Properties

Label 2160.2.h.f.431.2
Level $2160$
Weight $2$
Character 2160.431
Analytic conductor $17.248$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(431,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.431");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 431.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2160.431
Dual form 2160.2.h.f.431.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{5} -1.26795i q^{7} +O(q^{10})\) \(q-1.00000i q^{5} -1.26795i q^{7} +1.26795 q^{11} -4.19615 q^{13} +5.19615i q^{17} +6.46410i q^{19} -7.73205 q^{23} -1.00000 q^{25} -2.19615i q^{29} +6.46410i q^{31} -1.26795 q^{35} +2.00000 q^{37} -8.19615i q^{41} +11.6603i q^{43} +2.53590 q^{47} +5.39230 q^{49} +0.803848i q^{53} -1.26795i q^{55} +11.6603 q^{59} -1.00000 q^{61} +4.19615i q^{65} +10.3923i q^{67} +1.26795 q^{71} +6.19615 q^{73} -1.60770i q^{77} +3.92820i q^{79} -5.19615 q^{83} +5.19615 q^{85} +3.80385i q^{89} +5.32051i q^{91} +6.46410 q^{95} -8.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 12 q^{11} + 4 q^{13} - 24 q^{23} - 4 q^{25} - 12 q^{35} + 8 q^{37} + 24 q^{47} - 20 q^{49} + 12 q^{59} - 4 q^{61} + 12 q^{71} + 4 q^{73} + 12 q^{95} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i
\(6\) 0 0
\(7\) − 1.26795i − 0.479240i −0.970867 0.239620i \(-0.922977\pi\)
0.970867 0.239620i \(-0.0770228\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.26795 0.382301 0.191151 0.981561i \(-0.438778\pi\)
0.191151 + 0.981561i \(0.438778\pi\)
\(12\) 0 0
\(13\) −4.19615 −1.16380 −0.581902 0.813259i \(-0.697691\pi\)
−0.581902 + 0.813259i \(0.697691\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.19615i 1.26025i 0.776493 + 0.630126i \(0.216997\pi\)
−0.776493 + 0.630126i \(0.783003\pi\)
\(18\) 0 0
\(19\) 6.46410i 1.48297i 0.670971 + 0.741483i \(0.265877\pi\)
−0.670971 + 0.741483i \(0.734123\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.73205 −1.61224 −0.806122 0.591749i \(-0.798438\pi\)
−0.806122 + 0.591749i \(0.798438\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 2.19615i − 0.407815i −0.978990 0.203908i \(-0.934636\pi\)
0.978990 0.203908i \(-0.0653642\pi\)
\(30\) 0 0
\(31\) 6.46410i 1.16099i 0.814265 + 0.580493i \(0.197140\pi\)
−0.814265 + 0.580493i \(0.802860\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.26795 −0.214323
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 8.19615i − 1.28002i −0.768365 0.640012i \(-0.778929\pi\)
0.768365 0.640012i \(-0.221071\pi\)
\(42\) 0 0
\(43\) 11.6603i 1.77817i 0.457740 + 0.889086i \(0.348659\pi\)
−0.457740 + 0.889086i \(0.651341\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.53590 0.369899 0.184949 0.982748i \(-0.440788\pi\)
0.184949 + 0.982748i \(0.440788\pi\)
\(48\) 0 0
\(49\) 5.39230 0.770329
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.803848i 0.110417i 0.998475 + 0.0552085i \(0.0175823\pi\)
−0.998475 + 0.0552085i \(0.982418\pi\)
\(54\) 0 0
\(55\) − 1.26795i − 0.170970i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.6603 1.51804 0.759018 0.651070i \(-0.225679\pi\)
0.759018 + 0.651070i \(0.225679\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.19615i 0.520469i
\(66\) 0 0
\(67\) 10.3923i 1.26962i 0.772667 + 0.634811i \(0.218922\pi\)
−0.772667 + 0.634811i \(0.781078\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.26795 0.150478 0.0752389 0.997166i \(-0.476028\pi\)
0.0752389 + 0.997166i \(0.476028\pi\)
\(72\) 0 0
\(73\) 6.19615 0.725205 0.362602 0.931944i \(-0.381888\pi\)
0.362602 + 0.931944i \(0.381888\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 1.60770i − 0.183214i
\(78\) 0 0
\(79\) 3.92820i 0.441957i 0.975279 + 0.220979i \(0.0709251\pi\)
−0.975279 + 0.220979i \(0.929075\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.19615 −0.570352 −0.285176 0.958475i \(-0.592052\pi\)
−0.285176 + 0.958475i \(0.592052\pi\)
\(84\) 0 0
\(85\) 5.19615 0.563602
