Properties

Label 2160.2.h.a
Level $2160$
Weight $2$
Character orbit 2160.h
Analytic conductor $17.248$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(431,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.431");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{5} + (\beta_{2} + 3 \beta_1) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{5} + (\beta_{2} + 3 \beta_1) q^{7} + ( - \beta_{3} - 3) q^{11} + (3 \beta_{3} + 1) q^{13} - 3 \beta_{2} q^{17} + (2 \beta_{2} - 3 \beta_1) q^{19} + ( - \beta_{3} + 6) q^{23} - q^{25} + (3 \beta_{2} + 3 \beta_1) q^{29} + (2 \beta_{2} - 3 \beta_1) q^{31} + (\beta_{3} + 3) q^{35} + 2 q^{37} + (3 \beta_{2} - 3 \beta_1) q^{41} + (5 \beta_{2} - 3 \beta_1) q^{43} + ( - 2 \beta_{3} - 6) q^{47} + ( - 6 \beta_{3} - 5) q^{49} + (3 \beta_{2} + 6 \beta_1) q^{53} + (\beta_{2} + 3 \beta_1) q^{55} + (5 \beta_{3} - 3) q^{59} - q^{61} + ( - 3 \beta_{2} - \beta_1) q^{65} + 6 \beta_{2} q^{67} + ( - \beta_{3} - 3) q^{71} + ( - 3 \beta_{3} + 1) q^{73} + ( - 6 \beta_{2} - 12 \beta_1) q^{77} + (4 \beta_{2} + 3 \beta_1) q^{79} - 3 \beta_{3} q^{83} - 3 \beta_{3} q^{85} + (3 \beta_{2} + 9 \beta_1) q^{89} + (10 \beta_{2} + 12 \beta_1) q^{91} + (2 \beta_{3} - 3) q^{95} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 12 q^{11} + 4 q^{13} + 24 q^{23} - 4 q^{25} + 12 q^{35} + 8 q^{37} - 24 q^{47} - 20 q^{49} - 12 q^{59} - 4 q^{61} - 12 q^{71} + 4 q^{73} - 12 q^{95} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{12}^{2} - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{12}^{3} + 2\zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
431.1
−0.866025 + 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0 0 0 1.00000i 0 1.26795i 0 0 0
431.2 0 0 0 1.00000i 0 4.73205i 0 0 0
431.3 0 0 0 1.00000i 0 4.73205i 0 0 0
431.4 0 0 0 1.00000i 0 1.26795i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.2.h.a 4
3.b odd 2 1 2160.2.h.f yes 4
4.b odd 2 1 2160.2.h.f yes 4
12.b even 2 1 inner 2160.2.h.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2160.2.h.a 4 1.a even 1 1 trivial
2160.2.h.a 4 12.b even 2 1 inner
2160.2.h.f yes 4 3.b odd 2 1
2160.2.h.f yes 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2160, [\chi])\):

\( T_{7}^{4} + 24T_{7}^{2} + 36 \) Copy content Toggle raw display
\( T_{11}^{2} + 6T_{11} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 24T^{2} + 36 \) Copy content Toggle raw display
$11$ \( (T^{2} + 6 T + 6)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 2 T - 26)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 27)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 42T^{2} + 9 \) Copy content Toggle raw display
$23$ \( (T^{2} - 12 T + 33)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 72T^{2} + 324 \) Copy content Toggle raw display
$31$ \( T^{4} + 42T^{2} + 9 \) Copy content Toggle raw display
$37$ \( (T - 2)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + 72T^{2} + 324 \) Copy content Toggle raw display
$43$ \( T^{4} + 168T^{2} + 4356 \) Copy content Toggle raw display
$47$ \( (T^{2} + 12 T + 24)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 126T^{2} + 81 \) Copy content Toggle raw display
$59$ \( (T^{2} + 6 T - 66)^{2} \) Copy content Toggle raw display
$61$ \( (T + 1)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 108)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 6 T + 6)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 2 T - 26)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 114T^{2} + 1521 \) Copy content Toggle raw display
$83$ \( (T^{2} - 27)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 216T^{2} + 2916 \) Copy content Toggle raw display
$97$ \( (T + 8)^{4} \) Copy content Toggle raw display
show more
show less