 1
6480.2.a.x 1 9.c even 3 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2160, [\chi])$$:

 $$T_{7}^{2} + 3T_{7} + 9$$ T7^2 + 3*T7 + 9 $$T_{11}^{2} - 2T_{11} + 4$$ T11^2 - 2*T11 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2} + T + 1$$
$7$ $$T^{2} + 3T + 9$$
$11$ $$T^{2} - 2T + 4$$
$13$ $$T^{2} - 2T + 4$$
$17$ $$(T + 4)^{2}$$
$19$ $$(T - 8)^{2}$$
$23$ $$T^{2} + 3T + 9$$
$29$ $$T^{2} + T + 1$$
$31$ $$T^{2}$$
$37$ $$(T + 4)^{2}$$
$41$ $$T^{2} - 5T + 25$$
$43$ $$T^{2} + 8T + 64$$
$47$ $$T^{2} + 7T + 49$$
$53$ $$(T - 2)^{2}$$
$59$ $$T^{2} - 14T + 196$$
$61$ $$T^{2} + 7T + 49$$
$67$ $$T^{2} + 3T + 9$$
$71$ $$(T - 2)^{2}$$
$73$ $$(T - 4)^{2}$$
$79$ $$T^{2} + 6T + 36$$
$83$ $$T^{2} + 9T + 81$$
$89$ $$(T - 15)^{2}$$
$97$ $$T^{2} + 2T + 4$$