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.80385i 0.403207i 0.979467 + 0.201604i \(0.0646152\pi\)
−0.979467 + 0.201604i \(0.935385\pi\)
\(90\) 0 0
\(91\) 5.32051i 0.557741i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.46410 0.663203
\(96\) 0 0
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.3923i 1.63110i 0.578690 + 0.815548i \(0.303564\pi\)
−0.578690 + 0.815548i \(0.696436\pi\)
\(102\) 0 0
\(103\) − 2.53590i − 0.249869i −0.992165 0.124935i \(-0.960128\pi\)
0.992165 0.124935i \(-0.0398722\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.07180 −0.490309 −0.245155 0.969484i \(-0.578839\pi\)
−0.245155 + 0.969484i \(0.578839\pi\)
\(108\) 0 0
\(109\) −9.39230 −0.899620 −0.449810 0.893124i \(-0.648508\pi\)
−0.449810 + 0.893124i \(0.648508\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 12.0000i − 1.12887i −0.825479 0.564433i \(-0.809095\pi\)
0.825479 0.564433i \(-0.190905\pi\)
\(114\) 0 0
\(115\) 7.73205i 0.721017i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.58846 0.603963
\(120\) 0 0
\(121\) −9.39230 −0.853846
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 18.0000i 1.59724i 0.601834 + 0.798621i \(0.294437\pi\)
−0.601834 + 0.798621i \(0.705563\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −12.9282 −1.12954 −0.564771 0.825248i \(-0.691036\pi\)
−0.564771 + 0.825248i \(0.691036\pi\)
\(132\) 0 0
\(133\) 8.19615 0.710697
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 5.19615i − 0.443937i −0.975054 0.221969i \(-0.928752\pi\)
0.975054 0.221969i \(-0.0712483\pi\)
\(138\) 0 0
\(139\) 7.85641i 0.666372i 0.942861 + 0.333186i \(0.108124\pi\)
−0.942861 + 0.333186i \(0.891876\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.32051 −0.444923
\(144\) 0 0
\(145\) −2.19615 −0.182381
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 20.1962i − 1.65453i −0.561809 0.827267i \(-0.689895\pi\)
0.561809 0.827267i \(-0.310105\pi\)
\(150\) 0 0
\(151\) 5.07180i 0.412737i 0.978474 + 0.206368i \(0.0661646\pi\)
−0.978474 + 0.206368i \(0.933835\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.46410 0.519209
\(156\) 0 0
\(157\) 5.80385 0.463197 0.231599 0.972811i \(-0.425604\pi\)
0.231599 + 0.972811i \(0.425604\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.80385i 0.772651i
\(162\) 0 0
\(163\) 10.3923i 0.813988i 0.913431 + 0.406994i \(0.133423\pi\)
−0.913431 + 0.406994i \(0.866577\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.66025 −0.205857 −0.102928 0.994689i \(-0.532821\pi\)
−0.102928 + 0.994689i \(0.532821\pi\)
\(168\) 0 0
\(169\) 4.60770 0.354438
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.80385i 0.517287i 0.965973 + 0.258643i \(0.0832755\pi\)
−0.965973 + 0.258643i \(0.916725\pi\)
\(174\) 0 0
\(175\) 1.26795i 0.0958479i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 25.8564 1.93260 0.966299 0.257421i \(-0.0828728\pi\)
0.966299 + 0.257421i \(0.0828728\pi\)
\(180\) 0 0
\(181\) 5.39230 0.400807 0.200403 0.979713i \(-0.435775\pi\)
0.200403 + 0.979713i \(0.435775\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 2.00000i − 0.147043i
\(186\) 0 0
\(187\) 6.58846i 0.481796i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) −12.1962 −0.877898 −0.438949 0.898512i \(-0.644649\pi\)
−0.438949 + 0.898512i \(0.644649\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.80385i 0.484754i 0.970182 + 0.242377i \(0.0779271\pi\)
−0.970182 + 0.242377i \(0.922073\pi\)
\(198\) 0 0
\(199\) − 10.3923i − 0.736691i −0.929689 0.368345i \(-0.879924\pi\)
0.929689 0.368345i \(-0.120076\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.78461 −0.195441
\(204\) 0 0
\(205\) −8.19615 −0.572444
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.19615i 0.566940i
\(210\) 0 0
\(211\) 9.00000i 0.619586i 0.950804 + 0.309793i \(0.100260\pi\)
−0.950804 + 0.309793i \(0.899740\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.6603 0.795223
\(216\) 0 0
\(217\) 8.19615 0.556391
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 21.8038i − 1.46669i
\(222\) 0 0
\(223\) − 12.9282i − 0.865737i −0.901457 0.432868i \(-0.857502\pi\)
0.901457 0.432868i \(-0.142498\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.73205 −0.513194 −0.256597 0.966518i \(-0.582601\pi\)
−0.256597 + 0.966518i \(0.582601\pi\)
\(228\) 0 0
\(229\) −5.00000 −0.330409 −0.165205 0.986259i \(-0.552828\pi\)
−0.165205 + 0.986259i \(0.552828\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 26.7846i 1.75472i 0.479834 + 0.877359i \(0.340697\pi\)
−0.479834 + 0.877359i \(0.659303\pi\)
\(234\) 0 0
\(235\) − 2.53590i − 0.165424i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.32051 0.344155 0.172078 0.985083i \(-0.444952\pi\)
0.172078 + 0.985083i \(0.444952\pi\)
\(240\) 0 0
\(241\) 17.3923 1.12034 0.560168 0.828379i \(-0.310736\pi\)
0.560168 + 0.828379i \(0.310736\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 5.39230i − 0.344502i
\(246\) 0 0
\(247\) − 27.1244i − 1.72588i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −23.3205 −1.47198 −0.735989 0.676994i \(-0.763282\pi\)
−0.735989 + 0.676994i \(0.763282\pi\)
\(252\) 0 0
\(253\) −9.80385 −0.616363
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 21.5885i − 1.34665i −0.739346 0.673325i \(-0.764865\pi\)
0.739346 0.673325i \(-0.235135\pi\)
\(258\) 0 0
\(259\) − 2.53590i − 0.157573i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −23.3205 −1.43800 −0.719002 0.695008i \(-0.755401\pi\)
−0.719002 + 0.695008i \(0.755401\pi\)
\(264\) 0 0
\(265\) 0.803848 0.0493800
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 26.7846i 1.63309i 0.577284 + 0.816543i \(0.304112\pi\)
−0.577284 + 0.816543i \(0.695888\pi\)
\(270\) 0 0
\(271\) − 24.4641i − 1.48609i −0.669242 0.743044i \(-0.733381\pi\)
0.669242 0.743044i \(-0.266619\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.26795 −0.0764602
\(276\) 0 0
\(277\) −17.8038 −1.06973 −0.534865 0.844938i \(-0.679637\pi\)
−0.534865 + 0.844938i \(0.679637\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 18.5885i − 1.10889i −0.832219 0.554447i \(-0.812930\pi\)
0.832219 0.554447i \(-0.187070\pi\)
\(282\) 0 0
\(283\) 16.7321i 0.994617i 0.867574 + 0.497309i \(0.165678\pi\)
−0.867574 + 0.497309i \(0.834322\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.3923 −0.613438
\(288\) 0 0
\(289\) −10.0000 −0.588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 23.1962i − 1.35513i −0.735461 0.677567i \(-0.763034\pi\)
0.735461 0.677567i \(-0.236966\pi\)
\(294\) 0 0
\(295\) − 11.6603i − 0.678886i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 32.4449 1.87633
\(300\) 0 0
\(301\) 14.7846 0.852171
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.00000i 0.0572598i
\(306\) 0 0
\(307\) − 7.85641i − 0.448389i −0.974544 0.224194i \(-0.928025\pi\)
0.974544 0.224194i \(-0.0719751\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 19.2679 1.09259 0.546293 0.837594i \(-0.316039\pi\)
0.546293 + 0.837594i \(0.316039\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 29.1962i 1.63982i 0.572493 + 0.819910i \(0.305976\pi\)
−0.572493 + 0.819910i \(0.694024\pi\)
\(318\) 0 0
\(319\) − 2.78461i − 0.155908i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −33.5885 −1.86891
\(324\) 0 0
\(325\) 4.19615 0.232761
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 3.21539i − 0.177270i
\(330\) 0 0
\(331\) 15.4641i 0.849984i 0.905197 + 0.424992i \(0.139723\pi\)
−0.905197 + 0.424992i \(0.860277\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.3923 0.567792
\(336\) 0 0
\(337\) 28.5885 1.55731 0.778656 0.627451i \(-0.215902\pi\)
0.778656 + 0.627451i \(0.215902\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.19615i 0.443847i
\(342\) 0 0
\(343\) − 15.7128i − 0.848412i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.3923 0.557888 0.278944 0.960307i \(-0.410016\pi\)
0.278944 + 0.960307i \(0.410016\pi\)
\(348\) 0 0
\(349\) 33.3923 1.78745 0.893725 0.448616i \(-0.148083\pi\)
0.893725 + 0.448616i \(0.148083\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 1.60770i − 0.0855690i −0.999084 0.0427845i \(-0.986377\pi\)
0.999084 0.0427845i \(-0.0136229\pi\)
\(354\) 0 0
\(355\) − 1.26795i − 0.0672958i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 33.7128 1.77929 0.889647 0.456649i \(-0.150950\pi\)
0.889647 + 0.456649i \(0.150950\pi\)
\(360\) 0 0
\(361\) −22.7846 −1.19919
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 6.19615i − 0.324321i
\(366\) 0 0
\(367\) − 24.5885i − 1.28351i −0.766911 0.641754i \(-0.778207\pi\)
0.766911 0.641754i \(-0.221793\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.01924 0.0529162
\(372\) 0 0
\(373\) 12.3923 0.641649 0.320825 0.947139i \(-0.396040\pi\)
0.320825 + 0.947139i \(0.396040\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.21539i 0.474617i
\(378\) 0 0
\(379\) 27.0000i 1.38690i 0.720506 + 0.693448i \(0.243909\pi\)
−0.720506 + 0.693448i \(0.756091\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −20.6603 −1.05569 −0.527845 0.849341i \(-0.677000\pi\)
−0.527845 + 0.849341i \(0.677000\pi\)
\(384\) 0 0
\(385\) −1.60770 −0.0819357
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 24.5885i 1.24668i 0.781949 + 0.623342i \(0.214226\pi\)
−0.781949 + 0.623342i \(0.785774\pi\)
\(390\) 0 0
\(391\) − 40.1769i − 2.03183i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.92820 0.197649
\(396\) 0 0
\(397\) −4.58846 −0.230288 −0.115144 0.993349i \(-0.536733\pi\)
−0.115144 + 0.993349i \(0.536733\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.3923i 0.518967i 0.965748 + 0.259483i \(0.0835523\pi\)
−0.965748 + 0.259483i \(0.916448\pi\)
\(402\) 0 0
\(403\) − 27.1244i − 1.35116i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.53590 0.125700
\(408\) 0 0
\(409\) −37.7846 −1.86833 −0.934164 0.356843i \(-0.883853\pi\)
−0.934164 + 0.356843i \(0.883853\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 14.7846i − 0.727503i
\(414\) 0 0
\(415\) 5.19615i 0.255069i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 16.9808 0.829565 0.414782 0.909921i \(-0.363858\pi\)
0.414782 + 0.909921i \(0.363858\pi\)
\(420\) 0 0
\(421\) −30.1769 −1.47073 −0.735366 0.677670i \(-0.762990\pi\)
−0.735366 + 0.677670i \(0.762990\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 5.19615i − 0.252050i
\(426\) 0 0
\(427\) 1.26795i 0.0613604i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.12436 0.439505 0.219752 0.975556i \(-0.429475\pi\)
0.219752 + 0.975556i \(0.429475\pi\)
\(432\) 0 0
\(433\) −4.58846 −0.220507 −0.110254 0.993903i \(-0.535166\pi\)
−0.110254 + 0.993903i \(0.535166\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 49.9808i − 2.39090i
\(438\) 0 0
\(439\) − 24.7128i − 1.17948i −0.807594 0.589739i \(-0.799231\pi\)
0.807594 0.589739i \(-0.200769\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −28.5167 −1.35487 −0.677434 0.735584i \(-0.736908\pi\)
−0.677434 + 0.735584i \(0.736908\pi\)
\(444\) 0 0
\(445\) 3.80385 0.180320
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 22.9808i − 1.08453i −0.840208 0.542265i \(-0.817567\pi\)
0.840208 0.542265i \(-0.182433\pi\)
\(450\) 0 0
\(451\) − 10.3923i − 0.489355i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.32051 0.249429
\(456\) 0 0
\(457\) −40.7846 −1.90782 −0.953912 0.300087i \(-0.902984\pi\)
−0.953912 + 0.300087i \(0.902984\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.60770i 0.0748778i 0.999299 + 0.0374389i \(0.0119200\pi\)
−0.999299 + 0.0374389i \(0.988080\pi\)
\(462\) 0 0
\(463\) − 12.9282i − 0.600825i −0.953809 0.300412i \(-0.902876\pi\)
0.953809 0.300412i \(-0.0971243\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 28.2679 1.30808 0.654042 0.756458i \(-0.273072\pi\)
0.654042 + 0.756458i \(0.273072\pi\)
\(468\) 0 0
\(469\) 13.1769 0.608453
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 14.7846i 0.679797i
\(474\) 0 0
\(475\) − 6.46410i − 0.296593i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 32.1962 1.47108 0.735540 0.677481i \(-0.236929\pi\)
0.735540 + 0.677481i \(0.236929\pi\)
\(480\) 0 0
\(481\) −8.39230 −0.382656
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.00000i 0.363261i
\(486\) 0 0
\(487\) − 34.9808i − 1.58513i −0.609788 0.792565i \(-0.708745\pi\)
0.609788 0.792565i \(-0.291255\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −38.7846 −1.75032 −0.875162 0.483829i \(-0.839246\pi\)
−0.875162 + 0.483829i \(0.839246\pi\)
\(492\) 0 0
\(493\) 11.4115 0.513950
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 1.60770i − 0.0721150i
\(498\) 0 0
\(499\) − 42.4641i − 1.90095i −0.310795 0.950477i \(-0.600595\pi\)
0.310795 0.950477i \(-0.399405\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −33.5885 −1.49764 −0.748818 0.662776i \(-0.769378\pi\)
−0.748818 + 0.662776i \(0.769378\pi\)
\(504\) 0 0
\(505\) 16.3923 0.729448
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 16.3923i − 0.726576i −0.931677 0.363288i \(-0.881654\pi\)
0.931677 0.363288i \(-0.118346\pi\)
\(510\) 0 0
\(511\) − 7.85641i − 0.347547i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.53590 −0.111745
\(516\) 0 0
\(517\) 3.21539 0.141413
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.5885i 1.07724i 0.842549 + 0.538620i \(0.181054\pi\)
−0.842549 + 0.538620i \(0.818946\pi\)
\(522\) 0 0
\(523\) − 6.33975i − 0.277218i −0.990347 0.138609i \(-0.955737\pi\)
0.990347 0.138609i \(-0.0442631\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −33.5885 −1.46314
\(528\) 0 0
\(529\) 36.7846 1.59933
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 34.3923i 1.48970i
\(534\) 0 0
\(535\) 5.07180i 0.219273i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.83717 0.294498
\(540\) 0 0
\(541\) 16.0000 0.687894 0.343947 0.938989i \(-0.388236\pi\)
0.343947 + 0.938989i \(0.388236\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.39230i 0.402322i
\(546\) 0 0
\(547\) 19.2679i 0.823838i 0.911220 + 0.411919i \(0.135141\pi\)
−0.911220 + 0.411919i \(0.864859\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 14.1962 0.604776
\(552\) 0 0
\(553\) 4.98076 0.211804
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 13.6077i − 0.576577i −0.957544 0.288288i \(-0.906914\pi\)
0.957544 0.288288i \(-0.0930861\pi\)
\(558\) 0 0
\(559\) − 48.9282i − 2.06944i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −25.8564 −1.08972 −0.544859 0.838528i \(-0.683417\pi\)
−0.544859 + 0.838528i \(0.683417\pi\)
\(564\) 0 0
\(565\) −12.0000 −0.504844
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 21.8038i − 0.914065i −0.889450 0.457032i \(-0.848912\pi\)
0.889450 0.457032i \(-0.151088\pi\)
\(570\) 0 0
\(571\) 6.46410i 0.270514i 0.990811 + 0.135257i \(0.0431860\pi\)
−0.990811 + 0.135257i \(0.956814\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.73205 0.322449
\(576\) 0 0
\(577\) 26.5885 1.10689 0.553446 0.832885i \(-0.313313\pi\)
0.553446 + 0.832885i \(0.313313\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.58846i 0.273335i
\(582\) 0 0
\(583\) 1.01924i 0.0422125i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.19615 0.214468 0.107234 0.994234i \(-0.465801\pi\)
0.107234 + 0.994234i \(0.465801\pi\)
\(588\) 0 0
\(589\) −41.7846 −1.72170
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12.8038i 0.525791i 0.964824 + 0.262896i \(0.0846774\pi\)
−0.964824 + 0.262896i \(0.915323\pi\)
\(594\) 0 0
\(595\) − 6.58846i − 0.270100i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 42.5885 1.74012 0.870059 0.492948i \(-0.164081\pi\)
0.870059 + 0.492948i \(0.164081\pi\)
\(600\) 0 0
\(601\) 30.1769 1.23094 0.615471 0.788160i \(-0.288966\pi\)
0.615471 + 0.788160i \(0.288966\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.39230i 0.381851i
\(606\) 0 0
\(607\) 19.2679i 0.782062i 0.920378 + 0.391031i \(0.127881\pi\)
−0.920378 + 0.391031i \(0.872119\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.6410 −0.430489
\(612\) 0 0
\(613\) −29.1769 −1.17844 −0.589222 0.807971i \(-0.700566\pi\)
−0.589222 + 0.807971i \(0.700566\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27.5885i 1.11067i 0.831627 + 0.555335i \(0.187410\pi\)
−0.831627 + 0.555335i \(0.812590\pi\)
\(618\) 0 0
\(619\) 15.4641i 0.621555i 0.950483 + 0.310777i \(0.100589\pi\)
−0.950483 + 0.310777i \(0.899411\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.82309 0.193233
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.3923i 0.414368i
\(630\) 0 0
\(631\) 6.21539i 0.247431i 0.992318 + 0.123715i \(0.0394810\pi\)
−0.992318 + 0.123715i \(0.960519\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 18.0000 0.714308
\(636\) 0 0
\(637\) −22.6269 −0.896512
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 4.39230i − 0.173486i −0.996231 0.0867428i \(-0.972354\pi\)
0.996231 0.0867428i \(-0.0276458\pi\)
\(642\) 0 0
\(643\) − 24.5885i − 0.969674i −0.874605 0.484837i \(-0.838879\pi\)
0.874605 0.484837i \(-0.161121\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −31.0526 −1.22080 −0.610401 0.792093i \(-0.708992\pi\)
−0.610401 + 0.792093i \(0.708992\pi\)
\(648\) 0 0
\(649\) 14.7846 0.580347
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 33.5885i − 1.31442i −0.753708 0.657209i \(-0.771737\pi\)
0.753708 0.657209i \(-0.228263\pi\)
\(654\) 0 0
\(655\) 12.9282i 0.505147i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.58846 0.256650 0.128325 0.991732i \(-0.459040\pi\)
0.128325 + 0.991732i \(0.459040\pi\)
\(660\) 0 0
\(661\) −4.00000 −0.155582 −0.0777910 0.996970i \(-0.524787\pi\)
−0.0777910 + 0.996970i \(0.524787\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 8.19615i − 0.317833i
\(666\) 0 0
\(667\) 16.9808i 0.657498i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.26795 −0.0489486
\(672\) 0 0
\(673\) −16.5885 −0.639438 −0.319719 0.947512i \(-0.603589\pi\)
−0.319719 + 0.947512i \(0.603589\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 10.1436i 0.389275i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15.3397 0.586959 0.293480 0.955965i \(-0.405187\pi\)
0.293480 + 0.955965i \(0.405187\pi\)
\(684\) 0 0
\(685\) −5.19615 −0.198535
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 3.37307i − 0.128504i
\(690\) 0 0
\(691\) − 27.0000i − 1.02713i −0.858051 0.513564i \(-0.828325\pi\)
0.858051 0.513564i \(-0.171675\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.85641 0.298010
\(696\) 0 0
\(697\) 42.5885 1.61315
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 6.00000i − 0.226617i −0.993560 0.113308i \(-0.963855\pi\)
0.993560 0.113308i \(-0.0361448\pi\)
\(702\) 0 0
\(703\) 12.9282i 0.487596i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 20.7846 0.781686
\(708\) 0 0
\(709\) 28.0000 1.05156 0.525781 0.850620i \(-0.323773\pi\)
0.525781 + 0.850620i \(0.323773\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 49.9808i − 1.87179i
\(714\) 0 0
\(715\) 5.32051i 0.198976i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −23.0718 −0.860433 −0.430216 0.902726i \(-0.641563\pi\)
−0.430216 + 0.902726i \(0.641563\pi\)
\(720\) 0 0
\(721\) −3.21539 −0.119747
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.19615i 0.0815631i
\(726\) 0 0
\(727\) − 15.7128i − 0.582756i −0.956608 0.291378i \(-0.905886\pi\)
0.956608 0.291378i \(-0.0941137\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −60.5885 −2.24095
\(732\) 0 0
\(733\) −15.6077 −0.576483 −0.288242 0.957558i \(-0.593071\pi\)
−0.288242 + 0.957558i \(0.593071\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.1769i 0.485378i
\(738\) 0 0
\(739\) − 1.39230i − 0.0512168i −0.999672 0.0256084i \(-0.991848\pi\)
0.999672 0.0256084i \(-0.00815229\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −26.1051 −0.957704 −0.478852 0.877896i \(-0.658947\pi\)
−0.478852 + 0.877896i \(0.658947\pi\)
\(744\) 0 0
\(745\) −20.1962 −0.739930
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.43078i 0.234976i
\(750\) 0 0
\(751\) 6.71281i 0.244954i 0.992471 + 0.122477i \(0.0390838\pi\)
−0.992471 + 0.122477i \(0.960916\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.07180 0.184582
\(756\) 0 0
\(757\) 34.0000 1.23575 0.617876 0.786276i \(-0.287994\pi\)
0.617876 + 0.786276i \(0.287994\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 27.3731i − 0.992273i −0.868245 0.496136i \(-0.834752\pi\)
0.868245 0.496136i \(-0.165248\pi\)
\(762\) 0 0
\(763\) 11.9090i 0.431133i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −48.9282 −1.76670
\(768\) 0 0
\(769\) −13.0000 −0.468792 −0.234396 0.972141i \(-0.575311\pi\)
−0.234396 + 0.972141i \(0.575311\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 12.8038i − 0.460522i −0.973129 0.230261i \(-0.926042\pi\)
0.973129 0.230261i \(-0.0739581\pi\)
\(774\) 0 0
\(775\) − 6.46410i − 0.232197i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 52.9808 1.89823
\(780\) 0 0
\(781\) 1.60770 0.0575279
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 5.80385i − 0.207148i
\(786\) 0 0
\(787\) − 9.12436i − 0.325248i −0.986688 0.162624i \(-0.948004\pi\)
0.986688 0.162624i \(-0.0519958\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −15.2154 −0.540997
\(792\) 0 0
\(793\) 4.19615 0.149010
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 52.7654i 1.86905i 0.355904 + 0.934523i \(0.384173\pi\)
−0.355904 + 0.934523i \(0.615827\pi\)
\(798\) 0 0
\(799\) 13.1769i 0.466166i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.85641 0.277247
\(804\) 0 0
\(805\) 9.80385 0.345540
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 36.5885i 1.28638i 0.765706 + 0.643191i \(0.222390\pi\)
−0.765706 + 0.643191i \(0.777610\pi\)
\(810\) 0 0
\(811\) 30.9282i 1.08604i 0.839721 + 0.543018i \(0.182718\pi\)
−0.839721 + 0.543018i \(0.817282\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 10.3923 0.364027
\(816\) 0 0
\(817\) −75.3731 −2.63697
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.3923i 0.362694i 0.983419 + 0.181347i \(0.0580457\pi\)
−0.983419 + 0.181347i \(0.941954\pi\)
\(822\) 0 0
\(823\) − 14.1962i − 0.494847i −0.968907 0.247423i \(-0.920416\pi\)
0.968907 0.247423i \(-0.0795839\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.2679 0.982973 0.491486 0.870885i \(-0.336454\pi\)
0.491486 + 0.870885i \(0.336454\pi\)
\(828\) 0 0
\(829\) −33.1769 −1.15228 −0.576141 0.817350i \(-0.695442\pi\)
−0.576141 + 0.817350i \(0.695442\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 28.0192i 0.970809i
\(834\) 0 0
\(835\) 2.66025i 0.0920619i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5.07180 −0.175098 −0.0875489 0.996160i \(-0.527903\pi\)
−0.0875489 + 0.996160i \(0.527903\pi\)
\(840\) 0 0
\(841\) 24.1769 0.833687
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 4.60770i − 0.158510i
\(846\) 0 0
\(847\) 11.9090i 0.409197i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −15.4641 −0.530103
\(852\) 0 0
\(853\) 40.7846 1.39644 0.698219 0.715884i \(-0.253976\pi\)
0.698219 + 0.715884i \(0.253976\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 23.1962i − 0.792365i −0.918172 0.396183i \(-0.870335\pi\)
0.918172 0.396183i \(-0.129665\pi\)
\(858\) 0 0
\(859\) 45.2487i 1.54387i 0.635704 + 0.771933i \(0.280710\pi\)
−0.635704 + 0.771933i \(0.719290\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 30.8038 1.04858 0.524288 0.851541i \(-0.324332\pi\)
0.524288 + 0.851541i \(0.324332\pi\)
\(864\) 0 0
\(865\) 6.80385 0.231338
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.98076i 0.168961i
\(870\) 0 0
\(871\) − 43.6077i − 1.47759i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.26795 0.0428645
\(876\) 0 0
\(877\) 38.5885 1.30304 0.651520 0.758632i \(-0.274132\pi\)
0.651520 + 0.758632i \(0.274132\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 42.5885i − 1.43484i −0.696640 0.717421i \(-0.745323\pi\)
0.696640 0.717421i \(-0.254677\pi\)
\(882\) 0 0
\(883\) − 1.26795i − 0.0426699i −0.999772 0.0213349i \(-0.993208\pi\)
0.999772 0.0213349i \(-0.00679164\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.5167 −0.353115 −0.176557 0.984290i \(-0.556496\pi\)
−0.176557 + 0.984290i \(0.556496\pi\)
\(888\) 0 0
\(889\) 22.8231 0.765462
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 16.3923i 0.548548i
\(894\) 0 0
\(895\) − 25.8564i − 0.864284i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 14.1962 0.473468
\(900\) 0 0
\(901\) −4.17691 −0.139153
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 5.39230i − 0.179246i
\(906\) 0 0
\(907\) − 5.07180i − 0.168406i −0.996449 0.0842031i \(-0.973166\pi\)
0.996449 0.0842031i \(-0.0268345\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 37.5167 1.24298 0.621491 0.783421i \(-0.286527\pi\)
0.621491 + 0.783421i \(0.286527\pi\)
\(912\) 0 0
\(913\) −6.58846 −0.218046
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 16.3923i 0.541322i
\(918\) 0 0
\(919\) 33.7128i 1.11208i 0.831155 + 0.556042i \(0.187680\pi\)
−0.831155 + 0.556042i \(0.812320\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.32051 −0.175127
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 20.1962i − 0.662614i −0.943523 0.331307i \(-0.892510\pi\)
0.943523 0.331307i \(-0.107490\pi\)
\(930\) 0 0
\(931\) 34.8564i 1.14237i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.58846 0.215466
\(936\) 0 0
\(937\) −29.1769 −0.953168 −0.476584 0.879129i \(-0.658125\pi\)
−0.476584 + 0.879129i \(0.658125\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 7.17691i − 0.233961i −0.993134 0.116980i \(-0.962679\pi\)
0.993134 0.116980i \(-0.0373215\pi\)
\(942\) 0 0
\(943\) 63.3731i 2.06371i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 46.7654 1.51967 0.759835 0.650116i \(-0.225280\pi\)
0.759835 + 0.650116i \(0.225280\pi\)
\(948\) 0 0
\(949\) −26.0000 −0.843996
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 6.00000i − 0.194359i −0.995267 0.0971795i \(-0.969018\pi\)
0.995267 0.0971795i \(-0.0309821\pi\)
\(954\) 0 0
\(955\) 18.0000i 0.582466i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.58846 −0.212752
\(960\) 0 0
\(961\) −10.7846 −0.347891
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12.1962i 0.392608i
\(966\) 0 0
\(967\) 5.32051i 0.171096i 0.996334 + 0.0855480i \(0.0272641\pi\)
−0.996334 + 0.0855480i \(0.972736\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.32051 −0.170743 −0.0853716 0.996349i \(-0.527208\pi\)
−0.0853716 + 0.996349i \(0.527208\pi\)
\(972\) 0 0
\(973\) 9.96152 0.319352
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 31.1769i 0.997438i 0.866764 + 0.498719i \(0.166196\pi\)
−0.866764 + 0.498719i \(0.833804\pi\)
\(978\) 0 0
\(979\) 4.82309i 0.154146i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −10.2679 −0.327497 −0.163748 0.986502i \(-0.552359\pi\)
−0.163748 + 0.986502i \(0.552359\pi\)
\(984\) 0 0
\(985\) 6.80385 0.216789
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 90.1577i − 2.86685i
\(990\) 0 0
\(991\) 57.9282i 1.84015i 0.391742 + 0.920075i \(0.371873\pi\)
−0.391742 + 0.920075i \(0.628127\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −10.3923 −0.329458
\(996\) 0 0
\(997\) −37.8038 −1.19726 −0.598630 0.801026i \(-0.704288\pi\)
−0.598630 + 0.801026i \(0.704288\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.2.h.f.431.2 yes 4
3.2 odd 2 2160.2.h.a.431.4 yes 4
4.3 odd 2 2160.2.h.a.431.1 4
12.11 even 2 inner 2160.2.h.f.431.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2160.2.h.a.431.1 4 4.3 odd 2
2160.2.h.a.431.4 yes 4 3.2 odd 2
2160.2.h.f.431.2 yes 4 1.1 even 1 trivial
2160.2.h.f.431.3 yes 4 12.11 even 2 inner